JPH021985A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH021985A JPH021985A JP14435988A JP14435988A JPH021985A JP H021985 A JPH021985 A JP H021985A JP 14435988 A JP14435988 A JP 14435988A JP 14435988 A JP14435988 A JP 14435988A JP H021985 A JPH021985 A JP H021985A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor region
- semiconductor
- region
- resistance
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 99
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 28
- 239000012535 impurity Substances 0.000 claims abstract description 12
- 239000002344 surface layer Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 abstract description 34
- 239000010410 layer Substances 0.000 abstract description 19
- 230000015556 catabolic process Effects 0.000 abstract description 2
- 239000004020 conductor Substances 0.000 description 19
- 235000012431 wafers Nutrition 0.000 description 15
- 230000008569 process Effects 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 6
- 238000005336 cracking Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 241000257465 Echinoidea Species 0.000 description 2
- 210000000746 body region Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 241001474374 Blennius Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 102200039498 rs12037217 Human genes 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66325—Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
- H01L29/66333—Vertical insulated gate bipolar transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/083—Anode or cathode regions of thyristors or gated bipolar-mode devices
- H01L29/0834—Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66363—Thyristors
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Bipolar Transistors (AREA)
- Thyristors (AREA)
Abstract
Description
【発明の詳細な説明】
(yr栗上の利用分野)
この発明は、半導体装置の製造方法に関し、特に絶縁ゲ
ート型バイポーラトランジスタ(IGBl)、ゲート・
クーンA−フ・サイリスク(GTO)静電誘導J(!j
す゛イリスク(SIT)!:の電力制御用に使用される
さ[′導体装め°の製):)i方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Application of YR Chestnut) The present invention relates to a method for manufacturing a semiconductor device, and in particular to an insulated gate bipolar transistor (IGBl), a gate
Kuhn A-F Cyrisk (GTO) Electrostatic induction J(!j
Sui Risk (SIT)! :) Concerning the method used for power control.
(従来の技術)
近江、半導体による電力料6+1はますます広く行われ
るようになってさ°でいる。゛重力制御に使用される′
¥導体装置は、かっては會ナイリスタがそれを代入1J
るムのであったが、中小容量では現在ではバイポーラ1
ヘランジスクが主流となっている。これ【よ、バイポー
ラ1〜ランジスクが高電圧動作がでさるJ、うに改良さ
れ、その高速動作と自己消弧1幾能に19れているとい
った使い勝手が使用要求に適した乙のであるためである
。この様な傾向の・及望は今後すますまず高まり、より
高機能な電力用半;9体装Iaが切望されている。(Prior Art) In Omi, the 6+1 electricity bill based on semiconductors is becoming more and more widespread. ``Used for gravity control''
¥ The conductor device used to be 1J when the meeting lister substituted it.
However, for small and medium capacity, bipolar 1
Herandysk is the mainstream. This is because the bipolar 1~range disk has been improved to allow high voltage operation, and its usability, such as its high speed operation and self-extinguishing function, is suitable for the usage requirements. . The demand for this trend will increase rapidly in the future, and there is a strong desire for a more sophisticated electric power semi-instrument Ia.
−・方、新しい電力用¥−導体装置として、高連動Pl
ど低駆動16カの利点から、電界効果型トランジスタ(
MO8t−ランジスタ)がL[口を集め、電力用素子ど
じで広く使用されている。しかしながら、MOS t−
ランジスタは、使用電圧を高く°するとブップ・リイズ
を大きくしないとバイポーラi・ランジスタ並のON電
圧を1qられないためコストが高くなり、使用電圧が5
00Vあるいは1000V以−[では、高速動作が必要
な場合以外ではバイポーラ1ヘランジスク並の広J吃へ
使用は行われないと判断される。-・As a new electric power conductor device, highly interlocking Pl
Due to the advantage of low drive power, field effect transistors (
MO8t-transistor) is widely used in power devices. However, MOS t-
When the operating voltage of a transistor is increased, the cost increases because it is not possible to obtain 1q of ON voltage equivalent to that of a bipolar transistor unless the voltage rise is increased.
At 00V or 1000V or more, it is determined that it will not be used for a wide voltage as large as a bipolar 1 herange disk unless high-speed operation is required.
MOSトランジスタのこの様な欠点を補った半j9 (
A装置として絶縁ゲート形バイポーラトランジスタ(I
GBT)が提唱され、一部で使用され始めている。第6
図は、I G [3Tの要部断面図を示した乙のである
。−上部の主面の近傍は、MOS l・ランジスタと基
本的に同じ構造をしてJ5す、イバ濃度ドレイン領域と
なる高抵抗半導体領域1.つ]−ル領領域、ソース領域
3.絶縁膜4.ゲート電極となる制御電極5およびソー
ス電極となる上部主電極6等がある。図には示されてい
ないが、制御電(船5の外部への取り出し端了し上部主
面にある。Half-j9 (
The A device is an insulated gate bipolar transistor (I
GBT) has been proposed and is beginning to be used in some areas. 6th
The figure shows a sectional view of the main parts of IG[3T. - The vicinity of the upper main surface has basically the same structure as a MOS l transistor, and has a high resistance semiconductor region 1. ] - le area, source area 3. Insulating film 4. There is a control electrode 5 that serves as a gate electrode, an upper main electrode 6 that serves as a source electrode, and the like. Although not shown in the figure, the control electrical terminal (the terminal for taking it out to the outside of the ship 5) is located on the upper main surface.
下部の↑而の近傍はMOS t−ランジスタが高濃度の
不純物を右りるドレイン領域であるのに対し、高11(
机下刃体領域1と責なる導電望の半導体領域8が形成さ
れ、下部−[電(4i9に接続されている。The region near the bottom ↑ is the drain region of the MOS t-transistor, which has a high concentration of impurities;
A conductive semiconductor region 8, which is responsible for the under-desk blade region 1, is formed and is connected to the lower electrode (4i9).
