JPH02197185A - Semiconductor laser assembly with built-in electronic cooling element - Google Patents

Semiconductor laser assembly with built-in electronic cooling element

Info

Publication number
JPH02197185A
JPH02197185A JP1015012A JP1501289A JPH02197185A JP H02197185 A JPH02197185 A JP H02197185A JP 1015012 A JP1015012 A JP 1015012A JP 1501289 A JP1501289 A JP 1501289A JP H02197185 A JPH02197185 A JP H02197185A
Authority
JP
Japan
Prior art keywords
stem
cooling element
electronic cooling
semiconductor laser
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1015012A
Other languages
Japanese (ja)
Inventor
Masami Goto
後藤 正見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1015012A priority Critical patent/JPH02197185A/en
Publication of JPH02197185A publication Critical patent/JPH02197185A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable the high speed drive of a semiconductor laser keeping the reduction minimum in temperature difference between two faces of an element by a method wherein a high electric conductor where an LD chip is mounted is directly fixed to a metal case. CONSTITUTION:An LD chip 21 is mounted on end fixed to a stem 31 formed of a material which is high in electric conductivity and low in thermal conductivity. The stem 31 is extended to be directly connected and fixed to the inner face of a metal case 27. A high frequency board 32, on which an electric signal transmitting pattern is formed, is pasted on the stem 31. And, the stem 31 is mounted on a Peltier element 23, where the element 23 is composed of a semiconductor element possessed of the Peltier effect sandwiched between ceramic boards 24 and 25. then a current and a voltage applied to the electrodes of the element 23 are controlled, thermal energy is transferred in one direction through the element 23 to enable the element 21 to be cooled down to an appropriate temperature.

Description

【発明の詳細な説明】 概要 電子式冷却素子内蔵半導体レーザアセンブリに関し、 電子式冷却素子の二面量温度差の低下を最小に維持しつ
つ、半導体レーザを高速駆動することを目的とし、 半導体レーザを高電気伝導体上に搭載固定し、該高電気
伝導体を電子式冷却素子の一面に固定するとともに、電
子式冷却素子の他面を金属製筐体の内面に固定した電子
式冷却素子内蔵半導体レーザアセンブリにおいて、前記
高電気伝導体を低熱伝導性の材料から形成するとともに
、高電気伝導体を直接金属製筐体の内面に接続して構成
する。
[Detailed Description of the Invention] Summary Regarding a semiconductor laser assembly with a built-in electronic cooling element, the present invention aims to drive the semiconductor laser at high speed while minimizing the decrease in the temperature difference between two surfaces of the electronic cooling element. A built-in electronic cooling element is mounted and fixed on a high electrical conductor, the high electrical conductor is fixed to one side of the electronic cooling element, and the other side of the electronic cooling element is fixed to the inner surface of a metal casing. In the semiconductor laser assembly, the high electrical conductor is formed from a material with low thermal conductivity, and the high electrical conductor is directly connected to the inner surface of a metal housing.

産業上の利用分野 本発明は電子式冷却素子内蔵半導体レーザアセンブリに
関する。
FIELD OF THE INVENTION The present invention relates to a semiconductor laser assembly with a built-in electronic cooling element.

光通信システムにおいては、一般に半導体レーザ(以下
LDという)を時系列の電気信号で変調し、この変調光
をレンズ系を介して伝送路としての光ファイバに導くよ
うにしている。LDは通常、LDの直前に配置するレン
ズ(以下第ルンズと略記)と一体化してLDアセンブリ
として提供され、このLDアセンブリは通常性のレンズ
系及び接続用の光ファイバと一体化されて、LDモジュ
ールとして使用される。このようなLDモジュールに使
用されるLD等の光学素子の特性は、温度の影響を受は
易いため、これをベルチェ素子等の電子式冷却素子によ
って一定の温度環境下で動作させることが望ましい。
In optical communication systems, generally a semiconductor laser (hereinafter referred to as LD) is modulated with a time-series electrical signal, and this modulated light is guided through a lens system to an optical fiber serving as a transmission path. The LD is usually provided as an LD assembly by being integrated with a lens placed just before the LD (hereinafter referred to as the lens), and this LD assembly is integrated with a normal lens system and an optical fiber for connection. Used as a module. Since the characteristics of optical elements such as LDs used in such LD modules are easily affected by temperature, it is desirable to operate them under a constant temperature environment using an electronic cooling element such as a Beltier element.

