JPH02198121A - Manufacture of film capacitor - Google Patents

Manufacture of film capacitor

Info

Publication number
JPH02198121A
JPH02198121A JP1844389A JP1844389A JPH02198121A JP H02198121 A JPH02198121 A JP H02198121A JP 1844389 A JP1844389 A JP 1844389A JP 1844389 A JP1844389 A JP 1844389A JP H02198121 A JPH02198121 A JP H02198121A
Authority
JP
Japan
Prior art keywords
electrode
film
electrode lead
dielectric film
edge face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1844389A
Other languages
Japanese (ja)
Other versions
JPH0622188B2 (en
Inventor
Hisaaki Tachihara
久明 立原
Tadashi Kimura
忠司 木村
Shinichi Suezawa
陶澤 真一
Noriyuki Sugiura
杉浦 紀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1844389A priority Critical patent/JPH0622188B2/en
Publication of JPH02198121A publication Critical patent/JPH02198121A/en
Publication of JPH0622188B2 publication Critical patent/JPH0622188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To ensure good electrical connection of an electric layer to an edge face electrode by cutting the lamination of the electrode layer and a dielectric film with a saw-shaped cutter in the position of an electrode lead-out edge face to increase unevenness of the electrode lead-out edge face more than before. CONSTITUTION:Between the layers of a lamination part 13b consisting of an electrode layer and a dielectric film, gaps 13c are uniformly generated being partially up and down spread extending the whole layers by being scratched with a rotary saw cutter 12. Next, a lamination 13 is made to contact with oxygen gas plasma by a hydrogen plasma treatment device to chemically and selectively remove the part of an electrode lead-out edge face 13a of the dielectric film. Later, zinc is sprayed on the electrode lead-out edge faces 13a on both sides by a metal spraying method to arrange edge face electrodes. Accordingly, interlayers of electrode layers and dielectric films come to a state of being vertically and at random spread so that gas invades also the vertically spread interlayers to partially generate a difference in a removal amount of dielectric films and form unevenness on the electrode lead-out edge faces. Thereby, good electrical connection and sufficient adhesive strength of the electrode layers and the edge face electrodes can be ensured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気機器、電子機器に用いるフィルムコンデ
ンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a film capacitor used in electrical equipment and electronic equipment.

従来の技術 近年、電子部品に対して、小形化、軽量化、高性能化、
低価格化が要望されており、フィルムコンデンサについ
ても小形化、高性能化のための開発が盛んに行われてい
る。
Conventional technology In recent years, electronic components have become smaller, lighter, higher-performance, and
There is a demand for lower prices, and film capacitors are being actively developed to be smaller and have higher performance.

以下、従来のフィルムコンデンサの製造方法の一例につ
いて説明する。
An example of a conventional film capacitor manufacturing method will be described below.

第6図は従来のフィルムコンデンサのms断面図である
。第6図に示すように、積層した複数枚の片面金属化フ
ィルム1はそれぞれ、誘電体フィルム1aの片面(上面
)に金属薄膜からなる電極1bを形成している。各片面
金属化フィルム1は積層の上下で互いに反対側の端部に
端辺に沿って細幅の溝状の非金属化部2を形成し、かつ
非金属化部2を形成した側の端辺が上側および下側の片
面金属化フィルム1の端辺より内側に位置するように交
互にずらして積層し、さらに非金属化部2を形成した両
側の端面に金属溶射法により端面電極3を配設して、端
辺を内側にずらして積層した片面金属化フィルム1の箇
所にフィルム間隙4を形成している。
FIG. 6 is a ms sectional view of a conventional film capacitor. As shown in FIG. 6, each of the laminated single-sided metallized films 1 has an electrode 1b made of a metal thin film formed on one side (upper surface) of the dielectric film 1a. Each single-sided metallized film 1 has a narrow groove-shaped non-metalized part 2 formed along the edge at opposite ends of the stack, and the end on the side where the non-metalized part 2 is formed. The sides of the upper and lower single-sided metallized films 1 are alternately shifted and laminated so that they are positioned inward from the edge sides, and further, end electrodes 3 are formed by metal spraying on both end faces on which the non-metalized portions 2 are formed. A film gap 4 is formed at a location of the single-sided metallized film 1 stacked with the end sides shifted inward.

