JPH02194836A - Drying method for desulfurizing agent - Google Patents

Drying method for desulfurizing agent

Info

Publication number
JPH02194836A
JPH02194836A JP1014357A JP1435789A JPH02194836A JP H02194836 A JPH02194836 A JP H02194836A JP 1014357 A JP1014357 A JP 1014357A JP 1435789 A JP1435789 A JP 1435789A JP H02194836 A JPH02194836 A JP H02194836A
Authority
JP
Japan
Prior art keywords
conduit
desulfurizing agent
absorption tower
desulfurization
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1014357A
Other languages
Japanese (ja)
Inventor
Satoshi Kudo
慧 工藤
Tsutomu Ueno
上野 務
Osamu Kanda
修 神田
Shigeru Nozawa
野沢 滋
Tsukasa Nishimura
西村 士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Electric Power Co Inc
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hokkaido Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hokkaido Electric Power Co Inc filed Critical Babcock Hitachi KK
Priority to JP1014357A priority Critical patent/JPH02194836A/en
Publication of JPH02194836A publication Critical patent/JPH02194836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To economically and efficiently dry a desulfurizing agent by supplying the precursor of the desulfurizing agent to the top part of a fluidized bed type absorption tower and drying it by desulfurized waste gas or high-temp. air for the combustion of a boiler. CONSTITUTION:Coal ashes, lime component and gypsum component are supplied to a mixer 4 through a conduit 11 and mixed. The mixture is sent to a kneader 5 through a conduit 12 as a powdery raw material and kneaded with water 13. The obtained kneaded material is sent to a heater 6 through a conduit 14 and heat-treated by steam 15 and thereafter sent to the top part of an absorption tower 2 through a conduit 16 as the precursor of a desulfurizing agent. One part of desulfurized exhaust gas is supplied to the top part of the absorption tower 2 through a conduit 21. Therefore the precursor of the absorbent is dried while it is transferred through the top part of the absorption tower 2. The dried desulfurizing agent is brought into contact with waste gas supplied through a conduit 7 and absorbs gaseous SO2 and thereafter discharged to the outside of the system through a conduit 31 as the spent desulfurizing agent. A part of flue gas desulfurized in the absorption tower 2 is resupplied to the top part thereof and the other part is discharged through a stack 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は脱硫剤の乾燥方法に係り、特に排ガス処理する
吸収剤を効率良く乾燥することができる脱硫剤の乾燥方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for drying a desulfurizing agent, and particularly to a method for drying a desulfurizing agent that can efficiently dry an absorbent for treating exhaust gas.

〔従来の技術〕[Conventional technology]

従来、排ガス中の亜硫酸ガス(So□)を除去する脱硫
法には、アルカリ剤を水に混入させて排ガスと接触させ
る湿式脱硫法と、アルカリ剤の固体粒子をボイラ火炉内
に吹込む乾式脱硫法とがある。
Conventional desulfurization methods for removing sulfur dioxide gas (So□) from exhaust gas include wet desulfurization, in which an alkaline agent is mixed with water and brought into contact with the exhaust gas, and dry desulfurization, in which solid particles of an alkaline agent are injected into the boiler furnace. There is a law.

湿式脱硫法は、乾式脱硫法と比べてアルカリ剤の利用率
および脱硫率は高いが、排ガス温度が低下するため、排
ガスの再加熱が必要であり、また脱硫排水が発生する欠
点がある。
The wet desulfurization method has a higher utilization rate of alkaline agent and desulfurization rate than the dry desulfurization method, but has the disadvantage that the exhaust gas temperature decreases, requiring reheating of the exhaust gas, and that desulfurization wastewater is generated.

一方、乾式脱硫法は、排ガス温度が高いため、排ガスの
再加熱を必要とせず、また脱硫排水の発生はないが、ア
ルカリ剤の利用率が低く、また脱硫率も低い欠点がある
On the other hand, the dry desulfurization method has a high exhaust gas temperature, does not require reheating of the exhaust gas, and does not generate desulfurization wastewater, but has the drawbacks of low utilization rate of alkali agent and low desulfurization rate.