11低抗゛にンり体領戚1と半導体領域8の間に設置〕
られ℃いろ領域7は、高抵抗半導体領域1と同じ導電へ
°!で」;り濃度の高い低抵抗半導体領域である。11 Low resistance installed between body region 1 and semiconductor region 8]
The colored region 7 has the same conductivity as the high resistance semiconductor region 1! This is a low-resistance semiconductor region with a high concentration of oxides.
この低酸b″iYη体領域7はIGBTの動作自体には
木質的に不可欠<1ものではないが、電圧が印加される
とソース側から延びる空乏層が、半導体領域8に延びて
パンチ・スルーしにくいように設けられCいる。MO8
I〜ランジスタ(Jどでへいにしろl G r3Tし、
高雷圧索了ではON抵抗が子方な間WfJどl、−るの
ぐ、13賎抗゛r尋休領域1のj9みを小さく4ろため
に低抵抗半導体領域7は実際には必要な乙のである。Although this low acid b''iYη body region 7 is not physically essential for the operation of the IGBT itself, when a voltage is applied, the depletion layer extending from the source side extends to the semiconductor region 8 and punch-through. It is set so that it is difficult to move.MO8
I~Ran resistor (J dodehei Niro l G r3T,
In the case of high lightning pressure, the low resistance semiconductor region 7 is actually necessary in order to reduce the ON resistance while the ON resistance is small. That's what I'm talking about.
第7図は、従来のIGBTの製造工程の始めの部分を示
している。I G [3’T“の装造工程は、縦型のM
OS t−ランジスタとほとんど同じで、縦型のMOS
トランジスタのそれとは、最初に加工を始めるウェハ
の導電性が異なっている点と、高濃度ドレイン領域とな
る低抵抗半導体領域7が設けられる点がソシなっている
。まず、第7図(a)に示1ように、Iu Uどなるウ
ェハ(半導体IR材)8aを準備する。この半導体母材
8aは、第6図の半導体領域8にあたるものである。次
に、第7図(b)(C)に示Jように、半導体母材8a
の上に低抵抗Y導体領域7と高抵抗半導体領域1を順次
に1ビタ’p9+・ル成長ざぜて形成する。この後、高
抵抗半導体領域1上につ1ル領域2やソース領域3等を
形成する工程は基本的にM OS l−ランジスタの工
程と同じである。こうして、−上部主面側の加工が終れ
ば、次に第7図(C)に示づ点線Aの位置まて′、半導
体母材8aの下部主面側を削る。このにうに、ラップオ
フ工程が必要となるのは、IGBT′Sの半導体装はの
製j市工程では、ウェハ割れに対する防止と特に写真製
版■稈での加工精Igを維持するためにウェハの厚みが
一定以上必要であるため、半ヌリ体装買として最終的に
適当な厚みよりbl’ンい゛l′導体7N1月8aを1
史用しくhければなら<’にいため(” tV>る1、
この後、ラップA)された下部↑面側に下部ニド電極9
が形成される。FIG. 7 shows the beginning of a conventional IGBT manufacturing process. I G [3'T" installation process is vertical M
Almost the same as OS t-transistor, vertical MOS
It differs from that of a transistor in that the conductivity of the wafer that is first processed is different, and that a low-resistance semiconductor region 7 that becomes a highly doped drain region is provided. First, as shown in FIG. 7(a), an IU U wafer (semiconductor IR material) 8a is prepared. This semiconductor base material 8a corresponds to the semiconductor region 8 in FIG. Next, as shown in FIGS. 7(b) and (C), the semiconductor base material 8a
A low-resistance Y conductor region 7 and a high-resistance semiconductor region 1 are sequentially formed on the substrate by growing 1 bit p9+. Thereafter, the process of forming the single region 2, source region 3, etc. on the high-resistance semiconductor region 1 is basically the same as the process of forming the MOS l-transistor. When the machining on the -upper main surface side is completed in this way, the lower main surface side of the semiconductor base material 8a is then cut at the position indicated by the dotted line A' in FIG. 7(C). In this way, the wrap-off process is necessary in the manufacturing process of IGBT'S semiconductor devices to prevent wafer cracking and to maintain the processing accuracy of the photolithography process. Since a certain level or more is required, the final thickness of the bl'-in-l' conductor 7N1/8a is 1.
If it is historical, it will be <' niimame ("tV>ru1,
After this, the lower nido electrode 9 is placed on the wrapped lower ↑ surface side.
is formed.
ところて・、半導体装置の電子的な機能として、Pノみ
が中東な要因どなるのは、?:S抵抗′¥導体領域1の
み(゛ある。この高抵抗゛4ζ導体領域1のjりみは、
半4 (A装置に要求される耐圧特性に依存して一定艙
「ス」−):i必ず必要である。また、厚くなり過ぎる
と良りT <CON特性を得ることはできない。−・般
的に、電力用二1′ノリ体装置にと−) −’C、゛心
圧保持部の領域の厚みは、ぞの比抵抗の幀ど共に木質的
な手数性を持つしのである。By the way, what is the reason for the P-noise in the Middle East in terms of the electronic functions of semiconductor devices? :S resistance'\conductor area 1 only (there is.This high resistance '4ζ conductor area 1's resistance is
Half 4 (a certain degree depending on the voltage resistance characteristics required of the A device): i Definitely necessary. In addition, if the thickness is too large, good T<CON characteristics cannot be obtained. - Generally speaking, for electric power 21' glue body devices-) -'C, 'The thickness of the region of the cardiac pressure holding part has a wood-like characteristic in both the width of the specific resistance. be.
