JPH0219626A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JPH0219626A
JPH0219626A JP16690688A JP16690688A JPH0219626A JP H0219626 A JPH0219626 A JP H0219626A JP 16690688 A JP16690688 A JP 16690688A JP 16690688 A JP16690688 A JP 16690688A JP H0219626 A JPH0219626 A JP H0219626A
Authority
JP
Japan
Prior art keywords
fuel
atmospheric pressure
pressure
fuel injection
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16690688A
Other languages
Japanese (ja)
Inventor
Michihiro Ohashi
大橋 通宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP16690688A priority Critical patent/JPH0219626A/en
Publication of JPH0219626A publication Critical patent/JPH0219626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make it possible to constantly obtain optimum fuel increase regardless of operating conditions where an engine runs by changing an exhaut-system protective fuel increasing range, depending on atmospheric pressure. CONSTITUTION:In a control circuit 10, a pressure sensor 3 detects atmospheric pressure and intake-pipe pressure, and the detected intake-pipe pressure is corrected by the atmospheric pressure. When a range in which fuel increasing is required is decided based on the corrected intake-pipe pressure, and the range is decided to be the fuel increasing range, the fuel injection quantity is increased. Even if the atmospheric pressure fluctuates, the fuel increasing range is thus properly determined, depending on the intake-pipe pressure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の燃料噴射制御装置に関し、特に、機
関の吸気管圧力に対応して燃料の増量を行う内燃機関の
燃料噴射制御装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly to a fuel injection control device for an internal combustion engine that increases the amount of fuel in response to the intake pipe pressure of the engine. .

〔従来の技術〕[Conventional technology]

従来、内燃機関の吸気管内の吸入空気圧力(吸気管圧力
)と機関回転数とから燃料噴射量を求める、いわゆるD
−Jシステムでは、機関の排気ガス通路に設けられた触
媒や排気系部品を高温の排気ガスから保護するため、機
関加速時や高負荷時等に燃料の増量行うときは、まず、
吸気管圧力PMと機関回転数NBとから燃料の増量領域
か否かを判定し、燃料の増量領域のときのみ燃料増量を
行うようにしている(特開昭59−203834号公報
参照)。
Conventionally, the fuel injection amount is determined from the intake air pressure (intake pipe pressure) in the intake pipe of an internal combustion engine and the engine speed.
- In the J system, in order to protect the catalyst and exhaust system parts installed in the exhaust gas passage of the engine from high-temperature exhaust gas, when increasing the amount of fuel when the engine is accelerating or under high load, first,
Based on the intake pipe pressure PM and the engine speed NB, it is determined whether or not the fuel amount is in an increase region, and the fuel amount is increased only when the fuel amount is in the increase region (see Japanese Patent Laid-Open No. 59-203834).

〔発明が解決しようする課題〕[Problem to be solved by the invention]

しかしながら、従来の内燃機関の燃料噴射制御装置は、
平地において増量が不要な領域であっても、大気圧力が
低下して吸入空気量の体積効率が上昇した場合には、排
気温度が上昇し、増量が必要となるにもかかわらず燃料
の増量が行われず、触媒が劣化したり、排気系部品の寿
命が短くなるなどの恐れがあり、車両の信頼性が悪化す
ると共に、排気系部品の経時変化によりエミッションが
悪化するという課題があった。また、一方、大気圧が上
昇すると、増量が不必要な領域で増量が行なわれること
があり、このときには燃費の悪化を招くという課題があ
った。
However, conventional fuel injection control devices for internal combustion engines are
Even in a flat area where no increase in fuel is required, if the atmospheric pressure decreases and the volumetric efficiency of intake air increases, the exhaust temperature will rise, making it difficult to increase the amount of fuel even though it is necessary. If this is not done, there is a risk that the catalyst may deteriorate or the lifespan of exhaust system parts may be shortened, resulting in deterioration of vehicle reliability and problems such as deterioration of emissions due to changes in exhaust system parts over time. On the other hand, when the atmospheric pressure rises, the amount may be increased in a region where it is unnecessary, and in this case there is a problem that fuel efficiency deteriorates.