従来、金属薄膜からなる電極1bがら端面電極3へ電極
引出しを行うに際し、端面電極を形成すべき端面(以下
電極引出し端面という。)に、上記のようにフィルム間
隙4を形成するなめに、片面金属化フィルム1を幅方向
に、非金属化部2の側が内側となるようにたとえば最小
で0.2鴎程度交互にずらした状態で巻き取っている。
Conventionally, when drawing out the electrode from the electrode 1b made of a metal thin film to the end electrode 3, one side was used to form the film gap 4 as described above on the end face on which the end electrode was to be formed (hereinafter referred to as the electrode drawing end face). The metallized film 1 is wound in a state in which the metallized film 1 is alternately shifted by, for example, a minimum of about 0.2 degrees in the width direction so that the non-metalized portion 2 side is on the inside.

このようにフィルム間隙4を形成して、その部分の下方
の片面金属化フィルム1の上面の電[ilbを露出させ
て、金属溶射法などにより形成した端面電極3と前記片
面金属化フィルム1上の電i1bとの間に良好な電気的
接続と、端面電極3の十分な付着強度を得ていた。
By forming the film gap 4 in this way and exposing the upper surface of the single-sided metallized film 1 below that part, the end electrode 3 formed by metal spraying or the like and the upper surface of the single-sided metalized film 1 are exposed. A good electrical connection with the electrode i1b and sufficient adhesion strength of the end electrode 3 were obtained.

しかしながら、このような方法には、片面金属化フィル
ム1の巻取りに高い精度が要求され、しかもフィルム幅
を狭くしたり、大容量化のためにフィルム厚を薄くした
りすると、フィルムが蛇行しやすく、重なり状態を一定
に保つことがむずかしく、巻取り精度が低い場合は、良
好な電気的接続が得られない場合も生じた。また、ずら
した積層を形成するために、単体コンデンサごとに個別
に巻取りを行わねばならないために生産性が低いという
問題がある。
However, such a method requires high precision in winding the single-sided metallized film 1, and when the film width is narrowed or the film thickness is thinned to increase capacity, the film may meander. If the winding accuracy is low, good electrical connection may not be obtained. Furthermore, in order to form staggered stacked layers, each individual capacitor must be individually wound, resulting in a problem of low productivity.

また、生産性の向上のために、複数のコンデンサ要素を
有する広幅の金属化フィルムを巻回してから単位コンデ
ンサに切断する製造方法(以下広幅巻取法という、)が
あるが、広幅巻取法では単位コンデンサに切断するので
、フィルム間隙4を形成するためには、金属化フィルム
の少なくとも片面に誘電体層を一定の幅で形成する方法
、もしくは単位コンデンサの電極引出し端面となる位置
に、フィルム厚み方向の凹凸(以下エンボスという、)
を設ける方法、もしくは前記電極引出し端面となる位置
に金属化フィルムに孔を設け、切断時に切り欠き状とな
るようにする方法などが開発されていた。
In addition, in order to improve productivity, there is a manufacturing method (hereinafter referred to as the wide winding method) in which a wide metallized film having multiple capacitor elements is wound and then cut into unit capacitors. Since the film is cut into capacitors, in order to form the film gap 4, there is a method of forming a dielectric layer with a constant width on at least one side of the metallized film, or a method of forming a dielectric layer with a constant width on at least one side of the metallized film, or a method of forming a dielectric layer in the film thickness direction at the position that will become the electrode extraction end surface of the unit capacitor. unevenness (hereinafter referred to as emboss)
A method has been developed in which a hole is provided in the metallized film at a position that will become the electrode lead-out end surface so that a hole is formed in the shape of a notch when cut.

しかしながら上記のような構造では、片面金属化フィル
ム1の厚みや、誘電体フィルム1aが薄くなると、巻取
前に形成しておいたフィルム間隙4となるべき部分が、
切断のためにつぶれてしまい、端面電極3と片面金属化
フィルム1の@極1bとの電気的接続を妨げてしまうと
いう問題があった。
However, in the above structure, when the thickness of the single-sided metallized film 1 or the dielectric film 1a becomes thinner, the portion that should become the film gap 4 formed before winding becomes
There was a problem in that it was crushed due to cutting, which prevented electrical connection between the end electrode 3 and the @pole 1b of the single-sided metallized film 1.