また、近年の光通信ンステムの高速化の要求にともない
、LDをその信頼性を確保したまま、10 G b /
 s程度で駆動する必要が生じている。このため、LD
、ベルチェ素子等の電子式冷却素子及び関連部品を一つ
の金属筐体の内部に気密封止したLDアセンブリが提供
されているが、従来のLDアセンブリでは、電子式冷却
素子によるLDの温度安定化を優先したため、LDの高
速駆動特性は良好とはいえない。そこで、LDの高速駆
動特性と、電子式冷却素子によるLDの温度安定化とを
両立し得るような半導体レーザアセンブリが要望されて
いる。
In addition, with the recent demand for faster speeds in optical communication systems, LDs can be expanded to 10Gb/10Gb while maintaining their reliability.
It has become necessary to drive at approximately s. For this reason, L.D.
, an LD assembly in which an electronic cooling element such as a Beltier element and related parts are hermetically sealed inside a single metal housing has been provided, but in conventional LD assemblies, the temperature of the LD is stabilized by the electronic cooling element. Since priority was given to LD, the high-speed drive characteristics of the LD cannot be said to be good. Therefore, there is a need for a semiconductor laser assembly that can achieve both high-speed drive characteristics of the LD and temperature stabilization of the LD using an electronic cooling element.

従来の技術 第4図は従来のLDアセンブリの断面図を示している。Conventional technology FIG. 4 shows a cross-sectional view of a conventional LD assembly.

1はLDチップであり、金属等の高電気伝導体から形成
されたステム2上に搭載固定されている。ステム2はベ
ルチェ素子3に搭載されている。ベルチェ素子3は2個
のセラミック基板4゜5上にそれぞれ図示しない電極を
固着し、これらの電極で複数のベルチェ効果を有する半
導体6を挟んで構成されている。一方のセラミック基板
4がステム2に面接触する一方、他方のセラミック基板
5が金属製筐体7の内面に面接触により固着されている
。セラミック基板4,5をメタライズすることにより、
金属製筐体7とセラミック基板5との接合、セラミック
基板4.5と電極との接合、電極と半導体6との接合及
びセラミンク基板4とステム2との接合は、半田付によ
り行われている。
Reference numeral 1 denotes an LD chip, which is mounted and fixed on a stem 2 made of a highly electrically conductive material such as metal. The stem 2 is mounted on the Bertier element 3. The Bertier element 3 is constructed by fixing electrodes (not shown) on two ceramic substrates 4.5, and sandwiching a plurality of semiconductors 6 having the Bertier effect between these electrodes. One ceramic substrate 4 is in surface contact with the stem 2, while the other ceramic substrate 5 is fixed to the inner surface of the metal casing 7 by surface contact. By metallizing the ceramic substrates 4 and 5,
The metal housing 7 and the ceramic substrate 5 are joined together, the ceramic substrate 4.5 is joined to the electrodes, the electrodes are joined to the semiconductor 6, and the ceramic substrate 4 and the stem 2 are joined together by soldering. .

金属製筐体7には少なくとも信号人力用リード8及び筐
体7と接続したアースリード10か設けられており、信
号人力用リード8は図示しないLD駆動回路に接続され
ている。信号入力用リード8はワイヤ9を介してLDチ
ップlに接続され、アースリード10はワイヤ11によ
りステム2に接続されている。12は信号入力用リード
8を金属製筐体7から絶縁するためのガラス、テフロン
等の絶縁材である。ステム2上に搭載されたLDチップ
1の駆動は、信号入力用リード8、ワイヤ9.11及び
アースリード10を介して行われるようになっている。
The metal housing 7 is provided with at least a signal human power lead 8 and an earth lead 10 connected to the housing 7, and the signal human power lead 8 is connected to an LD drive circuit (not shown). The signal input lead 8 is connected to the LD chip 1 via a wire 9, and the ground lead 10 is connected to the stem 2 via a wire 11. Reference numeral 12 denotes an insulating material such as glass or Teflon for insulating the signal input lead 8 from the metal casing 7. The LD chip 1 mounted on the stem 2 is driven via a signal input lead 8, a wire 9.11, and a ground lead 10.