本発明の目的は前記従来の燃料増量を行う内燃機関の燃
料噴射制御装置の有する課題を解消し、機関がいかなる
運転状態に置かれても、常に最適の燃料増量が行われる
内燃機関の燃料噴射制御装置を提供することにある。
An object of the present invention is to solve the problems of the conventional fuel injection control device for an internal combustion engine that increases the amount of fuel, and to provide a fuel injection system for an internal combustion engine that always increases the optimal amount of fuel no matter what operating state the engine is in. The purpose is to provide a control device.

〔課題を解決するための手段〕[Means to solve the problem]

前記目的を達成する本発明の内燃機関の燃料噴射制御装
置の構成が第1図に示される。
The configuration of a fuel injection control device for an internal combustion engine according to the present invention that achieves the above object is shown in FIG.

本発明の内燃機関の燃料噴射制御装置には、大気圧を検
出する大気圧検出手段と、内燃機関の吸気管圧力を検出
する吸気管圧力検出手段とが備えられており、吸気管圧
力補正手段は吸気管圧力を大気圧により補正する。そし
て、増量域判定手段は少なくとも補正された吸気管圧力
に基づいて燃料の増量が必要な領域を判定し、燃料増量
手段は前記増争域判定手段により増量域と判定された場
合に、燃料噴射量を増量する。
The fuel injection control device for an internal combustion engine according to the present invention includes an atmospheric pressure detection means for detecting atmospheric pressure, an intake pipe pressure detection means for detecting the intake pipe pressure of the internal combustion engine, and an intake pipe pressure correction means. corrects the intake pipe pressure by atmospheric pressure. The increase area determination means determines an area in which an increase in fuel is required based on at least the corrected intake pipe pressure, and the fuel increase means performs fuel injection when the increase area is determined to be an increase area by the increase area determination means. Increase the amount.

〔作 用〕[For production]

本発明の内燃機関の燃料噴射制御装置では、まず、大気
圧と吸気管圧力が検出され、検出された吸気管圧力が大
気圧により補正される。そして、補正された吸気管圧力
に基づいて燃料の増量が必要な領域が判定され、燃料の
増量域と判定された場合に、燃料噴射量が増量される。
In the fuel injection control device for an internal combustion engine of the present invention, atmospheric pressure and intake pipe pressure are first detected, and the detected intake pipe pressure is corrected by the atmospheric pressure. Then, a region where an increase in the amount of fuel is required is determined based on the corrected intake pipe pressure, and when it is determined that the amount of fuel is in the increase region, the fuel injection amount is increased.

よって、大気圧が変化しても吸気管圧力に応じた増量域
は適正なものとなる。
Therefore, even if the atmospheric pressure changes, the increase range according to the intake pipe pressure will be appropriate.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below using the drawings.

第2図には本発明の内燃機関の燃料噴射制御装置の一実
施例を備えた電子制御燃料噴射式内燃機関1が概略的に
示されている。
FIG. 2 schematically shows an electronically controlled fuel injection type internal combustion engine 1 equipped with an embodiment of the fuel injection control device for an internal combustion engine according to the present invention.

この図において、12はアクセルペダル(図示せず)と
連動してエンジンの燃焼室に吸入される吸気の量を調節
するスロットル弁である。このスロットル弁12はアイ
ドル運転時に閉弁し、機関負荷が大きい程その開度が大
きくなるものである。スロットル弁12にはポテンショ
メータ13が内蔵されており、スロットル弁12の開度
に比例した電圧が出力されると共に、スロットル弁12
の全閉を検出するアイドルスイッチ14が設けられてい
る。そして、前記ポテンショメータ13は後述するA/
D変換器101 に接続されてふり、アイドルスイッチ
14は人出力(Ilo)インタフェース102に接続さ
れている。
In this figure, reference numeral 12 is a throttle valve that adjusts the amount of intake air taken into the combustion chamber of the engine in conjunction with an accelerator pedal (not shown). This throttle valve 12 is closed during idling operation, and its opening degree increases as the engine load increases. The throttle valve 12 has a built-in potentiometer 13, which outputs a voltage proportional to the opening degree of the throttle valve 12.
An idle switch 14 is provided for detecting full closure. The potentiometer 13 is connected to A/
The idle switch 14 is connected to the D converter 101 , and the idle switch 14 is connected to the human output (Ilo) interface 102 .