このような問題を解決する方法として、有機材料からな
る誘電体フィルム1aと電極1bとの積層物もしくは巻
回物を、電極引出し端面位置で切断した後、前記有機材
料からなる誘電体フィルム1bと反応性のある成分を少
なくとも含むガスを接触させて、前記誘電体フィルム1
bの電極引出し端面一部分を化学的に選択的除去した後
に、端面を極3を形成する方法が提案されている。この
方法では、t[+引出し端面近傍の誘電体フィルム1a
のみが選択的に除去されるので、電極1bが!4極引出
し端面に露出し、かつ隣り合う誘電体フィルム1aが微
少なずれ状態となって電極引出し端面に凹凸が形成され
るため、端面電極3と誘電体フィルム1a間の電極1b
との良好な電気的接続を得ることができる。
As a method to solve such problems, after cutting a laminate or a wound product of the dielectric film 1a made of an organic material and the electrode 1b at the electrode lead end surface position, the dielectric film 1b made of the organic material and the electrode 1b are cut. The dielectric film 1 is brought into contact with a gas containing at least a reactive component.
A method has been proposed in which the pole 3 is formed on the end surface after selectively chemically removing a portion of the electrode lead end surface of b. In this method, t[+dielectric film 1a near the drawer end face
Only the electrode 1b is selectively removed. Since the adjacent dielectric films 1a exposed on the 4-pole lead-out end face are slightly misaligned and unevenness is formed on the electrode lead-out end face, the electrode 1b between the end face electrode 3 and the dielectric film 1a
A good electrical connection can be obtained with the

発明が解決しようとする課題 しかしながら、上記の方法では、電極引出し端面に形成
される凹凸の大きさが、誘電体フィルム1aの除去され
る速度の偶然のばらつきによってのみ生じるものであり
、したがって凹凸が小さいために、端面電極3の付着強
度が十分でなく、良好な電気的接続を保持することが難
しいという課題があった。
Problem to be Solved by the Invention However, in the above method, the size of the unevenness formed on the electrode lead-out end face is caused only by accidental variations in the speed at which the dielectric film 1a is removed, and therefore the unevenness is Because of the small size, the adhesion strength of the end face electrode 3 was insufficient and there was a problem in that it was difficult to maintain a good electrical connection.

本発明は上記課題を解決するもので、有機材料からなる
誘電体フィルムと電極とを交互に重ね合わせた積層物も
しくは巻回物の、誘電体フィルムの電極引出し端面側部
分を化学的に選択的除去して、端面電極と前記電極との
良好な電気的接続を保持することができるような、十分
な付着強度を得ることができる積層型もしくは巻回型の
フィルムコンデンサを生産性よく製造することができる
フィルムコンデンサ製造方法を提供することを目的とす
るものである。
The present invention solves the above-mentioned problems by chemically selectively forming the electrode lead-out end surface side portion of the dielectric film in a laminate or a wound product in which dielectric films made of organic materials and electrodes are alternately stacked. To efficiently manufacture a laminated or wound type film capacitor that can be removed and have sufficient adhesion strength to maintain good electrical connection between an end face electrode and the electrode. The purpose of the present invention is to provide a method for manufacturing a film capacitor that enables the following.

課題を解決するための手段 上記課題を解決するために本発明のフィルムコンデンサ
の製造方法は、電極層と有機材料からなる誘電体フィル
ムとの積層物あるいは巻回物を、電極引出し端面部分で
のこ刃状刃物で切断し、次に少なくとも前記誘電体フィ
ルムの有機材料と反応性を有する成分を含むガスに接触
させて前記誘電体フィルムの電極引出し端面側部分を化
学的に選択的除去した後席面電極を形成することを特徴
とするものである。
Means for Solving the Problems In order to solve the above problems, the method for manufacturing a film capacitor of the present invention includes a method for manufacturing a film capacitor according to the present invention, in which a laminate or a wound product of an electrode layer and a dielectric film made of an organic material is stacked at the end face portion of the electrode drawer. After cutting with a serrated knife, and then chemically selectively removing the electrode lead end side portion of the dielectric film by contacting it with a gas containing a component that is reactive with at least the organic material of the dielectric film. It is characterized by forming a seat surface electrode.

