JPH02194511A - Ceramic capacitor - Google Patents

Ceramic capacitor

Info

Publication number
JPH02194511A
JPH02194511A JP1381089A JP1381089A JPH02194511A JP H02194511 A JPH02194511 A JP H02194511A JP 1381089 A JP1381089 A JP 1381089A JP 1381089 A JP1381089 A JP 1381089A JP H02194511 A JPH02194511 A JP H02194511A
Authority
JP
Japan
Prior art keywords
electrode
layer
ceramic capacitor
ceramic
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1381089A
Other languages
Japanese (ja)
Other versions
JPH0650699B2 (en
Inventor
Yoichiro Yokoya
横谷 洋一郎
Hiroshi Kagata
博司 加賀田
Junichi Kato
純一 加藤
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1013810A priority Critical patent/JPH0650699B2/en
Priority to US07/443,167 priority patent/US5016137A/en
Publication of JPH02194511A publication Critical patent/JPH02194511A/en
Publication of JPH0650699B2 publication Critical patent/JPH0650699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To realize a large capacity by keeping a small shape and to reduce a defect by a method wherein an electrode layer is not a complete face shape but has a structure containing a part not covering a dielectric layer. CONSTITUTION:In a ceramic capacitor in which at least two or more electrode layers have been formed via a dielectric porcelain layer, the electrode layers are not a complete face shape but are formed as a mesh structure having small hole parts not covering the dielectric layer; an average thickness of the electrode layers is formed to be 2mum or lower. Alternatively, the electrode layers are not the complete face shape but may have a structure having small groove parts not covering the ceramic dielectric layer from a part from which an electrode is extracted to the outside toward other parts. In addition, one of the mutually adjacent electrode layers may be a face shape not containing a defect and the other may be a structure having a part not covering the ceramic dielectric layer. Thereby, it is possible to prevent a defect by a strain between the electrode and the dielectric layer; when an area ratio of the part not covering the dielectric layer among the electrode layers is set to a proper value, drop in capacity can be suppressed to be small and cost of the electrode can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はセラミックコンデンサのに関する。[Detailed description of the invention] Industrial applications The present invention relates to ceramic capacitors.

従来の技術 近年セラミックコンデンサは素子の小型化大容量化への
要求から積層型コンデンサが急速に普及しつつある。ま
た回路の高周波化への要求、部品の高信頼性化への要求
から従来アルミ電解コンデンサ、タンタル電解コンデン
サが用いられていた1μF以」二の人容半領域にセラミ
ック積層コンデンサを用いる必要が発生している。素子
形状を小さく保ちながら大容量のセラミック積層コンデ
ンサを得るには、高誘尼率の誘電体を用いる、誘電体の
厚さを薄くする、容量を構成する内部電極層の層数を増
やすことが必要となる。
BACKGROUND OF THE INVENTION In recent years, multilayer capacitors are rapidly becoming popular due to the demand for smaller ceramic capacitor elements and larger capacitance. In addition, due to the demand for higher frequency circuits and higher reliability of components, it has become necessary to use ceramic multilayer capacitors for capacitors of 1μF and above, where conventionally aluminum electrolytic capacitors and tantalum electrolytic capacitors were used. are doing. In order to obtain a large-capacity ceramic multilayer capacitor while keeping the element shape small, it is necessary to use a dielectric with a high dielectric constant, reduce the thickness of the dielectric, and increase the number of internal electrode layers that make up the capacitance. It becomes necessary.

しかし誘電体層の厚さが減少し、内部電極層の層数が増
加すると、積層体内部にセラミック相と金属相の間の焼
成収縮の差、膨張率の差によって歪が発生しやすくなり
、層間11Mやクラックなどの欠陥が発生するなどの問
題点を有している。
However, as the thickness of the dielectric layer decreases and the number of internal electrode layers increases, distortion tends to occur inside the laminate due to the difference in firing shrinkage and expansion coefficient between the ceramic phase and the metal phase. It has problems such as the occurrence of defects such as interlayer 11M and cracks.

これに対し発明者らはすてに鉛系誘電体を用い、誘電体
層、電極層を薄層化したセラミック積層コンデンサを提
案している。
In response, the inventors have proposed a ceramic multilayer capacitor in which a lead-based dielectric is used and the dielectric layer and electrode layer are made thinner.