なお、低抵抗半導体領域7がなければ、丁ピク1′シ(
ノル成長を使用しないで、バイポーラトランジスタが通
常行っているJ、うな拡散つ■ハを使用Jることができ
る。この場合tユ、高抵抗゛r導体ダ11i、11をウ
ェハ母材どして、両面より反対47j:型の’t’ i
9休領t!!!8を不純物拡散ににって作り、不用な土
面側を01磨すればよい。しかしながら、IG[31−
のり?リスク動作を防ぐために必要どなる人t%のライ
フ・タイム・−1ラーは、本来I G +3 Tが11
つている大電流通電能力を大幅に損うため、それがなり
れば大幅なON抵抗の増大をbたらす低抵抗半導体装1
1!!7の存在が不可欠どなって°J3す、この様な゛
r導体領域8と低抵抗半導体領域7の二層(14Nの作
成が困難な拡散ウェハは、1G[3Tには使用されてい
イ【い。Note that if there is no low-resistance semiconductor region 7, 1' pixel (
Instead of using Nord growth, it is possible to use the diffusion technique normally used in bipolar transistors. In this case, the high resistance conductors 11i and 11 are placed on the wafer base material, and the opposite side 47j is placed on the mold's 't' i.
9 off duty! ! ! 8 by diffusion of impurities, and polish the unnecessary soil surface side with 01. However, IG[31-
seaweed? The life time of t% of people needed to prevent risk behavior -1 is originally I G +3 T is 11
Low-resistance semiconductor device 1, which significantly impairs the large current carrying capacity of the device, resulting in a significant increase in ON resistance.
1! ! The presence of 7 is indispensable because of the double layer of conductor region 8 and low-resistance semiconductor region 7 (diffused wafers that are difficult to create for 14N are not used for 1G [3T]). stomach.
また、先に述べたライフ・タイム・=Vウラ−導入は、
ライフ・タイム・キラー物質の拡散とか、放剣線照用を
行うことにJ、って行われている1、これは、M OS
l−ランジスタでライフ・タイム制御をhう場合の方
法と変わらない。In addition, the introduction of life time = Vura mentioned earlier,
J, this is being done to diffuse life time killer substances and perform long-distance irradiation1.This is MOS.
This method is no different from the method used when controlling the lifetime using an L-transistor.
〔発明が解決しようとりる課題)
IGBTは、i0i電圧で6電流通電能力が高く、スイ
ッチング速度ら甲く、駆動電力ら少なくて(Jむという
大きな利点を付しているのであるが、バイポーラ1−ラ
ンジスタを凌ぐほどの酋長は現在のところ困難な見込み
である。これは、製造工程に微細加工が要求され、微妙
なライフ・タイム制御と合い重なって歩留が悪いことと
、ウェハにががる材料費が]、ピタキシt?ル成長工程
を要することに起因して高いために、ブップのコストが
太刀打らぐさないためひある。製jΔ歩q口よ困難であ
るにしろ改良は期待でさるが、つTハ材料費は、エピラ
ミ−シトル成艮を行う必要のないバイポーラ1−ランジ
スタに対して、I G[3Tの不利な点は免れない。こ
れを使用電圧が500Vのクラスで比較すれば、バイポ
ーラトランジスタ用として通常使用される拡散つ1ハに
対して、IGBTのウェハはほぼ2 ’iF’+ n
(ilI”Cある。さらに1000vクラスになれば、
バイポーラトランジスタ用のつTハのfilli格は【
Jど/υど変わらないのに対し、IG[3Tでは、約2
イ8必要と<2る1ピタ:1シャル成良層の厚みにス・
1応しC12倍近く高価となる。このように、高せ圧素
子とし″(の主要な要素である高低抗半尊体111域1
に王ビタキシトル成長層を使用する半導体装11′ff
では、ぞの定格電圧が高くなるほど急速に製造コストが
高くなるという問題を有していた。[Problems to be solved by the invention] IGBTs have the great advantages of high current carrying capacity at i0i voltage, high switching speed, and low driving power (J), but they are bipolar 1 -Currently, it is difficult to develop a device that can surpass transistors.This is due to the fact that the manufacturing process requires microfabrication, which, combined with delicate life-time control, results in poor yields and wafer damage. This is because the cost of materials is high due to the need for a pitaxe growth process, and the cost of bupp cannot compete with it.Although it is more difficult to manufacture, improvements are expected. However, the material cost of IG[3T is unavoidable compared to a bipolar 1-transistor that does not require epiramidity formation. By comparison, an IGBT wafer has approximately 2 'iF' + n
(There is ilI"C. Furthermore, if it becomes 1000v class,
The filli case for bipolar transistors is [
While Jdo/υ remain the same, IG[3T has a difference of about 2
8 necessary and < 2 1 pita: 1 layer thickness
Accordingly, it is nearly 12 times more expensive than C. In this way, as a high pressure element, the main element of
Semiconductor device 11'ff using a vitaxitol growth layer
However, there is a problem in that the manufacturing cost increases rapidly as the rated voltage increases.
第8図は、現在+tll究例がtt+告されているl0
BFの伯のy B方法の一例である。この方法では、エ
ピタ1シVル成艮を使わない。す4cわら、第8図(a
)に示ず高抵抗半導体領域1をウェハは材として、第8
図(b)、 (c)に示すように下面側に低抵抗半導体
領域7と、高抵抗半導体装i!!1とは異なる導゛心型
の半導体領域8とを別々に拡散して形成している。この
下部主面にF面fff14i9が形成されると、低抵抗
半導体装1a7と半導体装II!t8とは短絡される形
どなる。この形はゲート・ターンオフ・→ノイリスク(
GTO)でアノード短絡としてよく知られている構造で
ある。この形にすれば、軽微なライフ・タイム制御です
まゼたり、ライフ・タイム制御を省略することb可能ぐ
あると矛想されている。ライフ・タイム制御を行うど、
ON抵抗の増大を必ずもたらすので、上記製法は大さい
利点を右している。しかし1.iがら、この方法の問題
点は、つ■ハ母材が幼い(現実的な1000Vクラスの
素子で高抵抗半導体領域1の厚みは10Q ft m程
度である)ことで、製造工程中でのウェハ割れと、・ウ
ェハの反りのために、人ω牛産はむろんのこと試作する
だけで6大変に困難である。Figure 8 shows l0 where the +tll case is currently being announced as tt+.