[発明が解決しようとする課題〕 本発明者らは、高性能の脱硫剤として、シリカ、アルミ
ナ等を含む石炭灰、酸化ケイ素または酸化アルミナと、
Ca (OH) 2、CaOなどの石灰成分と、CaS
O4’2H20、CaSO4などの石膏成分とを混合し
、これに水を加えて粘土状とした後、水蒸気で加熱固化
させて得られる脱硫剤を提案した。この脱硫剤は、第5
図の脱硫剤水分合量の変化によるガス接触時間と脱硫率
との関係図から示されるように、脱硫剤中の水分含量が
少ないほど脱硫率が向上する。なお、図中のAは水分含
量34%、Bは15〜17%、Cは1%以下の脱硫剤で
ある。
[Problems to be Solved by the Invention] The present inventors have developed a method using coal ash, silicon oxide, or alumina oxide containing silica, alumina, etc. as a high-performance desulfurization agent.
Ca (OH) 2, lime components such as CaO, and CaS
We proposed a desulfurization agent obtained by mixing gypsum components such as O4'2H20 and CaSO4, adding water to make a clay-like mixture, and then heating and solidifying the mixture with steam. This desulfurization agent is
As shown in the diagram of the relationship between gas contact time and desulfurization rate due to changes in desulfurization agent water content, the desulfurization rate improves as the water content in the desulfurization agent decreases. In addition, A in the figure is a desulfurizing agent with a moisture content of 34%, B with a moisture content of 15 to 17%, and C with a moisture content of 1% or less.

石炭灰等と、石灰成分と、石膏成分とを水で混練するに
際しては、前記原料混合物100重量部に対して30〜
50重量%の水が好ましく使用されるが、この水分は蒸
発することなく水蒸気雰囲気で加熱処理後の脱硫剤前駆
体に保持される。この脱硫剤前駆体は、ncao・A/
、zO,、・mCaSO4−fH20(但し、n、m、
j2は整数)の構造を有し、結晶水によって安定に固化
されている。
When kneading coal ash, etc., lime component, and gypsum component with water, 30 to 30 parts by weight per 100 parts by weight of the raw material mixture.
50% by weight of water is preferably used, but this water is retained in the desulfurizing agent precursor after heat treatment in a steam atmosphere without evaporating. This desulfurizing agent precursor is ncao・A/
, zO,, mCaSO4-fH20 (however, n, m,
j2 is an integer), and is stably solidified by crystal water.

しかし、より高性能な脱硫剤を得るためには、被吸収ガ
スを吸収剤内に充分に拡散できる細孔を多くするほうが
有利であり、また安定した物質は反応活性が小さいこと
から、前記脱硫剤前駆体を乾燥処理によって結晶水を除
き細孔を多くすることが必要である。
However, in order to obtain a desulfurizing agent with higher performance, it is advantageous to increase the number of pores that can sufficiently diffuse the absorbed gas into the absorbent, and since stable substances have low reaction activity, the desulfurizing agent It is necessary to dry the agent precursor to remove crystal water and increase the number of pores.

一方、乾式脱硫法に使用される移動層式吸収塔では、脱
硫剤が吸収塔上部から供給され、吸収塔を通過するが、
その間に排ガスと接触してS02ガスを吸収するため、
吸収塔上部の脱硫剤高さHが、ガス通過長さZより大き
くするように、すなわちZ<Hの関係が成立するように
脱硫剤が積み上げられる(第2図参照)。この関係をZ
>Hにすると、ガス入口側からの未処理ガスがショート
パスを起こし、吸収塔塔頂部に流入して脱硫されないま
まガス出口側に流れる。従って、移動層式吸収塔では前
記高さH分のスペースは必要不可決である。
On the other hand, in the moving bed type absorption tower used in the dry desulfurization method, the desulfurization agent is supplied from the top of the absorption tower and passes through the absorption tower.
During that time, it comes into contact with exhaust gas and absorbs S02 gas,
The desulfurizing agents are piled up so that the height H of the desulfurizing agent at the top of the absorption tower is greater than the gas passage length Z, that is, so that the relationship Z<H holds (see FIG. 2). This relationship is Z
>H, the untreated gas from the gas inlet side causes a short path, flows into the top of the absorption tower, and flows to the gas outlet side without being desulfurized. Therefore, in a moving bed type absorption tower, a space corresponding to the height H is not necessary.