発明が解決しようとする課題 本発明では以りの課題に鑑み、小型の形状を(^っだま
ま大容量を達成しかつ欠陥の発生の少ないセラミックコ
ンデンサを提供することを目的とする。
Problems to be Solved by the Invention In view of the above problems, it is an object of the present invention to provide a ceramic capacitor that achieves a large capacity while maintaining a small size and has fewer defects.

課題を解決するための手段 本発明は3つの手段を提示しており、それらは総合する
と、電極層が完全な面状ではなく誘電体1dを覆ってい
ない部分を有する構造を有することを特徴とする特許請
求の範囲第1項に対応する手段は、電極層が細孔を有す
る網目構造をとることにある。特許請求の範囲第2項に
対応する手段は、各電極が電極の外部への引きだし部か
らその他の部分に向かって誘電体を覆っていない細溝を
有する構造をとることにある。特許請求の範囲第4項に
対応する手段は電極層が一層おきに完全な面状ではなく
誘電体層を覆っていない部分を有する構造を有すること
にある。
Means for Solving the Problems The present invention presents three means, which are characterized in that, taken together, the electrode layer has a structure that is not completely planar but has a portion that does not cover the dielectric 1d. A means corresponding to claim 1 is that the electrode layer has a network structure having pores. A means corresponding to claim 2 is that each electrode has a structure in which each electrode has a narrow groove that does not cover the dielectric material from a portion extending to the outside of the electrode toward other portions. A means corresponding to claim 4 resides in that every other electrode layer has a structure that is not completely planar but has a portion that does not cover the dielectric layer.

作用 上記構成のセラミックコンデンサにおいては電極と誘電
体層の間の歪による欠陥を防止できる。
Effect: In the ceramic capacitor having the above structure, defects due to strain between the electrode and the dielectric layer can be prevented.

また電極層中の誘電体層を覆っていない部分の面積比を
誘電体厚さ、誘電体層を覆っていない部分の各部の大き
さによって適当な(直とすることにより電極層が部分的
に存在しないことによる容量の低下を小さく抑えること
ができ、電極コストな低減することができろ。
In addition, the area ratio of the part of the electrode layer that does not cover the dielectric layer is determined by adjusting the dielectric thickness and the size of each part of the part that does not cover the dielectric layer. It would be possible to suppress the decrease in capacity due to the absence of the metal to a small extent, and reduce the electrode cost.

実施例 以下に、本発明の実施例を図面を参照して説明する。Example Embodiments of the present invention will be described below with reference to the drawings.

実施例−1 誘電体層の組成としては次に示す組成式で表わされる材
料を用いた。
Example 1 A material represented by the following compositional formula was used as the composition of the dielectric layer.

Pb+、aq (Mg+/3Nb21t) +!、7T
 iΩ19 (N it/2WI・2)t+、++ot 誘電体粉末は通常のセラミック製造方法に従い製造した
。誘電体粉末は通常のセラミック5!造方法により有機
フィルム上にシート化した。内部電極の出発原料にはパ
ラジウム黒粉末または通常のy&細パラジウム粉を用い
、さらに一部のものには、これに平均粒径0.1μmの
誘電体と同じ粉末を20 w t%加えこれらの無機物
粉末に対しバインダとして10wt%のエチルセルロー
ス系樹脂を加え、80 w t%の溶剤を加え3本ロー
ル混合機を用いて、スラリー化した。この電極ペースト
はインク塗着量の異なるスクリーンメシュを用いたスク
リーン印刷法により、誘電体シート上に印刷した。誘電
体層は焼成後膜厚10 zz mのものを1.2.3層
重ねて用いた。これを上下にダミー層を構成し、中心に
内部J極層が交互に引き出されるように電極層を51重
積層し積層チップとした。
Pb+, aq (Mg+/3Nb21t) +! , 7T
iΩ19 (N it/2WI·2)t+,++ot The dielectric powder was manufactured according to a normal ceramic manufacturing method. The dielectric powder is regular ceramic 5! It was made into a sheet on an organic film using a manufacturing method. Palladium black powder or normal Y&fine palladium powder is used as the starting material for the internal electrodes, and in some cases, 20 wt% of the same powder as the dielectric material with an average particle size of 0.1 μm is added to these powders. 10 wt % of ethyl cellulose resin was added as a binder to the inorganic powder, and 80 wt % of a solvent was added to form a slurry using a three-roll mixer. This electrode paste was printed on a dielectric sheet by a screen printing method using screen meshes with different amounts of ink applied. The dielectric layers were stacked in 1, 2, and 3 layers and had a film thickness of 10 zz m after firing. Dummy layers were formed above and below, and 51 electrode layers were laminated so that the internal J pole layer was alternately drawn out at the center to form a laminated chip.