This is an example of BF's HakuyB method. This method does not use epitaxial layer formation. 4c Straw, Figure 8 (a
), the high-resistance semiconductor region 1 is used as the wafer material, and the eighth
As shown in FIGS. (b) and (c), there is a low resistance semiconductor region 7 on the lower surface side and a high resistance semiconductor device i! ! A semiconductor region 8 of a core type different from 1 is separately diffused and formed. When the F plane fff14i9 is formed on this lower main surface, the low resistance semiconductor device 1a7 and the semiconductor device II! It is short-circuited with t8. This shape is gate turn-off → Neurisk (
This is a structure well known as an anode short circuit in GTO). It is contradicted that if this form is adopted, it will be possible to make a simple life time control or to omit the life time control. Perform life time control, etc.
The above manufacturing method has great advantages since it necessarily results in an increase in ON resistance. But 1. However, the problem with this method is that the base material is young (the thickness of the high-resistance semiconductor region 1 is about 10Q ft m in a practical 1000V class element), and the wafer is Due to cracking and warping of the wafer, it is extremely difficult to produce a prototype, let alone produce it in humans.
このため、低抵抗?r導体領域7と半導体領域8を形成
した後で、ポリシリコンを5面に堆積させつ土ハ厚みを
大きくして所要の工程を経た後に、ボッシリコンを除去
するといった手段が取られており、製造工程が複雑化す
るという問題を有していた。Is this because of low resistance? After forming the r-conductor region 7 and the semiconductor region 8, a method is taken in which polysilicon is deposited on five sides, the thickness of the soil is increased, and after the necessary steps are performed, the polysilicon is removed. This has the problem of complicating the manufacturing process.
この発明は、上記従来の問題を解決するためになされた
bのぐ、[GBTのように、耐圧保持用の11抵抗半導
体領域の一方側に主電流制御機能をイiJる二1′導体
領域が設けられるととbに、他方側に(IL低抵抗半導
体領域、上記高抵抗半導体領域とは反対導電型の¥導体
領域とが(れぞれ設置]られる電力用゛ト導体装首を、
安価でかつ容易に!!!!造でさる゛l′導体装置の胃
j′u方法を提供することを目的とり“る。The present invention has been made to solve the above-mentioned conventional problems. and (b), a power conductor neck in which an IL low-resistance semiconductor region and a conductor region of the opposite conductivity type to the high-resistance semiconductor region are (respectively installed) on the other side,
Cheap and easy! ! ! ! The object of the present invention is to provide a method for constructing a conductor device.
(課題を解決づるための手I?2)
この発明の半導体装置の製造方法は、上記目的を達成す
るために、第1導電型の高抵抗半導体装Hをilt備す
る工程と、前記半導体11材の両生面側の入層部に第1
導電型不純物をそれぞれ拡散して、低抵抗半導体領域を
形成する工程と、前記半導体装Hの一方の1面の全部又
は一部に第2導電型の半導体[をエピタキシ1フル成艮
により形成する工程と、前記半導体母材の他方の主面側
・の前記低抵抗半導体領域が除去されるように前記半導
体母材をラップオフする工程と、ラップオフされた前記
半導体母材の他方の主面側に主電流制御機能を右づる半
導体領域と第1主電極および制御電極を形成するととら
に、一方の主面側に第2主電極を形成する工程とを含む
。(Method I?2 for Solving the Problems) In order to achieve the above object, the method for manufacturing a semiconductor device of the present invention includes a step of providing a high resistance semiconductor device H of a first conductivity type, and a step of providing the semiconductor device H of the first conductivity type. The first layer is placed in the layered part on the ambidextrous side of the material.
forming a low-resistance semiconductor region by diffusing conductive type impurities, and forming a second conductive type semiconductor on all or part of one surface of the semiconductor device H by epitaxy. a step of wrapping off the semiconductor base material so that the low resistance semiconductor region on the other main surface side of the semiconductor base material is removed; The method includes forming a semiconductor region that controls a main current control function, a first main electrode, and a control electrode, and also forming a second main electrode on one main surface side.
この発明の半導体装置の製造方法によれば、耐圧保持用
の高抵抗半導体領域が半導(A母材にJ、り形成される
とともに、この半導体nl材ど同一導電型の低抵抗半導
体領域が拡rIl処即により形成され、半導体装材と反
対導電型の半導体領域が−1−ピッキシ1/ル成艮によ
り形成されるため、定格電圧が高くなった場合でも半導
体母材の厚みを増すだけでよく、製造コストを低く押え
られる。According to the method of manufacturing a semiconductor device of the present invention, a high-resistance semiconductor region for maintaining breakdown voltage is formed on a semiconductor (A) base material, and a low-resistance semiconductor region of the same conductivity type as the semiconductor (Nl) material is formed. Since the semiconductor region of the opposite conductivity type to the semiconductor package is formed by the -1-pixel process, even if the rated voltage increases, the thickness of the semiconductor base material only increases. can keep manufacturing costs low.
第1図はこの発明の第1の実施例である半導体装置の製
造方法を示し、ここでは高抵抗半導体領域がN型である
IGBTの場合を例に挙げて説明する。FIG. 1 shows a method for manufacturing a semiconductor device according to a first embodiment of the present invention, and here, the case of an IGBT in which the high resistance semiconductor region is of N type will be explained as an example.
まず、第1図(a)に示すように、所定の比II(抗を
イ」するN型の高抵抗半導体母材10を準備する。First, as shown in FIG. 1(a), an N-type high-resistance semiconductor base material 10 having a predetermined ratio II (resistance I) is prepared.