本発明の目的は、従来の移動層式吸収塔を用いて、脱硫
剤を経済的に効率よく乾燥することができる脱硫剤の乾
燥方法を提供することにある。
An object of the present invention is to provide a method for drying a desulfurizing agent that can economically and efficiently dry the desulfurizing agent using a conventional moving bed absorption tower.

〔課題を解決するための手段] 本発明の脱硫剤の乾燥方法は、排ガス中の硫黄酸化物の
吸収除去に用いられる脱硫剤の前駆体を、移動層式吸収
塔の上部に供給し、これを脱硫処理された排ガスまたは
ボイラ燃焼用高温空気によって乾燥することを特徴とす
る。
[Means for Solving the Problems] The method for drying a desulfurizing agent of the present invention involves supplying a precursor of a desulfurizing agent used for absorbing and removing sulfur oxides in exhaust gas to the upper part of a moving bed type absorption tower, It is characterized by drying with desulfurized exhaust gas or high temperature air for boiler combustion.

本発明に用いられる脱硫剤前駆体は、石炭灰、酸化ケイ
素または酸化アルミと、石灰成分と、石膏成分とを水で
混練して水蒸気雰囲気で加熱処理して得られるものであ
ることが好ましい。
The desulfurizing agent precursor used in the present invention is preferably obtained by kneading coal ash, silicon oxide, or aluminum oxide, a lime component, and a gypsum component with water and heat-treating the mixture in a steam atmosphere.

〔実施例] 以下、本発明を実施例により詳しく説明する。〔Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は、本発明の一実施例による脱硫装置の系統図、
第2図は、第1図の吸収塔拡大断面図である。この装置
は、ボイラlと、該ボイラ1から発生する燃焼排ガスが
供給される吸収塔2と、該吸収塔2の塔頂部に脱硫処理
された排ガスの一部を供給する導管21と、脱硫剤原料
を混合する混合機4と、混合物を水13で混練する混練
機5と、混練物を水蒸気(または水分含有高温熱媒体)
15で加熱処理する加熱器6と、脱硫処理された排ガス
を系外に排出する煙突3とからなる。このような構成に
おいて、石炭灰、石灰成分および石膏成分は、導管11
によって混合機4に供給されて混合され、原料粉末とな
って導管12から混練機5に送られ、ここで水13と混
練される。得られた混練物は導管14を経て加熱器6に
送られて水蒸気(または水分含有高温熱媒体)15によ
って加熱処理され、脱硫剤の前駆体として導管16から
吸収塔2の上部に供給される。前記吸収塔2の上部には
、脱硫処理された排ガスの一部が導管21によって供給
されているため、前記吸収剤の前駆体が吸収塔塔頂部を
移動する間に乾燥される。
FIG. 1 is a system diagram of a desulfurization apparatus according to an embodiment of the present invention;
FIG. 2 is an enlarged sectional view of the absorption tower in FIG. 1. This device includes a boiler 1, an absorption tower 2 to which combustion exhaust gas generated from the boiler 1 is supplied, a conduit 21 to supply a part of the desulfurized exhaust gas to the top of the absorption tower 2, and a desulfurization agent. A mixer 4 that mixes raw materials, a kneader 5 that kneads the mixture with water 13, and a kneader 5 that mixes the mixture with water vapor (or water-containing high-temperature heat medium).
It consists of a heater 6 that performs the heat treatment in step 15, and a chimney 3 that discharges the desulfurized exhaust gas to the outside of the system. In such a configuration, the coal ash, lime components and gypsum components are transferred to the conduit 11.
The raw material powder is supplied to the mixer 4 and mixed therein, and then sent as raw material powder through the conduit 12 to the kneader 5, where it is kneaded with water 13. The obtained kneaded material is sent to the heater 6 via a conduit 14, where it is heat-treated with steam (or high-temperature heat medium containing moisture) 15, and then supplied to the upper part of the absorption tower 2 through a conduit 16 as a precursor of a desulfurizing agent. . A part of the desulfurized exhaust gas is supplied to the upper part of the absorption tower 2 through the conduit 21, so that the precursor of the absorbent is dried while moving at the top of the absorption tower.