積層チップはバインダ分をバーンアウトしたのち、空気
中1000℃で2時間焼成した。焼成後の積層チップは
、内部電極が露出した断面に焼付は銀ペーストを塗布し
、焼き付けて外部電極とした。作製したセラミック積層
コンデンサは、電極層の交互ζこ重なりあっている部分
の投影面におけろ交lに内部電極が露出している端面側
端線と側面0I11端線によって囲まれる面積は−/W
あたり2゜97mm2であった。
After burning out the binder, the laminated chip was baked in air at 1000° C. for 2 hours. After firing, a silver paste was applied to the cross section of the laminated chip where the internal electrodes were exposed and baked to form external electrodes. In the produced ceramic multilayer capacitor, the area surrounded by the end line where the internal electrodes are exposed at the intersection l and the end line of the side surface 0I11 in the projection plane of the alternately overlapping portion of the electrode layers is -/ W
It was 2°97mm2.

作製したセラミック![コンデンサ素子は20℃、1 
k l(z、信号電圧1■の交流て容量とtanδを測
定し、さらに10ケの試料について内部電極層を電極面
に垂直に研磨して露出させ、電極部のS E h、q写
真のパターン解析により、電極の平均Iブさ、内部電極
中の誘電体層を覆っていない細孔の平均径、電極層外形
面積に対する実際に電極が存在する占有率z、を算出し
さらに試料中の居間剥離、クラックの有無を確認した。
The ceramic we created! [Capacitor element is 20℃, 1
k l (z, the capacitance and tan δ were measured using an alternating current signal voltage of 1), and the internal electrode layers of 10 samples were polished perpendicularly to the electrode surface to expose them. By pattern analysis, we calculated the average diameter of the electrode, the average diameter of pores that do not cover the dielectric layer in the internal electrode, and the actual occupancy z of the electrode relative to the external area of the electrode layer. We checked for peeling and cracks in the living room.

また容量については、各誘電体膜厚におけるz=1のも
のに対する容量の出現率を求めた。
Regarding capacitance, the appearance rate of capacitance for each dielectric film thickness with respect to z=1 was determined.

第1表に各試料番号と誘電体厚、電極膜厚、細孔の平均
径および誘電体厚さXと細孔の平均径yの比y/x、内
部電極占有率z、容量出現率、tanδ、試料10ケ中
の欠陥数を示す。また第1図には特許請求の範囲第3項
に示された範囲付近のy/x、zを持つ試料番号を示し
た。
Table 1 shows each sample number, dielectric thickness, electrode film thickness, average pore diameter, ratio y/x of dielectric thickness X to average pore diameter y, internal electrode occupancy z, capacity appearance rate, tan δ indicates the number of defects in 10 samples. Further, FIG. 1 shows sample numbers having y/x and z near the range shown in claim 3.

(以 下 余 白) 第  1 表 粁lは請求項3の範囲外の比較例 第1表より明かなように、内部電極層が2μmより小さ
く、!1)つ誘電体層を覆っていない細孔を有する構造
からなるものは、実施例のような61層の電極層からな
る高積層数の素子においても積層欠陥が発生しにくい。
(Margins below) As is clear from Table 1 of Comparative Examples outside the scope of claim 3, the internal electrode layer of the first layer is smaller than 2 μm! 1) In a structure having pores that do not cover the dielectric layer, stacking faults are less likely to occur even in an element with a high number of stacked layers including 61 electrode layers as in the example.