また、スロットル弁12の下流側に設けられたサージタ
ンク21には吸気管内の吸気圧を検出する圧力センサ3
が設けられている。この圧力センサ3には、例えば圧力
に比例する歪により電位差を生じるシリコン薄膜を用い
た半導体式センサ等が使用され、圧力信号は絶対圧力に
比例した電位差として取り出される。この圧力信号は後
述する制御回路10のマルチプレクサ内蔵A/D変換器
101に供給されている。
In addition, a pressure sensor 3 is provided in a surge tank 21 provided downstream of the throttle valve 12 to detect the intake pressure in the intake pipe.
is provided. For example, a semiconductor sensor using a silicon thin film that generates a potential difference due to strain proportional to pressure is used as the pressure sensor 3, and a pressure signal is extracted as a potential difference proportional to absolute pressure. This pressure signal is supplied to an A/D converter 101 with a built-in multiplexer of a control circuit 10, which will be described later.

燃料噴射弁7は各気筒毎に設けられており、通電される
と開弁じて図示しない燃料供給系からの加圧燃料を吸気
ポートに供給する。
A fuel injection valve 7 is provided for each cylinder, and when energized, the valve opens and supplies pressurized fuel from a fuel supply system (not shown) to the intake port.

ディストリビ二−タ4にはクランク角センサ5及び6が
接続しており、クランク角センサ6は例えばクランク角
30°毎(30°CA)に1つの基準位置検出用パルス
を出力し、クランク角センサ5はディス) IJピユー
タ軸が1回転する毎、即ちエンジンが2回転する毎(7
20°C’A毎)に基準位置(例:特定気筒の上死点)
で1つのパルスを出力してエンジンの気筒を判別する。
Crank angle sensors 5 and 6 are connected to the distributor 4, and the crank angle sensor 6 outputs one reference position detection pulse every 30 degrees of crank angle (30 degrees CA), and detects the crank angle. Sensor 5 is detected every time the IJ computer shaft makes one revolution, that is, every two revolutions of the engine (7
every 20°C'A) at the reference position (e.g. top dead center of a specific cylinder)
It outputs one pulse to determine the cylinder of the engine.

これらクランク角センサ5,6のパルス信号は制御回路
10の入出力インタフェース102 に供給され、この
うち、クランク角センサ6の出力はCPU103の割込
端子に供給される。
Pulse signals from these crank angle sensors 5 and 6 are supplied to an input/output interface 102 of a control circuit 10, and the output of the crank angle sensor 6 is supplied to an interrupt terminal of a CPU 103.

また、機関1のシリンダブロックの冷却水通路Wには、
冷却水の温度を検出して機関水温THWに比例したアナ
ログ電圧を発生する水温センサ11が設けられている。
In addition, in the cooling water passage W of the cylinder block of engine 1,
A water temperature sensor 11 is provided that detects the temperature of the cooling water and generates an analog voltage proportional to the engine water temperature THW.

この水温センサ11からの信号も制御回路10のA/D
変換器101 に供給されている。
The signal from this water temperature sensor 11 is also sent to the A/D of the control circuit 10.
It is supplied to converter 101.

更に、排気通路8には排気ガス中の酸素成分濃度に応じ
た電気信号を発生する0!センサ9が設けられている。
Furthermore, the exhaust passage 8 generates an electric signal according to the concentration of oxygen components in the exhaust gas. A sensor 9 is provided.

この0之センサ9の出力は制御回路10のバッファ回路
109フよび比較回路110を介して入出力インタフェ
ース102に供給されている。
The output of this zero sensor 9 is supplied to the input/output interface 102 via a buffer circuit 109 and a comparison circuit 110 of the control circuit 10.