該乾燥した脱硫剤は導管7から供給される排ガスと接触
し、SO□ガスを吸収し、使用済脱硫剤として吸収塔底
部の導管13から系外へ排出される。
The dried desulfurization agent comes into contact with the exhaust gas supplied from the conduit 7, absorbs the SO□ gas, and is discharged out of the system from the conduit 13 at the bottom of the absorption tower as a spent desulfurization agent.

吸収塔2で脱硫処理された排ガスの一部は吸収塔2の上
部に再び供給され、残りは煙突3から系外へ排出される
A part of the exhaust gas desulfurized in the absorption tower 2 is supplied again to the upper part of the absorption tower 2, and the rest is discharged from the chimney 3 to the outside of the system.

第1図に示す装置を用いて下記の条件で脱硫を行い、脱
硫率を測定したところ90%であった。なお脱硫剤前駆
体を乾燥しないで使用したときの脱硫率は50%であっ
た。
Desulfurization was carried out under the following conditions using the apparatus shown in FIG. 1, and the desulfurization rate was measured to be 90%. The desulfurization rate was 50% when the desulfurization agent precursor was used without being dried.

〈脱硫条件〉 (1)加熱処理後の吸収剤(脱硫剤前駆体、導管16)
O流量:470kg/h O水分含有率:31% ○粒径:3〜10柵 (2)乾燥用ガス(脱硫処理後の排ガス、導管21)O
流量:620ONボ/h ○温度=130°C ○水分濃度:12〜13体積% (3)乾燥後の脱硫剤 ○水分含有率:1%以下 (吸収塔2上部でサンプリング) ○乾燥時間:10h (4)脱硫処理ガス(ボイラ排ガス、導管7)○流量:
50,0OONrrr/h ○SO,濃度:5001)Pm 以上のように、従来、単に未処理ガスのショートバス防
止に脱硫剤を積み上げていた部分が、脱硫剤の乾燥用と
して有効に利用できるため、設備費およびユーティリテ
ィ費が低減できる。
<Desulfurization conditions> (1) Absorbent after heat treatment (desulfurization agent precursor, conduit 16)
O flow rate: 470 kg/h O moisture content: 31% ○ Particle size: 3 to 10 bars (2) Drying gas (exhaust gas after desulfurization treatment, conduit 21) O
Flow rate: 620 ON/h ○Temperature = 130°C ○Moisture concentration: 12-13% by volume (3) Desulfurization agent after drying ○Moisture content: 1% or less (sampled at the upper part of absorption tower 2) ○Drying time: 10h (4) Desulfurization processing gas (boiler exhaust gas, conduit 7) ○Flow rate:
50,0OONrrr/h ○SO, concentration: 5001) Pm As mentioned above, the area where desulfurization agents were conventionally piled up simply to prevent short baths of untreated gas can now be effectively used for drying desulfurization agents. Equipment costs and utility costs can be reduced.

第3図は、本発明の他の実施例による脱硫装置の系統図
である。第3図において、第1図と異なる点は、吸収塔
2の後流に設置した乾燥器20に、加熱器6で加熱処理
された脱硫剤前駆体を導管16によって供給し、ここで
、導管8から供給される脱硫処理後の排ガスで乾燥処理
し、導管41によって吸収塔2の上部に供給するように
したことである。この装置は、特にSO□ガスの濃度が
高い排ガス処理に有利である。
FIG. 3 is a system diagram of a desulfurization apparatus according to another embodiment of the present invention. The difference between FIG. 3 and FIG. 1 is that the desulfurizing agent precursor heated in the heater 6 is supplied to the dryer 20 installed downstream of the absorption tower 2 through a conduit 16; The drying process is performed using the desulfurized exhaust gas supplied from 8, and is supplied to the upper part of the absorption tower 2 through a conduit 41. This device is particularly advantageous for treating exhaust gas with a high concentration of SO□ gas.