然して、ベルチェ素子3の電極に印加する電圧及び電流
値を制御してベルチェ素子3を駆動すると、ベルチェ素
子3により熱エネルギーが一方向に運ばれてセラミック
基板4.5間に温度差が生じ、LDチップ1が適当な動
作温度に冷却される。
However, when the Beltier element 3 is driven by controlling the voltage and current values applied to the electrodes of the Beltier element 3, the thermal energy is carried in one direction by the Beltier element 3, and a temperature difference occurs between the ceramic substrates 4.5. The LD chip 1 is cooled to an appropriate operating temperature.

発明が解決しようとする課題 ところで、駆動信号が高周波になると、リード8 lO
及びワイヤ9.11の持つ電気的インピーダンス成分と
、ベルチェ素子3の持つ静電容量とにより、光出力波形
の揺らぎ・干渉等の影響が現れるようになる。これを防
止するには、次式で与えられるリード及びワイヤの電気
抵抗分Rを減らせば良いことになる。
Problem to be Solved by the Invention By the way, when the drive signal becomes high frequency, the lead 8 lO
The electrical impedance components of the wires 9 and 11 and the capacitance of the Beltier element 3 cause effects such as fluctuations and interference in the optical output waveform. To prevent this, it is sufficient to reduce the electrical resistance R of the leads and wires given by the following equation.

R−(1/σ)・ (L/S)  ・・・■ここで、σ
は電気伝導率、Lはリードあるいはワイヤの長さ、Sは
リード又はワイヤの断面積である。■式から、電気抵抗
Rを小さくするには、(イ)σを大きくする、(口〉 
Lを小さくする、(ハ)Sを大きくする、という解決策
があることがわかる。
R-(1/σ)・(L/S)...■Here, σ
is the electrical conductivity, L is the length of the lead or wire, and S is the cross-sectional area of the lead or wire. ■From the formula, to reduce the electrical resistance R, (a) increase σ, (mouth)
It can be seen that there are solutions such as decreasing L and (c) increasing S.

一方、このようにして低電気抵抗化したリード・ワイヤ
を用いると、LDアセンブリ外部からの熱が次式の熱抵
抗’Rthを介してLDチップへ流れ込むことになる。
On the other hand, if a lead wire with low electrical resistance is used, heat from outside the LD assembly will flow into the LD chip via the thermal resistance 'Rth of the following equation.

RLh−N/に)・ (L/S)  ・・・■ここで、
には熱伝導率、L、Sは上述した■式と同じである。■
式と0式は同一の形をとっているため、電気信号の伝導
度を高くすると、熱伝導度も高くなり、ベルチェ素子3
のセラミック基板4゜5の間の温度差が小さくなってし
まうことがわかる。したがって、ベルチェ素子の特性を
有効に弓き出しながら、良好な高周波特性を確保するの
は非常に困難であるという問題がある。
RLh-N/ni)・(L/S)...■Here,
The thermal conductivity, L, and S are the same as in equation (2) above. ■
Since Equation and Equation 0 have the same form, increasing the conductivity of the electrical signal also increases the thermal conductivity, and the Bertier element 3
It can be seen that the temperature difference between the ceramic substrates 4° and 5 becomes small. Therefore, there is a problem in that it is very difficult to ensure good high frequency characteristics while effectively bringing out the characteristics of the Beltier element.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、電子式冷却素子の二面間温度差
の低下を最小に維持しつつ、半導体レーザを高速駆動す
ることのできる電子式冷却素子内蔵半導体レーザアセン
ブリを提倶することである。
The present invention has been made in view of these points, and its purpose is to drive a semiconductor laser at high speed while minimizing the decrease in temperature difference between two surfaces of an electronic cooling element. An object of the present invention is to provide a semiconductor laser assembly with a built-in electronic cooling element.