またさらに特許請求の範囲第3項記載の範囲内に誘電体
厚さ、細孔径、2があるものは、内部電極層に完全な板
状に内部電極があるものに比べ、90%以上の容量が得
られる利点を有しており、このことは内部電極コストの
低減も可能とする。
Furthermore, a dielectric thickness and a pore diameter of 2 within the range described in claim 3 have a capacity of 90% or more compared to a structure in which the internal electrode layer has a complete plate-like internal electrode. This has the advantage of being able to obtain the following properties, which also makes it possible to reduce the cost of internal electrodes.

実施例−2 誘電体層の組成としては次に示す組成式で表わされる材
料を用いた。
Example 2 A material represented by the following compositional formula was used as the composition of the dielectric layer.

Ba+、seT ill、7eZrl!、3a03: 
MnO20,1vt%誘電体粉末は通常のセラミック製
造方法に従い製造した。誘電体粉末は通常のセラミック
製造方法により有機フィルム上にシート化した。内部電
極の出発原料には通常の微細パラジウム粉を用い、これ
らの無機物粉末に対しバインダとして8wt%のエチル
セルロース系樹脂を加え、50 w t%の溶剤を加え
!3木ロール混合機を用いて、スラリー化した。この電
極ペーストはグラビア印刷法により、誘電体シートLに
印刷した。このグラビア版は、内部電極引きだし端より
内部に向かって連続な線状の細線パターンからなる。誘
電体層は焼成後膜厚1271rnのものを1.2.3層
重ねて用いた。これをL下にダミー層をtxtし′、中
心に内部電極層が交〃に引き出されるようここ電極層を
51層積1ifi l、積;ピチップとした。
Ba+, seT ill, 7eZrl! , 3a03:
The MnO20, 1vt% dielectric powder was manufactured according to a conventional ceramic manufacturing method. The dielectric powder was formed into a sheet on an organic film using a conventional ceramic manufacturing method. Regular fine palladium powder was used as the starting material for the internal electrodes, and 8 wt% of ethyl cellulose resin was added as a binder to these inorganic powders, and 50 wt% of a solvent was added! It was made into a slurry using a Miki roll mixer. This electrode paste was printed on a dielectric sheet L by a gravure printing method. This gravure plate consists of a continuous thin line pattern from the internal electrode lead-out end toward the inside. The dielectric layers were stacked in 1, 2, and 3 layers and had a film thickness of 1271 rn after firing. A dummy layer was placed under L, and the electrode layer was made into a 51-layer stack with a thickness of 1/4 inch so that the internal electrode layers were drawn out alternately at the center.

積層チップはバインダ分をバーンアウトしたのち、空気
中1350℃で2時間焼成した。焼成1々の積層チップ
は、内部電極が露出し・た断面に焼付は銀ペーストを塗
布し、焼き付けて外部電極とした。作製したセラミック
積層コンデンサは、電極層の交〃に重なりあっている部
分の投W(面における交互ここ内部電極が露出している
端面側端線と側面側端線ζこよって囲まれる面積は−l
誓あたり2゜88開z、線状部の電極平均厚み2.27
1mであった。
After burning out the binder, the laminated chip was fired in air at 1350° C. for 2 hours. For each fired laminated chip, a silver paste was applied to the cross section where the internal electrode was exposed and baked to form the external electrode. The fabricated ceramic multilayer capacitor has the area surrounded by the pitch W (alternately on the surface) where the electrode layers overlap, the edge line on the end surface where the internal electrodes are exposed, and the edge line on the side surface ζ. l
2°88 opening per oval, average electrode thickness of linear part 2.27
It was 1m.

作製したセラミック積層コンデンサ素子は20℃、1 
k f(z、信号電圧IVの交流で容徴とtanδを測
定腰 さらにlOケの試料について内部電極層を電極面
に垂直に研磨して露出させ、電極1■のSEM写真のパ
ターン解析により、電極の平均線巾、平均間隔(細溝の
幅)yを測定し、内部電極の占有率を算出し、さらに試
料中の層間剥離、クラックの有無を確認した。また容量
については、各誘電体膜厚における占有率=1のものに
対する容量の出現率を求めた。
The prepared ceramic multilayer capacitor element was heated at 20°C and 1
k f (z, measure the physical characteristics and tan δ with alternating current signal voltage IV) Furthermore, for 10 samples, the internal electrode layer was polished perpendicular to the electrode surface to expose it, and by pattern analysis of the SEM photograph of electrode 1, The average line width and average spacing (width of narrow grooves) y of the electrodes were measured, the occupancy rate of the internal electrodes was calculated, and the presence or absence of delamination and cracks in the sample was confirmed.Also, the capacitance was determined for each dielectric material. The appearance rate of capacity for the film thickness with occupancy = 1 was determined.