作用 上記構成によって、複数の電極層と有機材料からなる誘
電体フィルムとの積層物もしくは巻回物の電極引出し端
面は、のこ刃状刃物による切断によって、前記電極層と
前記誘電体フィルムとの眉間が上下にランダムに広がっ
た状態が電極引出し端面全面に形成され、この状態で少
なくとも誘電体フィルムの有機材料と反応性のある成分
を含むガスを接触させることによって、前記ガスが上下
へ広がった層間にも侵入して、誘電体フィルムを化学的
反応により除去でき、かつその除去量に部分的に差が生
じるために、電極引出し端面に凹凸が形成され、これに
よって前記電極層と端面電極との良好な電気的接続と十
分な付着強度が確保される。
Effect With the above configuration, the electrode lead-out end face of a laminate or a wound product of a plurality of electrode layers and a dielectric film made of an organic material can be cut with a saw-like blade to separate the electrode layers and the dielectric film from each other. A state in which the eyebrows were randomly spread vertically was formed on the entire surface of the electrode lead-out end surface, and in this state, the gas containing at least the organic material of the dielectric film and a reactive component was brought into contact with it, thereby causing the gas to spread vertically. The dielectric film can be removed by a chemical reaction by penetrating between the layers, and the removal amount is partially different, so that unevenness is formed on the electrode lead-out end surface, which causes the electrode layer and the end electrode to be separated from each other. A good electrical connection and sufficient adhesion strength are ensured.

実施例 以下、本発明のフィルムコンデンサの製造方法について
、実施例にもとづいて説明する。
EXAMPLES Hereinafter, the method for manufacturing a film capacitor of the present invention will be explained based on examples.

第1図は本発明の一実施例のフィルムコンデンサの製造
方法によって得られた積層型のフィルムコンデンサの概
略断面図、第2図は同フィルムコンデンサの製造方法の
一工程を示す概略斜視図である。
FIG. 1 is a schematic cross-sectional view of a laminated film capacitor obtained by a method for manufacturing a film capacitor according to an embodiment of the present invention, and FIG. 2 is a schematic perspective view showing one step in the method for manufacturing the film capacitor. .

複数のフィルムコンデンサを得ることができる、広幅の
片面(上面)にアルミニウムを蒸着(厚さ300人)し
たポリフェニレンサルファイドフィルム巻回し、ヒート
プレスにより、熱固定した後、平板状ボビンから切り離
して厚さ21の広幅の積層物を得た.次に第2図に示す
ように、前記広幅の積層′!IJ11を厚さ0.2am
、直径100鴎、刃数300の超硬鋼でできた回転のこ
刃12により、所定幅で設定した電極引出し端面位置1
1aで切断して、複数本の所定幅の細幅8層物13を形
成しな。この細幅積層物13の切断面、すなわち電極引
出し端面13aは、第3図(a)、 (b)に示すよう
に、電極層と誘電体フィルムからなる積層部13bの眉
間には、回転のこ刃12がひっかくことによって部分的
に上下へ広がって間隙13cが全層にわたって均一に生
じていた。なお前記広幅の積層!t!!111の各電極
層には、細幅積層物13としたとき、上下で互いに反対
側となる一方の電極引出し端面13aの側の端部となる
位置に、長さ方向に細幅の絶縁部を設けている。
Multiple film capacitors can be obtained by winding a polyphenylene sulfide film with aluminum vapor-deposited (thickness: 300 mm) on one wide side (top surface), heat-setting it with a heat press, and then cutting it from a flat bobbin to reduce the thickness. 21 wide laminates were obtained. Next, as shown in FIG. 2, the wide lamination '! IJ11 thickness 0.2am
, a rotary saw blade 12 made of cemented carbide with a diameter of 100 mm and a number of blades of 300 is used to set the electrode drawer end face position 1 at a predetermined width.
Cut at 1a to form a plurality of narrow 8-layer products 13 having a predetermined width. As shown in FIGS. 3(a) and 3(b), the cut surface of this narrow laminate 13, that is, the electrode lead-out end surface 13a, is located between the eyebrows of the laminate portion 13b consisting of an electrode layer and a dielectric film. As the blade 12 scratched, it partially expanded upward and downward, and gaps 13c were uniformly formed over the entire layer. Furthermore, the wide lamination mentioned above! T! ! Each of the electrode layers 111 is provided with a narrow insulating part in the length direction at a position that is an end on the side of one electrode extraction end surface 13a that is opposite to each other in the upper and lower directions when the narrow laminate 13 is formed. It is set up.