制御回路lOは例えばマイクロコンビエータを用いて構
成され、前述のA/D変換器101、入出力インタフェ
ース102 、CPU103 、バッファ回路109、
比較回路110の他に、ROM104 、RAM105
、バックアップRA Millおよびこれらを接続する
バス112等が設けられている また、制御回路10に
おいて、ダウンカウンタ106、フリップフロップ10
7および駆動回路108は燃料噴射弁7を制御するため
のものである。すなわち、燃料噴射量TAUが演算され
ると、燃料噴射量TA[Iがダウンカウンタ106 に
プリセットされると共にフリップフロップ107 もセ
ットされる。この結果、駆動回路108が燃料噴射弁7
の付勢を開始する。他方、ダウンカウンタ106がクロ
ック信号(図示せず)を計数して最後にそのキャリアウ
ド端子が′1″ レベルとなった時に、フリップフロッ
プ107がリセットされて駆動回路108は燃料噴射弁
7の付勢を停止する。つまり、上述の燃料噴射量TAU
だけ燃料噴射弁7は付勢され、従って、燃料噴射ITA
Uに応じた量の燃料が機関本体1の燃焼室に送り込まれ
ることになる。なお、CPU103の割込発生はA/D
変換器101のA/D変換終了時、入出力インタフェー
ス102がクランク角センサ6のパルス信号を受信した
時、などである。
The control circuit IO is configured using, for example, a micro combinator, and includes the aforementioned A/D converter 101, input/output interface 102, CPU 103, buffer circuit 109,
In addition to the comparison circuit 110, ROM 104 and RAM 105
, a backup RA Mill, a bus 112 connecting these, etc. are provided.In addition, in the control circuit 10, a down counter 106, a flip-flop 10
7 and a drive circuit 108 are for controlling the fuel injection valve 7. That is, when the fuel injection amount TAU is calculated, the fuel injection amount TA[I is preset in the down counter 106 and the flip-flop 107 is also set. As a result, the drive circuit 108
starts energizing. On the other hand, when the down counter 106 counts the clock signal (not shown) and the carrier voltage terminal reaches the '1'' level, the flip-flop 107 is reset and the drive circuit 108 controls the fuel injection valve 7. In other words, the above-mentioned fuel injection amount TAU
The fuel injector 7 is energized and therefore the fuel injection ITA
An amount of fuel corresponding to U is sent into the combustion chamber of the engine body 1. Note that the interrupt generation of the CPU 103 is caused by the A/D
These include when the converter 101 completes A/D conversion, when the input/output interface 102 receives a pulse signal from the crank angle sensor 6, and so on.

制御回路10にはこの他にトランスミッション16から
のスピードメータケーブルに設けられた車速センサ17
等からの検出信号が送り込まれる。また、制御回路10
からはディストリビュータ4に内蔵されるイグナイタに
点火信号が出力され、これによって点火プラグ15の通
電制御が行われるが、これらは本発明に直接関係がない
ため説明を省略する。
In addition to this, the control circuit 10 includes a vehicle speed sensor 17 provided on a speedometer cable from the transmission 16.
Detection signals are sent from etc. In addition, the control circuit 10
An ignition signal is outputted to the igniter built in the distributor 4, thereby controlling the energization of the spark plug 15, but since these are not directly related to the present invention, their explanation will be omitted.

圧力センサ3の吸入空気量データの検出信号および冷却
水温データTHWは所定時間毎に実行されるA/D変換
ルーチンによって2進信号に変換され、その都度RAM
105の所定領域に更新格納される。
The detection signal of the intake air amount data of the pressure sensor 3 and the cooling water temperature data THW are converted into binary signals by an A/D conversion routine executed at predetermined time intervals, and are stored in the RAM each time.
The data is updated and stored in a predetermined area of 105.

次に前述のように構成された機関1における制御回路1
0の動作を第3図および第5図のフローチャートを用い
て説明する。
Next, the control circuit 1 in the engine 1 configured as described above
The operation of 0 will be explained using the flowcharts of FIGS. 3 and 5.

第3図は大気圧検出ルーチンであって、所定のA/D変
換周期、例えば4ms毎に実行される。ステップ301
では機関回転数Nuよびスロットル弁12の開度TAを
RAM105から読み込む。そして、ステップ302で
は機関回転数NBにおける大気取込スロットル弁開度α
を、ROM2O3に格納されている第4図に示すような
マツプを用いて演算する。
FIG. 3 shows an atmospheric pressure detection routine, which is executed at a predetermined A/D conversion period, for example, every 4 ms. Step 301
Then, the engine speed Nu and the opening degree TA of the throttle valve 12 are read from the RAM 105. Then, in step 302, the air intake throttle valve opening α at the engine speed NB is
is calculated using a map as shown in FIG. 4 stored in ROM2O3.