この高戚抗゛1′導体丹材1aは、第6図の高抵抗半導
体領域1にあたるらのである。次に、第1図(b)に示
・jように、高抵抗半導体装材1aの両生面側の表h′
り部にN型の不純物を拡散してそれぞれ低戚抗゛1′ン
I月本領戚7を形成Jる。(の後、゛1′導体1z1材
1aの下面側を第1図(b)の点線Bで示づ位置まc
+tn磨し、第11′A(C)に示すJ、うにぞの下面
側に−Iピタ1シ!!ル成艮を行いI)型の半尊体領1
11!8を形成Cfる。、1ピタ1−シ1zル層の厚み
は、次にjホベるrIII暦の後のつ[ハ厚みがウェハ
割れが問題とならない程瓜(4インチ・つTハで200
μyn程度)なるようにしておけばよい。次いで第1図
(C)に承りように、高抵抗領域1が所定のnさ゛にな
るように上面を点線Cの位置まで研磨する(第1図fd
)参照〉。その後の工程は、下面の仙財工程がない点の
み従来の製造工程と51/、なるのみである。This high-resistance resistor 1' conductor material 1a corresponds to the high-resistance semiconductor region 1 in FIG. Next, as shown in FIG. 1(b),
An N-type impurity is diffused into the resistive region to form a low relative resistance resistor 1 and a main region 7, respectively. (After that, position the bottom side of the conductor 1z1 material 1a as indicated by the dotted line B in Figure 1(b).
+tn polish, J shown in No. 11'A (C), -I pita 1 on the bottom side of the sea urchin! ! Perform the le formation and I) Type half-venerable realm 1
Form 11!8 Cf. , the thickness of the 1-pitch layer is as high as the thickness of the next layer (4 inches and 200 mm) so that wafer cracking is not a problem.
(approximately μyn). Next, as shown in FIG. 1(C), the upper surface is polished to the position of the dotted line C so that the high resistance region 1 has a predetermined width n (FIG. 1 fd
)reference>. The subsequent process differs from the conventional manufacturing process only in that there is no senzai process on the bottom surface.
完成した半導体装置の断面図は、第6図の従来例と同じ
ようなり4造となる。The cross-sectional view of the completed semiconductor device is the same as that of the conventional example shown in FIG. 6, and has four parts.
このようにして、形成したP fflのエピタキシ1ル
層は、そのままP型半導体領11!8としC使用するこ
とができる。この場合、比較的電圧の低い素子の場合、
高抵抗半導体領域1が薄いのでウェハ割れを考慮すると
数十μm以−りの厚みを有する1−ピタキシIIル層が
必要となるが、■ビクキシpル層の比抵抗と厚みの制御
幅は、従来の方法のエビクーVシ【rル成長の場合に比
べて桁はずれに大きく取れ、製造コストは大幅に下がる
。The epitaxial layer of Pffl thus formed can be used as it is as the P-type semiconductor region 11!8. In this case, for a relatively low voltage element,
Since the high-resistance semiconductor region 1 is thin, a 1-pitaxy-II layer with a thickness of several tens of μm or more is required to prevent wafer cracking. Compared to the conventional method of Ebiku V-silk growth, the yield is orders of magnitude larger and the manufacturing cost is significantly lower.
また、第1図fc)の下面側のN型低11に抗半19(
A領域7は、点線B(第1図(b))でrlIl磨され
た俊の不純物濃度が低いので、形成したP型のエビタ1
:シャル層を不純物拡散源として熱拡散処理を行い、P
型半導体領域8を元来N型であった低抵抗半導体領域7
中にも容易に形成させることができる。In addition, an anti-semi 19 (
Since the A region 7 has a low impurity concentration in the rlIl polished layer as indicated by the dotted line B (FIG. 1(b)), the formed P-type Evita 1
: A thermal diffusion process is performed using the Schal layer as an impurity diffusion source, and P
type semiconductor region 8 is originally an N-type low resistance semiconductor region 7
It can also be easily formed inside.
この場合、第1図(c)の低抵抗!¥ j9体領11!
I7の厚みをjJくしておくことができるので、所定の
ウェハ11/みにするためのエピタキシ1フル層の厚み
を熱拡rIl?:”進む厚みだけ薄くすることができる
。In this case, the low resistance shown in Figure 1(c)! ¥ j9 body area 11!
Since the thickness of I7 can be kept at jJ, the thickness of the epitaxy 1 full layer to form a predetermined wafer 11 can be thermally expanded rIl? :”It can be thinned by the amount of thickness it advances.
第2図は、この発明の第2の実施例である半導体装置の
製造7J法を承引。:Lず、第2図(alに承りよ゛う
に、所定の比抵抗を右す′るNJl12の1高抵抗半々
体RJ月1 aを準備し、第2図(b)に示づJ、うに
どの両1而側の表層部にN型の不純物を拡散してそれぞ
れ低抵抗半導体領域7を形成する。その後、丁ス9体r
′Nl材1z1の下面側を第2図(b)の点線Bで示す
(☆置まで研磨する。その後、第2図(clに丞・jJ
、゛)に、下面側にl−y、を体間化物から/、γるマ
スク10を形成し、−・部に開「1を開けた後、l’)
IJすのTビグ1シ11ル層を形成りる。このどさ、
第2図(d)に示号ように、マスク開口部に連なる一L
ピタキシトル部分はP型の単結晶半導体領域8を形成し
、マスク10上のエピク1−シ11ル部分は多結晶状態
の゛r導体領(或11を形成する。この後、多結晶状態
の゛1′1体鎖域11を除去する。その除去は、エビタ
X−シtlルh′1が厚い場合には、多結晶とji結晶
のエツfング案の差を(り用して下土面仝面を1ツブン
グすることにJ:っても可能であるが、■ツブング用の
マスクを′¥導体領!・ff181.:対応する下主面
に形成し、先に形成したエピウ1シt/ル・用のマスク
10をエツチング防止領域としC−■−ツブング1」る
方法が望ましい。FIG. 2 shows the 7J method for manufacturing a semiconductor device, which is a second embodiment of the present invention. :L, as shown in Figure 2 (al), prepare one high resistance half-and-half RJ1a of NJ12 with a predetermined resistivity, and as shown in Figure 2(b), N-type impurities are diffused into the surface layer on both sides of the sea urchin to form low-resistance semiconductor regions 7. After that, the 9-piece r
'The lower surface side of the Nl material 1z1 is polished to the dotted line B in Fig. 2 (b) (☆).