次に、酸素プラズマ処理装置により、前記細幅積層物1
3を酸素ガスプラズマに接触させて、誘電体フィルムの
@極引出し端面13aの部分を化学的に選択的除去した
.その後、両側の電極引出し端面13aに亜鉛を金属溶
射法により溶射して端面電極を配設して親コンデンサを
形成した。この親コンデンサを所定長さに切断して、単
位コンデンサ(フィルムコンデンサ)を得た。なお、酸
素プラズマ処理装置による処理条件は、酸素流量60S
CCH圧力1.o Torr,周波数13.56M H
 z 、高周波電力400Wとしな。
Next, the narrow laminate 1 is processed using an oxygen plasma treatment device.
No. 3 was brought into contact with oxygen gas plasma to chemically and selectively remove the portion of the dielectric film at the lead-out end face 13a of the dielectric film. Thereafter, zinc was thermally sprayed onto the electrode lead-out end faces 13a on both sides by a metal spraying method to provide end face electrodes to form a parent capacitor. This parent capacitor was cut into a predetermined length to obtain a unit capacitor (film capacitor). In addition, the processing conditions by the oxygen plasma processing apparatus are an oxygen flow rate of 60S.
CCH pressure 1. o Torr, frequency 13.56MH
z, high frequency power is 400W.

得られた単位コンデンサ(フィルムコンデンサ)14は
、第1図に示すように電極層13Aを誘電体フィルム1
3Bの上面に設けるとともに、一方の端部に絶縁部13
Cを設け、かつ上下でこの絶縁部13Cが互いに反対側
に位置するように配置して積層した細幅積層物13の、
両側の電極引出し端面13aに端面電極15を設けた構
造を有し、しかも前記電極引出し端面13aにおいては
、上下の電極層13Aの間に誘電体フィルム13Bが部
分的に除去されて間隙13Dが形成され、その間隙13
Dに端面電極15である溶射金属が入込んで下側の電極
層13Aと電気的、機械的に十分に接続,接着していた
The obtained unit capacitor (film capacitor) 14 has an electrode layer 13A connected to a dielectric film 1 as shown in FIG.
3B, and an insulating section 13 at one end.
C, and the narrow laminate 13 is stacked so that the upper and lower insulating parts 13C are located on opposite sides of each other,
It has a structure in which end face electrodes 15 are provided on both electrode lead-out end faces 13a, and in addition, on the electrode lead-out end faces 13a, the dielectric film 13B is partially removed between the upper and lower electrode layers 13A to form a gap 13D. and the gap 13
The sprayed metal forming the end electrode 15 entered D and was sufficiently electrically and mechanically connected and bonded to the lower electrode layer 13A.

比較例として、上記の実施例で用いたのと同様の広幅の
積層物を、実施例の回転のこ刃に代えてカミソリ刃で切
断して細幅積層物を形成した.この細幅積層物の切断面
は、第4図fa)、 (b)に示すとおりであり、細幅
8!1層物21の切断面21aは、電極層と透電体フィ
ルムとからなる積層部21bの眉間には大きな削れ21
bが数層あったが、全体的には積層部21bの重なり状
態は整然としており、上下への広がりなどはほとんど認
められなかった。
As a comparative example, a wide laminate similar to that used in the above example was cut with a razor blade instead of the rotary saw blade in the example to form a narrow laminate. The cut surface of this narrow laminate is as shown in Fig. 4fa) and (b), and the cut surface 21a of the narrow 8! There is a large scratch 21 between the eyebrows in part 21b.
Although there were several layers of laminated portions 21b, overall, the overlapping state of the laminated portions 21b was orderly, with almost no vertical spread observed.

次に、この比較例の測幅積層物21についても、上記の
実施例と同様の条件で酸素ガスプラズマによる切断面2
1aにおける誘電体フィルムの化学的な選択的除去と、
さらに亜鉛の金属溶射をほどこし、端面電極を配設して
親コンデンサを形成し、これを切断して単位コンデンサ
を得た。
Next, with respect to the width measurement laminate 21 of this comparative example, the cut surface 2 was also cut by oxygen gas plasma under the same conditions as in the above example.
Chemical selective removal of the dielectric film in 1a;
Furthermore, zinc metal spraying was applied, end electrodes were arranged to form a parent capacitor, and this was cut to obtain a unit capacitor.