第2表に各試料番号と誘電体r5.x、線111、線間
隔yおよび内部電極占有’>G z、誘電体厚さXと線
間FM yの比y/x、容xi、t a、 nδ、試r
↓10す中の欠陥数を示す。また第2図には特許請求の
範囲第3工aに示された節回付近のy/ X +  内
部電極占有T5Hzを持つ試料番号を示した。
Table 2 shows each sample number and dielectric material r5. x, line 111, line spacing y and internal electrode occupation'>G z, ratio y/x of dielectric thickness X and line spacing FM y, capacity xi, t a, n δ, trial r
↓Indicates the number of defects in 10 cases. Further, FIG. 2 shows a sample number having T5Hz occupied by the y/

(以  下  余  〔]) 第  2 表 tt印は本発明の範囲外の比較例 ネ印は請求項3の範囲外の比較例 第2表より明かなように、誘電体層を覆っていない細溝
を有する構造からなるものは、実施例のような51層の
電極層からなる高積層数の素子においても積層欠陥が発
生しにくい。またさらに特許請求の範囲第3項記載の範
囲内に誘電体厚、細孔径、2があるものは、内部電極層
に完全な板状に内部電極があるものに比べ、90%以上
の容lが得られる利点を有しており、このことは内部電
極コストの低減も可能とする。
(Hereinafter, the remainder []) Table 2: Comparative examples outside the scope of the present invention marked with tt indicate comparative examples outside the scope of claim 3. A structure having grooves is less likely to cause stacking defects even in an element with a high number of stacked layers including 51 electrode layers as in the example. Furthermore, a dielectric thickness and a pore diameter of 2 within the range described in claim 3 have a volume of 90% or more compared to a structure in which the internal electrode layer has a complete plate-like internal electrode. This has the advantage of being able to obtain the following properties, which also makes it possible to reduce the cost of internal electrodes.

実施例−3 誘電体層のm成としては次に示す組成式で表わされる材
料を用いた。
Example 3 A material represented by the following compositional formula was used as the material of the dielectric layer.

Ba+1lsTit1.vlIZr@、toOt: M
nO20,1wtX誘電体粉末は通常のセラミック製造
方法に従い製造した。誘電体粉末は通常のセラミック製
造方法により有機フィルム上にシート化した。内部電極
の出発原料には通常の微細パラジウム粉を用い、これら
の無機物粉末に対しバインダとして8wt%のエチルセ
ルロース系樹脂を加え、50 w t%の溶剤を加え3
本ロール混合機を用いて、スラリ一層した。この電極ペ
ーストはインク塗式脅の革なるグラビア版を用いたグラ
ビア印刷法により、誘電体シー)1−に印刷した。内部
電極層を印刷するグラビア版は、内部電極引きだし端よ
り内部ζこ向かって連続な線状の細線パターンからなる
版と全面に完全な板状電極を形成できるパターンからな
る版を用い、交互にこれらの版を用い内部電極層を印刷
し、積層した6 A主体層は焼成後膜厚12Bmのもの
を1.2.3層重ねて用いた。これを1.1にダミー層
を構成し、中心に内部電極層が交々、に引き出されるよ
うに電極層を51重積層した。焼成後の線状電極部の平
均厚さは2.2μmであった。
Ba+1lsTit1. vlIZr@, toOt: M
The nO20,1wtX dielectric powder was manufactured according to a conventional ceramic manufacturing method. The dielectric powder was formed into a sheet on an organic film using a conventional ceramic manufacturing method. Ordinary fine palladium powder was used as the starting material for the internal electrodes, and 8 wt% of ethyl cellulose resin was added as a binder to these inorganic powders, and 50 wt% of a solvent was added.
The slurry was made into one layer using this roll mixer. This electrode paste was printed on the dielectric sheet (1) by a gravure printing method using an ink-coated gravure plate. The gravure plate for printing the internal electrode layer uses a plate consisting of a thin linear pattern continuous from the internal electrode lead-out end towards the inside ζ and a plate consisting of a pattern that can form a complete plate-like electrode on the entire surface. Internal electrode layers were printed using these plates, and the laminated 6A main layer had a thickness of 12 Bm after firing, and 1.2.3 layers were used. This was used as a dummy layer in 1.1, and 51 electrode layers were stacked so that the internal electrode layers were alternately drawn out from the center. The average thickness of the linear electrode portion after firing was 2.2 μm.