この大気取込スロットル開度αについて説明する。第2
図の実施例では、機関に大気圧センサを設けていないの
で、大気圧は吸気通路2のスロットル弁12の下流側に
設けられた圧力センサ3の検出値を利用して取り込んで
いる。ところが、スロットル弁12の開度が小さい時は
スロットル弁12の下流側が負圧になって大気圧を示さ
ないので、第2図の実施例ではスロットル弁12の開度
がある値以上になり、大気圧との差が少なくなるまで大
気圧の検出は行えない。圧力センサ3の検出値と大気圧
との差が微小になるスロットル弁12の開度がここでい
うαであり、このαの値は第4図に示すように機関回転
数Nεの増大に応じて大きくなる。
This air intake throttle opening degree α will be explained. Second
In the illustrated embodiment, since the engine is not provided with an atmospheric pressure sensor, the atmospheric pressure is taken in using the detected value of the pressure sensor 3 provided downstream of the throttle valve 12 in the intake passage 2. However, when the opening degree of the throttle valve 12 is small, the downstream side of the throttle valve 12 becomes negative pressure and does not indicate atmospheric pressure, so in the embodiment shown in FIG. 2, the opening degree of the throttle valve 12 exceeds a certain value, Atmospheric pressure cannot be detected until the difference with atmospheric pressure becomes smaller. The opening degree of the throttle valve 12 at which the difference between the detected value of the pressure sensor 3 and the atmospheric pressure becomes minute is α here, and the value of α changes as the engine speed Nε increases, as shown in FIG. It gets bigger.

なお、この大気圧の測定に関しては、大気圧センサを別
に設けて検出しても良いものである。
In addition, regarding the measurement of this atmospheric pressure, an atmospheric pressure sensor may be provided separately for detection.

ステップ303ではスロットル開度TAが前述の大気取
込スロットル弁開度α以上か否かを判定し、TA≧αの
とき、即ち、スロットル弁開度TAが大気圧を取り込め
る開度を超えたときはステップ304に進み、超えない
とき、即ち、TA<αのときはステップ305に進む。
In step 303, it is determined whether the throttle opening TA is equal to or greater than the above-mentioned atmospheric intake throttle valve opening α, and when TA≧α, that is, when the throttle valve opening TA exceeds the opening that can take in atmospheric pressure. The process proceeds to step 304, and when the value does not exceed TA, that is, when TA<α, the process proceeds to step 305.

ステップ304ではスロットル弁開度TAが大気圧を取
り込める開度を超えてからの時間CTAを計数し、続く
ステップ306ではこの時間CTAが所定値β以上か否
かを判定する。この二つのステップは、スロットル弁開
度TAが大気圧を取り込める開度を超えても、スロット
ル弁12の下流側の圧力はすぐには安定しないために行
うものであり、大気圧の取り込みはスロットル弁開度T
Aが大気圧を取り込める開度以上になった状態が所定時
間継続した後に行うようにしている。従って、ステップ
303でNOになったときは、ステップ305において
この時間CTAの値をクリアするようにしている。
At step 304, the time CTA after the throttle valve opening TA exceeds the opening at which atmospheric pressure can be taken in is counted, and at the subsequent step 306, it is determined whether this time CTA is greater than or equal to a predetermined value β. These two steps are performed because even if the throttle valve opening TA exceeds the opening that can take in atmospheric pressure, the pressure downstream of the throttle valve 12 does not stabilize immediately. Valve opening T
This is done after the opening degree of A is greater than or equal to the opening that allows atmospheric pressure to be taken in for a predetermined period of time. Therefore, when the result in step 303 is NO, the value of this time CTA is cleared in step 305.

ステップ306にてYES 、即ち、スロットル弁開度
TAが大気圧を取り込める開度を超えてから所定時間が
経過した後は、ステップ307に進み、大気圧値PAと
してRA M2O3に格納されている最新の圧力センサ
3の検出値PMSを採用し、吸気圧値PMとしてRA 
M2O3に格納されている前回の圧力センサ3の検出値
PMOを採用してこのルーチンを終了する。
If YES in step 306, that is, after a predetermined period of time has elapsed since the throttle valve opening TA exceeded the opening at which atmospheric pressure can be taken in, the process proceeds to step 307, where the latest value stored in RAM M2O3 as the atmospheric pressure value PA is The detected value PMS of the pressure sensor 3 is adopted, and RA is used as the intake pressure value PM.
The previous detected value PMO of the pressure sensor 3 stored in M2O3 is adopted and this routine is ended.