上記実施例と比較例で得た各フィルムコンデンサについ
て、電圧75V D Cで充放電試験を行なった。その
結果を第5図に示す、第5図に示す結果から明らかなよ
うに、本実施例で得られたフィルムコンデンサは、比較
例で得たフィルムコンデンサに比べて充放電に対して強
く、良好な電気的接続を確保していることがわかる。
A charge/discharge test was conducted on each of the film capacitors obtained in the above examples and comparative examples at a voltage of 75 V DC. The results are shown in Figure 5.As is clear from the results shown in Figure 5, the film capacitor obtained in this example has better resistance to charging and discharging than the film capacitor obtained in the comparative example. It can be seen that a good electrical connection is ensured.

なお本実施例で用いた材料は、本実施例に限るものでは
なく、誘電体フィルム、電′!f!層、端面電極の材料
は、通常のフィルムコンデンサに用いられるものはすべ
て適用することができる。
Note that the materials used in this example are not limited to those used in this example, and include dielectric films, electric '! f! All the materials used for ordinary film capacitors can be used for the layers and end electrodes.

また、有機材料からなる誘電体フィルムと反応性の成分
をもつガスも、酸素ガスプラズマに限るものではなく、
選択的除去が可能であれば、たとえば酸素を含むガスに
CF4 、SF6およびN20のうちの少なくとも1種
を添加したプラズマなどの種々のガス、および混合ガス
を用いることができる。
In addition, gases that have components reactive with dielectric films made of organic materials are not limited to oxygen gas plasma.
If selective removal is possible, various gases and mixed gases can be used, such as plasma in which at least one of CF4, SF6, and N20 is added to a gas containing oxygen.

発明の効果 以上のように本発明のフィルムコンデンサの製造方法に
おいては、電極層と誘電体フィルムとの積ノー物もしく
は巻回物を、電極引出し端面位置でのこ刃状刃物によっ
て切断して、切Iわ1面すなわち電極引出し端面の眉間
に部分的な上下への広がりによる間隙を均一に存在させ
、かつ誘電体フィルムの有機材料と反応性のあるガスに
接触させて、化学的に、選択的に誘電体フィルムの電極
引出し端面側部分を除去することで、電極引出し端面の
凹凸が従来より増加し、それによって電極層とこの電極
引出し端面上配設した端面電極との良好な電気的接続が
確保され、かつ端面電極の十分な付着強度が得られ、特
性の優れた小型のフィルムコンデンサを量産性よく生産
することができる。
Effects of the Invention As described above, in the method for manufacturing a film capacitor of the present invention, a laminated product or a wound product of an electrode layer and a dielectric film is cut with a saw-like blade at the position of the electrode lead-out end surface. A gap created by partially expanding vertically between the eyebrows of the electrode lead-out end face is created uniformly on one side of the cut I, and the dielectric film is brought into contact with a gas reactive with the organic material of the dielectric film. By removing the portion of the dielectric film on the side of the electrode lead-out end face, the unevenness of the electrode lead-out end face is increased compared to the conventional method, thereby improving the electrical connection between the electrode layer and the end face electrode disposed on the electrode lead-out end face. is ensured, sufficient adhesion strength of the end electrodes is obtained, and small-sized film capacitors with excellent characteristics can be mass-produced with good efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のフィルムコンデンサの製造
方法によって得られた積層型のフィルムコンデンサの概
略断面図、第2図は同フィルムコンデンサの製造方法の
一工程を示す概略斜視図、第3図(a)、 (b)は同
フィルムコンデンサの製造方法で形成した細幅積層物の
電極引出し端面を示し、(a)は概略側面図、(b)は
拡大側面図、第4図(a)、 (b)は比較例で形成し
た細幅積層物の電極引出し端面を示し、(a)は概略側
面図、(b)は拡大側面図、第5図は本実施例と比較例
で得たフィルムコンデンサの充放電試験結果を示す図、
第6図は従来例を示す概略断面図である。 11・・・積層物、12・・・回転のこ刃(のこ刃状刃
物)、13A・・・電極層、13B・・・誘電体フィル
ム、13C・・・絶縁部、13D・・・間隙、13a・
・・電極引出し端面、15・・・端面電極。 代理人   森  本  義  弘 第1! 第j図
FIG. 1 is a schematic cross-sectional view of a multilayer film capacitor obtained by the method for manufacturing a film capacitor according to an embodiment of the present invention, FIG. 2 is a schematic perspective view showing one step of the method for manufacturing the film capacitor, and FIG. Figures 3 (a) and 3 (b) show the electrode lead-out end face of a narrow laminate formed by the same film capacitor manufacturing method, where (a) is a schematic side view, (b) is an enlarged side view, and Figure 4 ( a) and (b) show the electrode lead-out end faces of the narrow laminate formed in the comparative example, where (a) is a schematic side view, (b) is an enlarged side view, and Fig. 5 shows the results of the present example and the comparative example. A diagram showing the charging/discharging test results of the obtained film capacitor,
FIG. 6 is a schematic sectional view showing a conventional example. DESCRIPTION OF SYMBOLS 11... Laminate, 12... Rotating saw blade (saw blade-like blade), 13A... Electrode layer, 13B... Dielectric film, 13C... Insulating part, 13D... Gap , 13a・
... Electrode drawer end face, 15... End face electrode. Agent Yoshihiro Morimoto No. 1! Figure j