課題を解決するた狛の手段 第1図に本発明の原理図を示す。図中21はLDチップ
であり、高電気伝導体22上に搭載固定されている。高
電気伝導体22は低熱伝導性の材料から形成されており
、金属製筐体27の内面に直接接続されている。高電気
伝導体22は電子式冷却素子23の一面に搭載されてい
るとともに、電子式冷却素子23の他面は金属製筐体2
7の内面に面接触により固定されている。電子式冷却素
子23は従来公知の構成であり、上述した従来例と同様
にセラミック基板24.25の間にペルチェ効果を有す
る半導体素子26を挟んで構成されている。28は信号
入力用リードであり、ワイヤ29によりLDチップ21
に接続されていて、信号人力用リード28に接続された
図示しない駆動回路によりLDチップ21を高速駆動す
る。30は信号入力用リード28を金属製筐体27から
絶縁するための絶縁材である。
Means for Solving the Problems FIG. 1 shows a diagram of the principle of the present invention. In the figure, 21 is an LD chip, which is mounted and fixed on a high electrical conductor 22. High electrical conductor 22 is formed from a material with low thermal conductivity and is directly connected to the inner surface of metal housing 27 . The high electrical conductor 22 is mounted on one side of the electronic cooling element 23, and the other side of the electronic cooling element 23 is mounted on a metal casing 2.
It is fixed to the inner surface of 7 by surface contact. The electronic cooling element 23 has a conventionally known configuration, and is constructed by sandwiching a semiconductor element 26 having a Peltier effect between ceramic substrates 24 and 25, similar to the conventional example described above. 28 is a signal input lead, and a wire 29 connects the LD chip 21.
The LD chip 21 is driven at high speed by a drive circuit (not shown) connected to the signal lead 28 for human power. 30 is an insulating material for insulating the signal input lead 28 from the metal casing 27.

本発明はLDアセンブリ外部からの熱が上述した0式に
示したRLhを介してLDチップ21に流れ込むのを極
力防止するために、高電気伝導体22の長さしとLに垂
直な断面積Sの比がなるべく大きくなるようにし、さら
に高電気伝導体22の材料に熱伝導率にの小さい金属、
すなわち低熱伝導性の材料を用いるようにしたことを特
徴とする。
In order to prevent as much as possible the heat from outside the LD assembly from flowing into the LD chip 21 through RLh shown in the above-mentioned equation 0, the cross-sectional area perpendicular to the length and L of the high electrical conductor 22 is The ratio of S is made as large as possible, and the material of the high electrical conductor 22 is a metal with low thermal conductivity.
In other words, it is characterized by using a material with low thermal conductivity.

作   用 本発明では、LDチップ21を搭載する高電気伝導体2
2を金属製筐体27に直接接続固定することにより、従
来のワイヤ接続に比べ遥かに低い電気抵抗を確保するこ
とができるとともに、高電気伝導体220寸法及び材料
を選択して低熱伝導率化することにより、電子式冷却素
子23の二面間の温度差の低下を最小限に抑えることが
できる。
Function In the present invention, the high electrical conductor 2 on which the LD chip 21 is mounted
By directly connecting and fixing 2 to the metal casing 27, it is possible to ensure a much lower electrical resistance than conventional wire connections, and by selecting the dimensions and materials of the high electrical conductor 220, low thermal conductivity can be achieved. By doing so, it is possible to minimize the decrease in the temperature difference between the two sides of the electronic cooling element 23.

実  施  例 以下本発明の実施例を図面に基づいて詳細に説明する。Example Embodiments of the present invention will be described in detail below based on the drawings.

本実施例の説明において、第1図に示した原理図と同一
構成部分については同一符号を付し、その説明を一部省
略することにする。
In the description of this embodiment, the same components as those in the principle diagram shown in FIG. 1 will be denoted by the same reference numerals, and the description thereof will be partially omitted.