一方、スロットル弁開度TAが大気圧を取り込める開度
になっていないとき(ステップ303でNo)およびス
ロットル弁開度T^が大気圧を取り込める開度を超えて
から所定時間がまだ経過していないときくステップ30
6でNo)  はステップ308に進む。
On the other hand, when the throttle valve opening TA is not at an opening that allows atmospheric pressure to be taken in (No in step 303), and when the predetermined time has not yet elapsed since the throttle valve opening T^ exceeded the opening that allows atmospheric pressure to be taken in. Step 30
6), the process proceeds to step 308.

このステップ308では、大気圧値PAとしてRAM1
05に格納されている前回の大気圧値PAOを採用し、
吸気圧値PMとしてRAM105に格納されている最新
の圧力センサ3の検出値PMSを採用してこのルーチン
を終了する。
In this step 308, RAM1 is set as the atmospheric pressure value PA.
Adopting the previous atmospheric pressure value PAO stored in 05,
The latest detection value PMS of the pressure sensor 3 stored in the RAM 105 is adopted as the intake pressure value PM, and this routine ends.

続いて第5図の燃料噴射量演算ルーチンについて説明す
る。ステップ501では吸気管圧力PMと機関回転数N
Bとを読み込む。次いでステップ502において読み込
んだ吸気管圧力PMを大気圧により補正する。この補正
は次の式により行われる。
Next, the fuel injection amount calculation routine shown in FIG. 5 will be explained. In step 501, intake pipe pressure PM and engine speed N
Load B. Next, in step 502, the intake pipe pressure PM read in is corrected by atmospheric pressure. This correction is performed using the following formula.

PM  =  PM+ (760−PA)  X a但
し、この式におけるPAは第3図の大気圧検出ルーチン
で求めた値が使用され、aは定数である。
PM=PM+ (760-PA) Xa However, for PA in this equation, the value determined in the atmospheric pressure detection routine of FIG. 3 is used, and a is a constant.

ステップ503では基本噴射量TPBSBおよび体積効
率補正値TPStlBがステップ502にて補正された
吸気管圧力PMを用いて演算されるが、この演算はRO
M104に格納されているマツプを用いて行われる。こ
のマツプは例えば第6図および第7図に示すようなもの
である。
In step 503, the basic injection amount TPBSB and the volumetric efficiency correction value TPStlB are calculated using the intake pipe pressure PM corrected in step 502, but this calculation is
This is done using the map stored in M104. This map is, for example, as shown in FIGS. 6 and 7.

ステップ504では機関回転数Nεとステップ502に
て補正された吸気管圧力PMとの積が所定値り以上か否
か、即ち、燃料増量必要領域か否かが判定され、前述の
積カメ所定値し以上の時(NE −PM≧Lの時)はス
テップ505に進んで排気系保護増量値FOTPが次式
により演算される。
In step 504, it is determined whether or not the product of the engine speed Nε and the intake pipe pressure PM corrected in step 502 is greater than or equal to a predetermined value, that is, whether or not the fuel amount needs to be increased. If this is the case (NE - PM≧L), the process proceeds to step 505, where the exhaust system protection increase value FOTP is calculated using the following equation.

FOTP  =  NE  x  PM  X  r 
 +  1但し、Tは定数である。一方、NB−PM<
Lのときは、増量は行われず、このときはステップ50
6に進んで排気系保護増量値FOTPの値が1.0に設
定される。
FOTP = NE x PM x r
+ 1 However, T is a constant. On the other hand, NB-PM<
When L, the amount is not increased, and in this case, step 50 is performed.
Proceeding to step 6, the value of the exhaust system protection increase value FOTP is set to 1.0.

そして、次のステップ507では排気系保護増量値FO
TP以外の燃料増中値に1例えば、暖機途中の冷却水温
による増量、加速時増量等の燃料増量値Kが演算され、
最終的にステップ508において燃・料噴射量TAUが
次式により演算される。
Then, in the next step 507, the exhaust system protection increase value FO
1 for fuel increase values other than TP For example, a fuel increase value K such as increase due to cooling water temperature during warm-up, increase during acceleration, etc. is calculated,
Finally, in step 508, the fuel injection amount TAU is calculated using the following equation.

TAU = (TPBSB+TPStlB) XFOT
P x K x m但し、mは定数である。
TAU = (TPBSB+TPStlB)
P x K x m where m is a constant.