脱硫剤の供給量は、排ガス中の802ガス量(濃度)に
比例して増加し、供給脱硫剤量=処理ガス量×SO□濃
度の関係にある。例えば上記した脱硫条件で処理ガス量
(50,00ONrrr/h)を同じにして、乾燥用ガ
ス量を620ONrrf/hから50,00ONn(/
hに変化させると、乾燥することができる脱硫剤前駆体
の量は470kg/hから約3,790kg/hに増加
する。従って、この脱硫剤の量では、SO□濃度が4,
000 ((50000/6200)X500 ) p
 p mである排ガスを処理することができることにな
る。
The amount of desulfurizing agent supplied increases in proportion to the amount (concentration) of 802 gas in the exhaust gas, and is in the relationship of supplied desulfurizing agent amount=treated gas amount×SO□ concentration. For example, under the desulfurization conditions described above, with the same processing gas amount (50,00ONrrr/h), the drying gas amount is changed from 620ONrrf/h to 50,00ONn(/h).
h, the amount of desulphurizing agent precursor that can be dried increases from 470 kg/h to approximately 3,790 kg/h. Therefore, with this amount of desulfurization agent, the SO□ concentration is 4,
000 ((50000/6200)X500) p
This means that it is possible to treat exhaust gas that is pm.

第4図は、必要乾燥用ガス量と供給脱硫剤(脱硫剤前駆
体)との関係を示した図である。処理ガス量が一定の場
合、SO□濃度比が3のとき、供給脱硫剤量比は3とな
り、乾燥用ガス量比は3となる。しかし、SO2濃度比
が6になると、供給吸収剤量比が6となり、この供給脱
硫剤を乾燥するのに必要な乾燥用ガス量も比例して多く
なり、乾燥用ガス量比が6に増える。従って、SO□濃
度が高くなった場合には、専用の乾燥器20を設置する
ことが有利である。
FIG. 4 is a diagram showing the relationship between the required amount of drying gas and the supplied desulfurizing agent (desulfurizing agent precursor). When the processing gas amount is constant, when the SO□ concentration ratio is 3, the supplied desulfurizing agent amount ratio is 3, and the drying gas amount ratio is 3. However, when the SO2 concentration ratio becomes 6, the supplied absorbent amount ratio becomes 6, and the amount of drying gas required to dry this supplied desulfurization agent also increases proportionally, and the drying gas amount ratio increases to 6. . Therefore, when the SO□ concentration becomes high, it is advantageous to install a dedicated dryer 20.

なお、本実施例では、乾燥用ガスとして脱硫処理後の排
ガスを利用したが、導管21から供給しているガスは他
の高温媒体でもよく、例えばボイラ燃焼用高温空気であ
ってもよい。また第2図の乾燥器20では、脱硫処理後
の排ガスが全量高温媒体として導入しているが、吸収剤
の量に見合った一部の脱硫処理後の排ガスを供給するか
、または他の高温乾燥空気等を供給しても同様の効果は
得られることはいうまでもない。
In this embodiment, the desulfurized exhaust gas is used as the drying gas, but the gas supplied from the conduit 21 may be any other high-temperature medium, such as high-temperature air for boiler combustion. Furthermore, in the dryer 20 shown in Fig. 2, the entire amount of the desulfurized exhaust gas is introduced as a high-temperature medium, but some of the desulfurized exhaust gas is supplied in proportion to the amount of absorbent, or other It goes without saying that the same effect can be obtained by supplying dry air or the like.

〔発明の効果〕〔Effect of the invention〕

本発明の脱硫剤の乾燥方法によれば、移動層式吸収塔の
ショートパス防止用のスペースを有効に利用し、かつ脱
硫処理後の高温ガスを利用して脱硫剤前駆体を乾燥する
ことができるため、特別な乾燥装置や熱源が不要となり
、設備費およびランニングコストを低減することができ
る。
According to the desulfurizing agent drying method of the present invention, it is possible to effectively utilize the short-path prevention space of the moving bed absorption tower and to dry the desulfurizing agent precursor using the high temperature gas after the desulfurizing treatment. This eliminates the need for special drying equipment or heat sources, reducing equipment costs and running costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例による脱硫装置の系統図、
第2図は、第1図の吸収塔拡大断面図、第3図は、本発
明の他の実施例による脱硫装置の系統図、第4図は、処
理ガス量が一定の場合の乾燥用ガス量と供給脱硫剤の関
係を示す図、第5図は、脱硫剤水分含量の変化に対する
ガス接触時間と脱硫率との関係を示す図である。 l・・・ボイラ、2・・・吸収塔、3・・・煙突、4・
・・混合機、5・・・混練機、6・・・加熱器、7.8
.11.12.14.16.21.41.51・・・導
管。
FIG. 1 is a system diagram of a desulfurization apparatus according to an embodiment of the present invention;
FIG. 2 is an enlarged sectional view of the absorption tower in FIG. 1, FIG. 3 is a system diagram of a desulfurization apparatus according to another embodiment of the present invention, and FIG. 4 shows drying gas when the amount of gas to be treated is constant. FIG. 5 is a diagram showing the relationship between the gas contact time and the desulfurization rate with respect to the change in the moisture content of the desulfurization agent. l... Boiler, 2... Absorption tower, 3... Chimney, 4...
... Mixer, 5... Kneading machine, 6... Heater, 7.8
.. 11.12.14.16.21.41.51... Conduit.