第2図は本発明の第一実施例断面図であり、LDチップ
21は高電気伝導性且つ低熱伝導性の材料から形成され
たステム31上に搭載固定されている。ステム31の具
体的材料の一例として、チタン、ステンレス鋼、コバー
ル等が挙げられる。
FIG. 2 is a sectional view of a first embodiment of the present invention, in which an LD chip 21 is mounted and fixed on a stem 31 made of a material with high electrical conductivity and low thermal conductivity. Examples of specific materials for the stem 31 include titanium, stainless steel, Kovar, and the like.

ステム31は延伸されて金属製筐体27の内面に直接接
続固定されている。ステム31はベルチェ素子等の電子
式冷却素子(以下ベルチェ素子で代表する)23上に搭
載されている。ベルチェ素子23は従来公知の構成であ
り、セラミック基板24.25の間にペルチェ効果を有
する半導体素子26を挟んで構成されている。ベルチェ
素子23の図示しない電極に印加する電圧及び電流値を
制御してベルチェ素子23を駆動すると、ベルチェ素子
23により熱エネルギーが一方向に運ばれてLDチップ
21を適当な温度に冷却することができる。
The stem 31 is extended and directly connected and fixed to the inner surface of the metal housing 27. The stem 31 is mounted on an electronic cooling element (hereinafter referred to as a Beltier element) 23 such as a Beltier element. The Vertier element 23 has a conventionally known configuration, and is constructed by sandwiching a semiconductor element 26 having a Peltier effect between ceramic substrates 24 and 25. When the Beltier element 23 is driven by controlling the voltage and current values applied to electrodes (not shown) of the Beltier element 23, thermal energy is carried in one direction by the Beltier element 23, and the LD chip 21 can be cooled to an appropriate temperature. can.

一方、ステム31上には電気信号伝達用パターンを形成
したアルミナ・セラミック基板等の高周波基板32が貼
付されており、この高周波基板32上にLD高速駆動用
の電子部品33が搭載され、高周波基板32上のパター
ン、電子部品33及びLDチップ21はワイヤ34.3
5で接続されている。36は同軸コネクタの中心導体で
あり、高周波基板32上のパターンに電気的に接続され
ている。30は中心導体36を金属製筐体27から電気
的に絶縁するためのガラス、テフロン等から形成された
絶縁材である。第2図においてステム31が絶縁材30
に接続されているかのように図示されているが、ステム
31は絶縁材30ではなく金属製筐体27の内面に直接
接続されている。
On the other hand, a high frequency substrate 32 such as an alumina ceramic substrate on which an electric signal transmission pattern is formed is attached on the stem 31, and an electronic component 33 for high-speed driving of the LD is mounted on this high frequency substrate 32. The pattern on 32, the electronic component 33 and the LD chip 21 are wires 34.3
Connected by 5. 36 is a center conductor of the coaxial connector, which is electrically connected to the pattern on the high frequency board 32. Reference numeral 30 denotes an insulating material made of glass, Teflon, or the like for electrically insulating the center conductor 36 from the metal casing 27. In FIG. 2, the stem 31 is an insulating material 30.
Although shown as if connected to the insulating material 30, the stem 31 is directly connected to the inner surface of the metal housing 27 rather than to the insulating material 30.

また、高速駆動用の電子部品33をLDアセンブリ内に
設けているのは、高速駆動のためにはLDチップと駆動
回路との間の距離をなるべく短(するのが有利なためで
ある。
Further, the electronic component 33 for high-speed driving is provided in the LD assembly because it is advantageous to shorten the distance between the LD chip and the driving circuit as much as possible for high-speed driving.

高周波基板32としては上述したようにアルミナ・セラ
ミック等の絶縁体を用いているため、その熱伝導率は十
分低いので、ステム31に貼付してもステム31の本来
有する高電気伝導・低熱伝導の効果を保つことができる
As mentioned above, the high frequency board 32 uses an insulator such as alumina or ceramic, and its thermal conductivity is sufficiently low. effect can be maintained.