, ゛), form a mask 10 with ly on the lower surface side from the interbody compound, and after opening ``1'' on the ``-'' part, l')
Form a T big 1 11 layer of IJ. This place,
As shown in Fig. 2(d), one L is connected to the mask opening.
The pitaxitol portion forms a P-type single crystal semiconductor region 8, and the epitaxial portion on the mask 10 forms a polycrystalline conductor region (or 11). 1'1 body chain region 11 is removed.If the Evita J: It is possible to tumble the other side of the surface, but ■ Form the mask for the tbung on the corresponding lower main surface, and use the previously formed epitaxial layer. It is desirable to use the mask 10 for etching as an etching prevention area.
半導体領域11を除去した1すはマスク10を除去し、
第3図に示すようにI’ 3’2体領I!!1Bの両側
に絶縁膜12を形成してから、■・部主面側にF部J。After removing the semiconductor region 11, the mask 10 is removed;
As shown in Figure 3, I'3' 2-body region I! ! After forming the insulating film 12 on both sides of the part 1B, the part F J is formed on the main surface side of the part .
市(引9を形成する。なお、十部主面部の加工についで
は第1図で説明した例と同様の方法が適用できる。第3
図は、このようにして作成したI G nlの新面の一
部を示している。図中の絶縁膜12は、IQ[3Tの動
作1hに電流が、半導(A領域8の11で低抵抗半導体
領Vi7と下部−L電極9との玉石の境界部に集中して
流れ、破壊しやすくなることを防止Jる6のである。こ
の方lムにおいて、多結晶状態の半導体領域11の除去
を行う時点は、エピ全1シt・ル成長の直1νから、下
主面電極を形成する■稈までの適宜な時期が選択しつる
。ウェハp:4みがa9い場合に(ま、この時点を後ろ
にするほどつ1−ハニー11れに対し−C右効となる。9 is formed.The same method as the example explained in FIG. 1 can be applied to the processing of the main surface of the tenth part.
The figure shows part of the new surface of I G nl created in this way. In the insulating film 12 in the figure, during the operation 1h of IQ[3T, current flows concentratedly at the cobblestone boundary between the low-resistance semiconductor region Vi7 and the lower L electrode 9 in the semiconductor (11 of the A region 8). In this method, the point at which the polycrystalline semiconductor region 11 is removed is from the direct 1ν of epitaxial growth to the bottom main surface electrode. Select the appropriate time until the culm is formed.If wafer p:4 is a9, (well, the later this point is, the more 1-honey 11 will have a -C right effect.
第1図は、別の実施例を示したもので、第3図の方法に
、形成したP型の1ピタ4.シt/ル層8を不純物拡散
源として熱拡散処理を行った処理を加えた場合を示して
いる。この場合は、ウェハの厚みにり=I L ’(第
1図ひ説明したしのと同様の効果がある。また、このl
G13Tには、第4図に示りJ、)にN型の高濃度゛1
′導体領1a!13が設けられている。このN型゛1′
導体領域13は、第2図(d)におい(多結晶状態の半
導体領域11とマスク10とを除l、シた後、N型の不
評物を例えばイオン注入法′9にJ:り低抵抗半導体領
域7の表層部にどl入づることにより形成される。この
N型γ樽体′t+域13 LL、NJS′!低1氏抗半
廊(A領1或7が第2図(l〕)のjj、丸線B″c研
磨された侵不純物濃度が低下づるので、下部1市(41
つとの)a続けを改;Aづるために設けられるしのであ
る。もちろ/υ、第3図の場合にblこの4′η体領1
!l!13を設けることは可能である。FIG. 1 shows another example, in which a P-type 1-pitch 4. A case is shown in which a thermal diffusion process is applied using the sit/ru layer 8 as an impurity diffusion source. In this case, the wafer thickness = I L' (the same effect as explained in Fig. 1 is obtained. Also, this l
G13T has a high concentration of N type ゛1 in J, ) as shown in Figure 4.
'Conductor area 1a! 13 are provided. This N type ゛1'
After removing the polycrystalline semiconductor region 11 and the mask 10 as shown in FIG. It is formed by penetrating into the surface layer of the semiconductor region 7.This N-type γ barrel 't+ region 13 LL, NJS'! ] ) jj, round wire B″c Polished invasive impurity concentration decreases, so lower part 1 city (41
This is a sign that is provided to change the a continuation of the word ``a''. Of course/υ, in the case of Fig. 3, bl this 4′η body area 1
! l! It is possible to provide 13.
第5図は、選択的に形成したエピタキシシル層の゛¥導
体領域8をω1磨することを特徴とした実施例を示した
ものである。具体的には、第2図(d)において、多結
晶状態の半導体領域11とマスク10どを除去した後、
低抵抗半導体領域7よりも低い電気抵抗のN型半導体領
域13を下部主面の全面に形成し、その後半導体領域8
の一部をN¥!I゛¥導体領域13の一部ととムにラッ
プオフする。FIG. 5 shows an embodiment characterized in that the conductor region 8 of the selectively formed epitaxial layer is polished by ω1. Specifically, in FIG. 2(d), after removing the polycrystalline semiconductor region 11 and the mask 10,
An N-type semiconductor region 13 having a lower electrical resistance than the low resistance semiconductor region 7 is formed over the entire lower main surface, and then the semiconductor region 8
Part of it for N¥! Wrap-off with part of the conductor region 13.
このl1II磨によって、下部主電極9の被覆性を良好
にすることができる。また、図中に示t ’tq s体
領II火13(ユ、り)4図の場合と同じ下部主′、f
1極9との接続性を良17にする鮎さ・をするものであ
るが、第5図に示17′Jγムによると、選択的に形成
り゛るといった手間をか【プずに、下−L面仝面にN型
不純物を拡散り°ることができる。This l1II polishing can improve the coverage of the lower main electrode 9. In addition, the same lower main ', f as shown in the figure
This is to improve the connectivity with the single pole 9, but according to the 17'Jγm shown in FIG. N-type impurities can be diffused onto the lower L plane.