積層チ・ツブはバインダ分をバーンアウトしたのち、空
気中1350℃で′、2時間焼成した。焼成後の積層チ
ップは、内部電極が露出した断面に焼付は銀ペーストを
塗布し、焼き付けて外部電極とした。作製したセラミッ
ク積層コンデンザは、電極層の交互ζこ(なりあってい
る部分の投影面における交1jζこ内部電極が露出して
いる端面側端線と側面側端線によって囲まれる面積は一
層あたり2゜88mnp’であった。
After burning out the binder, the laminated chips were fired in air at 1350° C. for 2 hours. After firing, a silver paste was applied to the cross section of the laminated chip where the internal electrodes were exposed and baked to form external electrodes. The manufactured ceramic laminated capacitor has an area surrounded by the end line and the side edge line where the internal electrodes are exposed is 2 per layer. It was ゜88mnp'.

作製したセラミックIRNコンデンサ素子は20℃、1
 k Hz、信号電圧1■の交流で8歌とjanδを測
定し、さらに10ケの試料について内部電極層を電極面
に垂直tこ研磨して露出させ、電極部のSEM写真のパ
ターン解析により、電極のモ均15さX、電極の平均線
巾、間隔(細溝の幅)yを測定し、内部電極の占有率2
を算出腰 さらに試料中の層間剥離、クラックの有無を
確認した。
The prepared ceramic IRN capacitor element was heated at 20°C and 1
8 songs and jan δ were measured with alternating current at kHz and signal voltage of 1 mm, and the internal electrode layers of 10 samples were exposed by polishing perpendicular to the electrode surface, and pattern analysis of SEM photographs of the electrode parts revealed that Measure the average width of the electrodes (15 mm)
The sample was also checked for delamination and cracks.

また容量については、各誘電体膜厚における占イT率=
1のものに対する容量の出現率を求めた。
In addition, regarding the capacitance, the occupancy T factor for each dielectric film thickness =
The appearance rate of capacity for that of 1 was determined.

第3表に各試N番号と誘電体JブX、線11、線間隔y
および内部電極占有率z、誘電体度さXと線間隔yの比
y/x、容量出工M率、j a nδ、試料10ケ中の
欠陥数を示す。また第73図には特許請求の範囲第7項
[こ示された範囲付近のy/’ X +  内部電極占
有率を持つ試料番号を示した。
Table 3 shows each test N number, dielectric material J, line 11, and line spacing y.
It also shows the internal electrode occupancy z, the ratio y/x of the dielectric degree X and the line spacing y, the capacitance yield M rate, j a n δ, and the number of defects in 10 samples. Further, FIG. 73 shows sample numbers having y/'

(以ド余白) 第  3 表 打印は本発明の範囲外の比較例 を印は請求項7の範囲外の比較例 第3表より明かなように、内部型Pj!層が誘電体Lグ
を覆っていない細溝を一層毎に有する構造からなるもの
は、実施例のような51.7Δの電極、層からなる高積
層数の素子においても積j′ご欠陥が発生しにくい。ま
たさらtこ特許請求の範囲第31頁記教の範囲内tこ誘
電体厚、細孔径、2があるものは、内部電極層に完全な
板状に内部電極があるものに比へ、90%以上の容量が
得られる利点を有しており、この範囲も実施例1.2よ
り広い。このことは内部電極コストのざらなる低減も可
能とずろ。
(The following is a blank space) Table 3 Marks indicate comparative examples outside the scope of the present invention.As is clear from Table 3, the marks indicate comparative examples outside the scope of the present invention. If the layer has a structure in which each layer has a narrow groove that does not cover the dielectric material L, even in an element with a high number of laminated layers and electrodes of 51.7Δ as in the example, there will be defects in the stack j'. Hard to occur. Furthermore, the dielectric thickness and pore diameter within the scope of claims on page 31 are 90% compared to those in which the internal electrode layer has a complete plate-like internal electrode. % or more, and this range is also wider than that of Example 1.2. This should also make it possible to significantly reduce the cost of internal electrodes.