第3図は本発明の第二実施例断面図であり、第2図に示
した第一実施例ではステム31の上に高周波基板32を
貼付しているが、高周波基板32の裏面に設けたアース
パターンにより十分な電気伝導性を確保できるものであ
れば、第3図に示すようにステムを31aと31bに分
割し、一方のステム31aをベルチェ素子23上に搭載
し、他方のステム31bを金属製筐体27の内面に接続
固定するようにしても良い。
FIG. 3 is a sectional view of a second embodiment of the present invention. In the first embodiment shown in FIG. If the ground pattern can ensure sufficient electrical conductivity, the stem can be divided into 31a and 31b as shown in FIG. 3, one stem 31a is mounted on the Vertier element 23, and the other stem 31b is It may be connected and fixed to the inner surface of the metal housing 27.

発明の効果 本発明の半導体レーザアセンブリは以上詳述したように
構成したので、半導体レーザアセンブリの高速特性を劣
化させることなく半導体レーザの動作温度を適度に制御
することができるという効果を奏する。
Effects of the Invention Since the semiconductor laser assembly of the present invention is configured as detailed above, it has the effect that the operating temperature of the semiconductor laser can be appropriately controlled without deteriorating the high-speed characteristics of the semiconductor laser assembly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明の第一実施例断面図、 第3図は本発明の第二実施例断面図、 第4図は従来例断面図である。 21・・・LDチップ、 22・・・高電気伝導体、2
3・・・電子式冷却素子、 24.25・・・セラミック基板、 6・・・半導体、    27・・・金属製筐体、8・
・・信号入力用リード、 1・・・ステム、    32・・・高周波基板、3・
・・高速駆動用電子部品、 6・・・同軸コネクタの中心導体。
1 is a diagram showing the principle of the present invention, FIG. 2 is a cross-sectional view of a first embodiment of the present invention, FIG. 3 is a cross-sectional view of a second embodiment of the present invention, and FIG. 4 is a cross-sectional view of a conventional example. 21... LD chip, 22... High electrical conductor, 2
3...Electronic cooling element, 24.25...Ceramic substrate, 6...Semiconductor, 27...Metal casing, 8.
...Signal input lead, 1...Stem, 32...High frequency board, 3.
...Electronic components for high-speed drive, 6...Center conductor of coaxial connector.

Claims (1)

【特許請求の範囲】 半導体レーザ(21)を高電気伝導体(22)上に搭載
固定し、該高電気伝導体(22)を電子式冷却素子(2
3)の一面に固定するとともに、電子式冷却素子(23
)の他面を金属製筐体(27)の内面に固定した電子式
冷却素子内蔵半導体レーザアセンブリにおいて、 前記高電気伝導体(22)を低熱伝導性の材料から形成
するとともに、 高電気伝導体(22)を直接金属製筐体(27)の内面
に接続したことを特徴とする電子式冷却素子内蔵半導体
レーザアセンブリ。
[Claims] A semiconductor laser (21) is mounted and fixed on a high electric conductor (22), and the high electric conductor (22) is connected to an electronic cooling element (22).
3), and an electronic cooling element (23
) in a semiconductor laser assembly with a built-in electronic cooling element, the other surface of which is fixed to the inner surface of a metal housing (27), wherein the high electrical conductor (22) is made of a material with low thermal conductivity, and the high electrical conductor (22) is made of a material with low thermal conductivity; A semiconductor laser assembly with a built-in electronic cooling element, characterized in that (22) is directly connected to the inner surface of a metal casing (27).
JP1015012A 1989-01-26 1989-01-26 Semiconductor laser assembly with built-in electronic cooling element Pending JPH02197185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1015012A JPH02197185A (en) 1989-01-26 1989-01-26 Semiconductor laser assembly with built-in electronic cooling element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1015012A JPH02197185A (en) 1989-01-26 1989-01-26 Semiconductor laser assembly with built-in electronic cooling element

Publications (1)

Publication Number Publication Date
JPH02197185A true JPH02197185A (en) 1990-08-03