以上のように、本発明の内燃機関の燃料噴射制御装置で
は、大気圧に応じて排気系保護増量域が変更されるので
、最適の排気系保護増量域を得ることができる。
As described above, in the fuel injection control device for an internal combustion engine according to the present invention, the exhaust system protection increase range is changed depending on the atmospheric pressure, so that an optimal exhaust system protection increase range can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、大気圧に応じて排
気系保護増量域が変更されるので、燃料の増量値に吸入
空気量の体積効率の変化を反映させることができ、増量
が不必要な領域では増量が行なわれず、増量が必要な領
域では適正な増量が行われるので、排気系、触媒の温度
が適正に保たれるため、車両の信頼性が向上し、経時変
化後のエミッション性能が向上するという効果がある。
As explained above, according to the present invention, the exhaust system protection increase range is changed according to the atmospheric pressure, so changes in the volumetric efficiency of the intake air amount can be reflected in the fuel increase value, and the increase is not possible. The amount is not increased in areas where it is necessary, but it is increased appropriately in areas where it is necessary, so the temperature of the exhaust system and catalyst is maintained at an appropriate level, improving vehicle reliability and reducing emissions after aging. This has the effect of improving performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の内燃機関の燃料噴射制御装置の構成を
示すブロック図、第2図は本発明の一実施例の構成を示
す電子制御燃料噴射内燃機関の全体構成図、第3図は第
2図の制御回路の大気圧検出手順を示すフローチャート
、第4図は大気圧取込スロットル開度特性図、第5図は
第2図の制御回路の燃料噴射量演算の手順を示すフロー
チャート、第6図は吸気管圧カー基本噴射量特性図、第
7図は体積効率マツプを示す図である。 1・・・内燃機関、    2・・・吸気通路、3・・
・圧力センサ、   4・・・ディストリ5,6・・・
クランク角センサ、 7・・・燃料噴射弁、  10・・・制御回路、12・
・・スロットル弁、13・・・ポテンショメータ。 ピユータ、
FIG. 1 is a block diagram showing the configuration of a fuel injection control device for an internal combustion engine according to the present invention, FIG. 2 is an overall configuration diagram of an electronically controlled fuel injection internal combustion engine showing the configuration of an embodiment of the present invention, and FIG. Flowchart showing the atmospheric pressure detection procedure of the control circuit in FIG. 2, FIG. 4 showing the atmospheric pressure intake throttle opening characteristic diagram, and FIG. 5 a flowchart showing the procedure of fuel injection amount calculation in the control circuit of FIG. FIG. 6 is an intake pipe pressure car basic injection quantity characteristic diagram, and FIG. 7 is a diagram showing a volumetric efficiency map. 1... Internal combustion engine, 2... Intake passage, 3...
・Pressure sensor, 4...distribution 5, 6...
crank angle sensor, 7... fuel injection valve, 10... control circuit, 12...
... Throttle valve, 13... Potentiometer. Pyuta,

Claims (1)

【特許請求の範囲】 大気圧を検出する大気圧検出手段と、 内燃機関の吸気管圧力を検出する吸気管圧力検出手段と
、 吸気管圧力を大気圧により補正する吸気管圧力補正手段
と、 少なくとも補正された吸気管圧力に基づいて、燃料の増
量が必要な領域を判定する増量域判定手段と、 前記増量域判定手段により増量域と判定された場合に、
燃料噴射量を増量する燃料増量手段と、を備えた内燃機
関の燃料噴射制御装置。
[Scope of Claims] Atmospheric pressure detection means for detecting atmospheric pressure, intake pipe pressure detection means for detecting intake pipe pressure of an internal combustion engine, intake pipe pressure correction means for correcting intake pipe pressure by atmospheric pressure, and at least an increase region determination means for determining a region in which an increase in fuel is required based on the corrected intake pipe pressure; and when the increase region determination means determines that the increase region is present;
A fuel injection control device for an internal combustion engine, comprising: fuel increasing means for increasing the amount of fuel to be injected.
JP16690688A 1988-07-06 1988-07-06 Fuel injection control device for internal combustion engine Pending JPH0219626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16690688A JPH0219626A (en) 1988-07-06 1988-07-06 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16690688A JPH0219626A (en) 1988-07-06 1988-07-06 Fuel injection control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0219626A true JPH0219626A (en) 1990-01-23