Claims (2)

【特許請求の範囲】[Claims] (1)排ガス中の硫黄酸化物の吸収除去に用いられる脱
硫剤の前駆体を、移動層式吸収塔の上部に供給し、これ
を脱硫処理された排ガスまたはボイラ燃焼用高温空気に
よって乾燥することを特徴とする脱硫剤の乾燥方法。
(1) A precursor of a desulfurizing agent used to absorb and remove sulfur oxides from exhaust gas is supplied to the upper part of a moving bed absorption tower, and this is dried using desulfurized exhaust gas or hot air for boiler combustion. A method for drying a desulfurizing agent, characterized by:
(2)脱硫剤の前駆体が、石炭灰、酸化ケイ素または酸
化アルミと、石灰成分と、石膏成分とを水で混練して水
蒸気雰囲気で加熱処理したものであることを特徴とする
請求項(1)記載の脱硫剤の乾燥方法。
(2) Claim characterized in that the precursor of the desulfurization agent is one obtained by kneading coal ash, silicon oxide, or aluminum oxide, a lime component, and a gypsum component with water and heat-treating the mixture in a steam atmosphere. 1) The method for drying the desulfurizing agent described above.
JP1014357A 1989-01-24 1989-01-24 Drying method for desulfurizing agent Pending JPH02194836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1014357A JPH02194836A (en) 1989-01-24 1989-01-24 Drying method for desulfurizing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014357A JPH02194836A (en) 1989-01-24 1989-01-24 Drying method for desulfurizing agent

Publications (1)

Publication Number Publication Date
JPH02194836A true JPH02194836A (en) 1990-08-01

Family

ID=11858821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014357A Pending JPH02194836A (en) 1989-01-24 1989-01-24 Drying method for desulfurizing agent

Country Status (1)

Country Link
JP (1) JPH02194836A (en)

Similar Documents

Publication Publication Date Title
CN105944564A (en) Coke oven flue gas waste heat recycling, desulfuration and denitration integrated system and method
GB2234232A (en) Desulphurizing flue gas with calcium salts
CN109603459A (en) A kind of low-temperature dry fume desulfurizing agent and its preparation method and application
JPH03101812A (en) Method for dry-purifying waste gas
RU2139473C1 (en) Method of treatment of solid residues after burning sulfur-containing fuel and device for realization of this method
JPH119962A (en) Waste gas treatment method and apparatus therefor
GB2232972A (en) Removing nitrogen oxides and sulphur oxides from exhaust gas
JPS6136969B2 (en)
JPH02194836A (en) Drying method for desulfurizing agent
JPH0359303A (en) Method for simultaneous desulfurization and denitration in furnace
WO2001032324A1 (en) Method for treating combustion ash of coal and method for desulfurization
JPS6071025A (en) Desulfurization of waste gas from fluidized bed boiler
JPS6279890A (en) Treatment of ash of fluidized bed combustion boiler
JPH0376963B2 (en)
JP3294404B2 (en) How to treat incinerator dust
JP3296843B2 (en) Drying device and dry desulfurization device using steam type air heater
JP3204694B2 (en) Method for producing desulfurizing agent and desulfurizing method
JP2006035088A (en) Method for treating sludge and system for treating sludge
JPH04141216A (en) Wet exhaust gas desulfurizing method
JPH02152520A (en) Dry treatment of exhaust gas
JP2002320819A (en) Method for treating waste gas
JPH03196816A (en) Treatment of waste combustion gas
JPH03154615A (en) Semidry sulfurization
JPS6019019A (en) Dry purifying method of waste gas
JPS5850785B2 (en) How to dry nitrate solution