なお、上記第1図ないし第5図において、Pべ°!とN
型の極性を反転してらよいことは唇うまでしない。In addition, in the above-mentioned figures 1 to 5, Pbe°! and N
Don't worry about reversing the polarity of the mold.
また、上記説明は、もっばら[GBTについて行ったが
、他のGTO,S IT、サイリスク等、下士面部に責
なる導電性領域を右す−る縦!1′!の丁ンワ1木1↓
置につい’(’ b fiil IC<=91宋のある
ことは明らかCある。Furthermore, although the above explanation has been made with respect to GBT, other GTOs, SITs, Cyrisks, etc., have conductive areas that are responsible for the men's helmet. 1′! 1 tree 1↓
Regarding the location, it is clear that there is a Sung Dynasty in 91.
(発明の2!+ ’A )
このIN明の十力(A装置の装造Ij法にJ:れば、耐
Jl−,C< I′J川(1) +C口代bりi ’l
′4体hl 1・(/J”t−尋[41’J祠ニヨリ形
成されるととbに、この丁力【+母材と同一導電11°
!の低If(lA21′尋休領トyが拡散娼1す!にJ
、り形成され、’l’ 79休INJ Uと反対府電型
の崖39休領域がLピクキシトル成長に、」、り形成さ
れるため、定18電バーが高くイiったJu合C′ム了
4(木1!l 44の11]み/i:1曽cJだ(」で
、J、 < 、エピク1シトル成艮C11を増り必要が
ないので製)もコストが1代く抑えられるとどしに、1
シェハ;I’ll iL等を、−おVして下面にボリシ
リニ1ンのIft積Aゝ)その除去を11う必要しなく
、装;Δ工程が複i1化することムイiい。(Invention 2! + 'A) This IN Ming's Ten Forces (A device's design Ij method: If J:, then resistance Jl-, C <I'J river (1) +C mouth fee b i 'l
'4 body hl 1・(/J"t-hiro [41'J shrine niyori [41'
! Low If (lA21' interrogation territory toy is spreading prostitution 1! J
, ri is formed, and 'L' 79-day INJ U and the opposite Fuden-type cliff 39-day region is L pixitol growth, ``, ri is formed, so the constant 18-dens bar is high I Ju combination C' MU Ryo 4 (Thursday 1!L 44 no 11) Mi/i: 1 So cJ (", J, <, Made because there is no need to increase Epic 1 Sittle Seiwa C11) also reduces the cost by one generation. As soon as it happens, 1
There is no need to remove the Ift product of volicilin 1 on the lower surface by applying -V and removing it, and there is no need to complicate the installation Δ process.
第1[スロ、lこの発明の第1の実施例である゛r導体
に首の製jろ方法の各工程を承り断面図、第2図はこの
発明の第2の実施11#1I−(−ある崖4)休装置の
装造/j法の各T稈を示J所面図、第3図は第2図の方
法により作成されたIGBTの要部断面図、第4図は他
の方法により作成されたI G B Tの要部断面図、
第5図はざらに伯の方法により作成されたIGBTの要
部断面図、第6図は従来の°IGB丁の要部断面図、第
7図はぞの製造工程を示す断面図、第8図は従来のIG
BTの伯の装造■稈を示す断面図である。
図において、1aは高抵抗半導体母材、5は制御電極、
6は上部主電極、7は低抵抗半導体領域、8は半導体領
域、9は下部主電極である。
なお、各図中同一符号は回−または相当部分をホす。The first embodiment of this invention is a cross-sectional view of the method for making a neck on a conductor, and FIG. - A certain cliff 4) Construction of a resting device/J method showing each T culm A sectional view of the main parts of IGBT created by the method,
Fig. 5 is a cross-sectional view of the main parts of an IGBT made by Haku Zara's method, Fig. 6 is a cross-sectional view of the main parts of a conventional IGBT, Fig. 7 is a cross-sectional view showing the manufacturing process. The figure shows the conventional IG
It is a sectional view showing a culm of BT. In the figure, 1a is a high-resistance semiconductor base material, 5 is a control electrode,
6 is an upper main electrode, 7 is a low resistance semiconductor region, 8 is a semiconductor region, and 9 is a lower main electrode. In each figure, the same reference numerals refer to circuits or corresponding parts.