Claims (1)

【特許請求の範囲】[Claims] 1.金属からなり端部となる位置に絶縁部を有する電極
層と、有機材料からなる誘電体フィルムとを、交互に、
かつ前記電極層の絶縁部側の端部を上下で互いに反対側
に位置させて配置した複数層の積層物または巻回物を、
前記端部の電極引出し端面形成位置でのこ刃状刃物で切
断し、次に少なくとも前記誘電体フィルムの有機材料と
反応性を有する成分を含むガスに接触させて前記誘電体
フィルムの電極引出し端面側部分を化学的に除去した後
、端面電極を形成することを特徴とするフィルムコンデ
ンサの製造方法。
1. An electrode layer made of metal and having an insulating part at the end position and a dielectric film made of an organic material are alternately arranged.
and a multi-layer laminate or a wound product in which the ends of the electrode layer on the insulating part side are located on opposite sides of each other,
The electrode lead end face of the dielectric film is cut with a saw blade at the electrode lead end face formation position of the end portion, and then brought into contact with a gas containing a component that is reactive with at least the organic material of the dielectric film. A method for manufacturing a film capacitor, comprising forming end electrodes after chemically removing side portions.
JP1844389A 1989-01-27 1989-01-27 Method of manufacturing film capacitor Expired - Lifetime JPH0622188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1844389A JPH0622188B2 (en) 1989-01-27 1989-01-27 Method of manufacturing film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1844389A JPH0622188B2 (en) 1989-01-27 1989-01-27 Method of manufacturing film capacitor

Publications (2)

Publication Number Publication Date
JPH02198121A true JPH02198121A (en) 1990-08-06
JPH0622188B2 JPH0622188B2 (en) 1994-03-23

Family

ID=11971778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1844389A Expired - Lifetime JPH0622188B2 (en) 1989-01-27 1989-01-27 Method of manufacturing film capacitor

Country Status (1)

Country Link
JP (1) JPH0622188B2 (en)

Also Published As

Publication number Publication date
JPH0622188B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JPH0793236B2 (en) Film capacitor and manufacturing method thereof
KR860000968B1 (en) Metal film condenser
WO2001080256A1 (en) Laminated body, capacitor, electronic part, and method and device for manufacturing the laminated body, capacitor, and electronic part
KR920010623B1 (en) Method and apparatus for manufacturing film capacitor
HU203817B (en) Electric capacitor made from undeformably fixed coil or sheet pack containing metallized plastic sheet arranged in layer
JP2001297944A (en) Thin film laminate, capacitor, and methods and devices for manufacturing them
JPH02198121A (en) Manufacture of film capacitor
JPH08102427A (en) Film capacitor
JP2658614B2 (en) Manufacturing method of metallized film capacitor
JPH04343408A (en) Manufacture of film capacitor
JPH0793237B2 (en) Method of manufacturing film capacitor
JPH04219915A (en) Flexible metalic derivative film capacitor and manufacture thereof
JP2004006495A (en) Stacked film capacitor and its manufacturing method
JPH02201911A (en) Manufacture of film capacitor
JPS596498B2 (en) Manufacturing method of multilayer capacitor
JPS61287119A (en) Metalized film capacitor
JPH0379013A (en) Manufacture of film capacitor
JPH0334521A (en) Manufacture of film capacitor
JP2742818B2 (en) Manufacturing method of multilayer film capacitor
JPH02192709A (en) Manufacture of laminated film capacitor
JPH11273996A (en) Manufacture of film capacitor
JPS61174710A (en) Manufacture of laminate type film capacitor
JPH0334511A (en) Manufacture of film capacitor
JPH0362911A (en) Metallized film capacitor and manufacture thereof
JPH03209807A (en) Film chip capacitor