Family

ID=11876966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1015012A Pending JPH02197185A (en) 1989-01-26 1989-01-26 Semiconductor laser assembly with built-in electronic cooling element

Country Status (1)

Country Link
JP (1) JPH02197185A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308165A (en) * 1992-04-01 1993-11-19 Nec Corp Laser diode-excitaed solid-state laser
EP1104053A2 (en) * 1999-11-29 2001-05-30 Nec Corporation Semiconductor laser module
JP2011129592A (en) * 2009-12-15 2011-06-30 Sumitomo Electric Ind Ltd Optical semiconductor device
JP2012227219A (en) * 2011-04-15 2012-11-15 Kyocera Corp Package for housing electronic component, and electronic device
WO2014056745A1 (en) * 2012-10-09 2014-04-17 Oclaro Technology Limited Optoelectronic assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325993A (en) * 1986-07-18 1988-02-03 Mitsubishi Electric Corp Optical coupling device
JPS63160289A (en) * 1986-12-24 1988-07-04 Hitachi Ltd Light-emitting element module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325993A (en) * 1986-07-18 1988-02-03 Mitsubishi Electric Corp Optical coupling device
JPS63160289A (en) * 1986-12-24 1988-07-04 Hitachi Ltd Light-emitting element module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308165A (en) * 1992-04-01 1993-11-19 Nec Corp Laser diode-excitaed solid-state laser
EP1104053A2 (en) * 1999-11-29 2001-05-30 Nec Corporation Semiconductor laser module
EP1104053A3 (en) * 1999-11-29 2002-10-30 Nec Corporation Semiconductor laser module
JP2011129592A (en) * 2009-12-15 2011-06-30 Sumitomo Electric Ind Ltd Optical semiconductor device
US8737440B2 (en) 2009-12-15 2014-05-27 Sumitomo Electric Industries, Ltd. Optical module with enhanced robustness of temperature controlling device
JP2012227219A (en) * 2011-04-15 2012-11-15 Kyocera Corp Package for housing electronic component, and electronic device
WO2014056745A1 (en) * 2012-10-09 2014-04-17 Oclaro Technology Limited Optoelectronic assembly
CN104718672A (en) * 2012-10-09 2015-06-17 奥兰若技术有限公司 Optoelectronic assembly
US9509118B2 (en) 2012-10-09 2016-11-29 Oclaro Technology Limited Optoelectronic assembly

Similar Documents

Publication Publication Date Title
US4802178A (en) High speed fiberoptic laser module
CA1292798C (en) Semiconductor laser module of dual in-line package type
US8509575B2 (en) Semiconductor optical modulation device
JPH01192188A (en) Optical coupling device
CN113327990B (en) Optical module
US11456393B2 (en) Optical module
US11777189B2 (en) Header for a package including an electronic component for radio frequency signal transmission
JP4587218B2 (en) Package type semiconductor device
JP4122577B2 (en) Optical module mounting structure
JPH02197185A (en) Semiconductor laser assembly with built-in electronic cooling element
JP2004363360A (en) Optical transmitting and receiving module
JP2019106473A (en) Flexible printed board and optical module
JPS62124780A (en) Optical semiconductor module
JP7020590B1 (en) Laser light source device
US7206518B2 (en) High speed optoelectronic subassembly and package for optical devices
JP3116900B2 (en) Electronic cooler and optical component module using the same
JPH10223988A (en) High-speed optoelectronic element module
US11722221B2 (en) Optical module
US7034641B1 (en) Substrate structure for photonic assemblies and the like having a low-thermal-conductivity dielectric layer on a high-thermal-conductivity substrate body
JPH0719932B2 (en) Laser diode module
JP2003017797A (en) Optical module
JP2000164970A (en) Optical element module
US6549550B2 (en) Method for reducing thermal loss and providing mechanical compliance in a semiconductor package and the semiconductor package formed therefrom
JPH03201494A (en) Electronic type cooling element built-in semiconductor laser assembly
JP2855980B2 (en) Thermoelectric cooling module and cooled semiconductor laser module