Claims (1)
、 前記半導体母材の両主面側の表層部に第1導電型不純物
をそれぞれ拡散して、低抵抗半導体領域を形成する工程
と、 前記半導体母材の一方の主面の全部又は一部に第2導電
型の半導体領域をエピタキシャル成長により形成する工
程と、 前記半導体母材の他方の主面側の前記低抵抗半導体領域
が除去されるように前記半導体母材をラップオフする工
程と、 ラップオフされた前記半導体母材の他方の主面側に主電
流制御機能を有する半導体領域と第1主電極および制御
電極を形成するとともに、一方の主面側に第2主電極を
形成する工程とを含む半導体装置の製造方法。(1) A step of preparing a high-resistance semiconductor base material of a first conductivity type, and diffusing impurities of a first conductivity type into the surface layer portions of both main surfaces of the semiconductor base material to form low-resistance semiconductor regions. a step of forming a second conductivity type semiconductor region on all or part of one main surface of the semiconductor base material by epitaxial growth; and a step of forming a second conductivity type semiconductor region on the other main surface side of the semiconductor base material by epitaxial growth. lapping off the semiconductor base material so as to be removed; forming a semiconductor region having a main current control function, a first main electrode, and a control electrode on the other main surface side of the wrapped-off semiconductor base material; A method of manufacturing a semiconductor device, comprising: forming a second main electrode on one main surface side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63144359A JPH0724312B2 (en) | 1988-06-10 | 1988-06-10 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63144359A JPH0724312B2 (en) | 1988-06-10 | 1988-06-10 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH021985A true JPH021985A (en) | 1990-01-08 |
JPH0724312B2 JPH0724312B2 (en) | 1995-03-15 |
Family
ID=15360270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63144359A Expired - Lifetime JPH0724312B2 (en) | 1988-06-10 | 1988-06-10 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0724312B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04286163A (en) * | 1991-03-14 | 1992-10-12 | Shin Etsu Handotai Co Ltd | Manufacture of semiconductor substrate |
EP0702401A3 (en) * | 1994-08-31 | 1996-07-10 | Shinetsu Handotai Kk | Method for producing a semiconductor substrate suitable for IGBTs |
EP0782199A3 (en) * | 1995-12-27 | 1999-07-28 | Kabushiki Kaisha Toshiba | High voltage semiconductor device and method for manufacturing the same |
EP0969501A1 (en) * | 1998-07-02 | 2000-01-05 | Semikron Elektronik GmbH | Method of making power semiconductor components |
EP1017093A1 (en) * | 1998-12-29 | 2000-07-05 | ABB Semiconductors AG | Power semiconductor device and process for manufacturing it |
WO2002061845A1 (en) * | 2001-02-01 | 2002-08-08 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
WO2002082552A1 (en) * | 2001-04-07 | 2002-10-17 | Robert Bosch Gmbh | Semiconductor power component and corresponding production method |
CN100416858C (en) * | 2001-02-01 | 2008-09-03 | 三菱电机株式会社 | Semiconductor device |
JP2011166034A (en) * | 2010-02-12 | 2011-08-25 | Fuji Electric Co Ltd | Method of manufacturing semiconductor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60138968A (en) * | 1983-12-26 | 1985-07-23 | Meidensha Electric Mfg Co Ltd | Manufacture of semiconductor element |
-
1988
- 1988-06-10 JP JP63144359A patent/JPH0724312B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60138968A (en) * | 1983-12-26 | 1985-07-23 | Meidensha Electric Mfg Co Ltd | Manufacture of semiconductor element |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04286163A (en) * | 1991-03-14 | 1992-10-12 | Shin Etsu Handotai Co Ltd | Manufacture of semiconductor substrate |
EP0702401A3 (en) * | 1994-08-31 | 1996-07-10 | Shinetsu Handotai Kk | Method for producing a semiconductor substrate suitable for IGBTs |
US5696034A (en) * | 1994-08-31 | 1997-12-09 | Shin-Etsu Handotai Co., Ltd. | Method for producing semiconductor substrate |
EP0782199A3 (en) * | 1995-12-27 | 1999-07-28 | Kabushiki Kaisha Toshiba | High voltage semiconductor device and method for manufacturing the same |
EP0969501A1 (en) * | 1998-07-02 | 2000-01-05 | Semikron Elektronik GmbH | Method of making power semiconductor components |
EP1017093A1 (en) * | 1998-12-29 | 2000-07-05 | ABB Semiconductors AG | Power semiconductor device and process for manufacturing it |
JPWO2002061845A1 (en) * | 2001-02-01 | 2004-06-03 | 三菱電機株式会社 | Semiconductor device and manufacturing method thereof |
WO2002061845A1 (en) * | 2001-02-01 | 2002-08-08 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and method of manufacturing the same |
US6815767B2 (en) | 2001-02-01 | 2004-11-09 | Mitsubishi Denki Kabushiki Kaisha | Insulated gate transistor |
US7250345B2 (en) | 2001-02-01 | 2007-07-31 | Mitsubishi Denki Kabushiki Kaisha | Insulated gate transistor |
CN100416858C (en) * | 2001-02-01 | 2008-09-03 | 三菱电机株式会社 | Semiconductor device |
US7560771B2 (en) | 2001-02-01 | 2009-07-14 | Mitsubishi Denki Kabushiki Kaisha | Insulated gate transistor |
JP5025071B2 (en) * | 2001-02-01 | 2012-09-12 | 三菱電機株式会社 | Semiconductor device and manufacturing method thereof |
WO2002082552A1 (en) * | 2001-04-07 | 2002-10-17 | Robert Bosch Gmbh | Semiconductor power component and corresponding production method |
US6949439B2 (en) | 2001-04-07 | 2005-09-27 | Robert Bosch Gmbh | Semiconductor power component and a method of producing same |
JP2011166034A (en) * | 2010-02-12 | 2011-08-25 | Fuji Electric Co Ltd | Method of manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JPH0724312B2 (en) | 1995-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101467261B (en) | Scalable process and structure for jfet for small and decreasing line widths | |
US10468402B1 (en) | Trench diode and method of forming the same | |
TW201251031A (en) | Method of forming semiconductor device having deep trench charge compensation regions | |
JPH0222869A (en) | Symmetrical blocking high breakdown voltage semiconductor device and its manufacture | |
EP0663698B1 (en) | Semiconductor device and its manufacture | |
CN103489916A (en) | N type LDMOS of ladder gate oxide layer and active drift region structure and manufacturing method of N type LDMOS | |
CN103915334B (en) | The manufacture method of double level polysilicon bipolar transistor | |
CN107039502A (en) | Form the method and semiconductor devices of semiconductor devices | |
JPH021985A (en) | Manufacture of semiconductor device | |
JPH0613556A (en) | Integrated structure and manufacture thereof | |
US4984048A (en) | Semiconductor device with buried side contact | |
US3578514A (en) | Method for making passivated field-effect transistor | |
JPH01253278A (en) | Semiconductor device | |
KR100498503B1 (en) | Bipolar junction transistor and method for fabricating the same | |
JPH07142713A (en) | Semiconductor device and its production | |
JP2003535455A (en) | Manufacture of monopolar elements | |
JPH01191477A (en) | Field-effect transistor | |
CN206697482U (en) | A kind of trench metal-oxide semiconductor | |
CN108922888A (en) | A kind of terminal structure of power device and preparation method thereof | |
US3986904A (en) | Process for fabricating planar scr structure | |
CN209544358U (en) | Semiconductor devices | |
JPS6334975A (en) | Gate induction tunnel transistor | |
JPS58121642A (en) | Manufacture of semiconductor device | |
JPS5834943A (en) | Semiconductor device and manufacture thereof | |
KR100298573B1 (en) | Triac device of planar type |