Family

ID=15839831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16690688A Pending JPH0219626A (en) 1988-07-06 1988-07-06 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0219626A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029636A1 (en) * 2001-09-28 2003-04-10 Denso Corporation Controller for internal combustion engine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970843A (en) * 1982-10-18 1984-04-21 Honda Motor Co Ltd Electronic fuel supply control method in internal-combustion engine
JPS59201938A (en) * 1983-04-28 1984-11-15 Toyota Motor Corp Fuel injection control method
JPS6078955A (en) * 1983-10-07 1985-05-04 Nippon Soda Co Ltd Formamidoxide derivative, production thereof and agricultural and horticultural germicide, insecticide and acaricide
JPS6088839A (en) * 1983-10-20 1985-05-18 Honda Motor Co Ltd Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
JPS60249634A (en) * 1984-05-25 1985-12-10 Honda Motor Co Ltd Fuel feed control in high-load operation in internal-combustion engine
JPS61157741A (en) * 1984-12-28 1986-07-17 Toyota Motor Corp Detecting device of intake air quantity
JPS61178526A (en) * 1985-02-05 1986-08-11 Toyota Motor Corp Fuel injection control method of internal-combustion engine
JPS61210250A (en) * 1985-03-13 1986-09-18 Toyota Motor Corp Fuel injection controlling method of internal-combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970843A (en) * 1982-10-18 1984-04-21 Honda Motor Co Ltd Electronic fuel supply control method in internal-combustion engine
JPS59201938A (en) * 1983-04-28 1984-11-15 Toyota Motor Corp Fuel injection control method
JPS6078955A (en) * 1983-10-07 1985-05-04 Nippon Soda Co Ltd Formamidoxide derivative, production thereof and agricultural and horticultural germicide, insecticide and acaricide
JPS6088839A (en) * 1983-10-20 1985-05-18 Honda Motor Co Ltd Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
JPS60249634A (en) * 1984-05-25 1985-12-10 Honda Motor Co Ltd Fuel feed control in high-load operation in internal-combustion engine
JPS61157741A (en) * 1984-12-28 1986-07-17 Toyota Motor Corp Detecting device of intake air quantity
JPS61178526A (en) * 1985-02-05 1986-08-11 Toyota Motor Corp Fuel injection control method of internal-combustion engine
JPS61210250A (en) * 1985-03-13 1986-09-18 Toyota Motor Corp Fuel injection controlling method of internal-combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029636A1 (en) * 2001-09-28 2003-04-10 Denso Corporation Controller for internal combustion engine

Similar Documents

Publication Publication Date Title
JPS6232334B2 (en)
JPS58176424A (en) Correction of irregularities of fuel controlling amount by engine cylinders
EP0400529B1 (en) Air-fuel ratio control device for internal combustion engine
JP3544197B2 (en) Electronic control unit for internal combustion engine
JPS58144642A (en) Electronically controlled fuel injecting method for internal-combustion engine
JPS6088831A (en) Method of controlling operation characteristic quantity for operation control means of internal-combustion engine
GB2120812A (en) Automatic control of fuel supply for an internal combustion engine equipped with a supercharger
JP3353416B2 (en) Fuel control device for internal combustion engine
JPH0219626A (en) Fuel injection control device for internal combustion engine
JPH0621590B2 (en) Internal combustion engine controller
JPH0316498B2 (en)
JPH08261047A (en) Lean limit sensing method
JPS63124842A (en) Electronic control fuel injection device
JPS60249651A (en) Electronic control type fuel injector
JPS6248939A (en) Trouble detector for internal combustion engine
JPS5828553A (en) Method and device for electronically controlled fuel injection to internal combustion engine
JP2749138B2 (en) Combustion abnormality detection device for internal combustion engine
US6298839B1 (en) Air-fuel ratio control apparatus and method for internal combustion engine
JP3617348B2 (en) Fuel injection timing control device for diesel engine
JP3003468B2 (en) Ignition timing control device
JP2591095B2 (en) Control device for internal combustion engine
JPS61123727A (en) Fuel injection quantity controller for internal-combusion engine
JP2625984B2 (en) Air-fuel ratio control device for electronically controlled fuel injection type internal combustion engine
JPS61108839A (en) Fuel injection control device of internal-combustion engine
JPS63306285A (en) Idle ignition timing control device