実施例−41 誘電体層の組成としては次に示す組成式で表わされる材
料を用いた。
Example 41 As the composition of the dielectric layer, a material represented by the following compositional formula was used.

Pt)+8s(Mg+・:+Nb2zt) s7T i
i+、+9(N i+・2W+・・2)S、++O:+ 誘電体粉末は通常のセラミック製造方法に従い製造した
。誘電体粉末は通常のセラミック製造方法により有機フ
ィルムードにシート化した。内部電極の出発原¥4には
パラジウム黒粉末または通常の微細パラジウム粉を用い
、さらに一部のものtこ1i、これに平均粒径0. 1
μm11の誘電体層と同質の粉末を20 w t%加え
これらの無機物粉末に対しバインダとしてl Ow t
%のエチルセルロース系樹脂を加え、80 w t%の
溶剤を加え3本ロール混合機を用いて、スラリー化した
。この電極ペーストはインク塗着機の異なるスクリーン
印刷法を用いたスクリーン印刷法により、誘電体シート
上に印刷した。内部電極層はIJljに完全な板状を形
成ずろものと、細孔を有する構造となるものを交互に形
成した。誘電体層は焼成後膜厚]07zmのものを1.
2.3層重ねて用いた。これを上下にダミー層を構成し
、中心に内部電極層が交互に弓き出されるように電極層
を51重積層し積層チップとした。
Pt)+8s(Mg+・:+Nb2zt) s7T i
i+, +9(N i+·2W+···2)S,++O:+ The dielectric powder was manufactured according to a normal ceramic manufacturing method. The dielectric powder was formed into a sheet into an organic film compound using a conventional ceramic manufacturing method. Palladium black powder or ordinary fine palladium powder is used as the starting material for the internal electrodes, and some of them are added with an average particle size of 0. 1
Add 20wt% of powder of the same quality as the dielectric layer of μm11 and use lowt as a binder to these inorganic powders.
% of ethyl cellulose resin and 80 wt % of solvent were added to form a slurry using a three-roll mixer. This electrode paste was printed on a dielectric sheet by a screen printing method using a different screen printing method using an ink applicator. For the internal electrode layer, one having a complete plate shape and the other having a structure having pores were alternately formed on the IJlj. The dielectric layer has a film thickness of 07 zm after firing.
2.3 layers were stacked and used. Dummy layers were formed above and below, and 51 electrode layers were laminated so that internal electrode layers were alternately protruded from the center to form a laminated chip.

112チツプはバインダ分をバーンアウトしたのち、空
気中1000℃で2時間焼成した。焼成後の積層チブは
、内部電極が露出した断面に焼付は銀ペーストを塗布し
、焼き付けて外部電極とした。
After burning out the binder, the 112 chips were fired in air at 1000° C. for 2 hours. After firing, a silver paste was applied to the cross section of the laminated chib where the internal electrodes were exposed and baked to form external electrodes.

作製したセラミック積層コンデンサは、電極層の交互に
東なりあっている部分の投影面における交互に内部電極
が露出している端面倒喘線と側面側端線によって囲まれ
る面積は一層あたり2゜97m1I+2であツタ。
The manufactured ceramic multilayer capacitor has an area of 2°97m1I+2 per layer, which is surrounded by the edge line and the side edge line where the internal electrodes are exposed alternately on the projected plane of the parts of the electrode layers that alternately face each other to the east. And ivy.

作製したセラミック積層コンデンサ素子は20℃、1k
Hz、信号電圧1■の交流で容量とtanδを測定し、
さらに10ケの試料について内部電極層を電極面に垂直
に研磨して露出させ、電極部のSEM写真のパターン解
析により、電極の平均厚さ、内部電極中の誘電体層を覆
っていない細孔の平均径、電極層外形面積に対する実際
に電極が存在する占有率z、を測定しさらに試料中の層
間剥離、クラックの有無を確認した。また容量について
は、各誘電体膜厚におけるz=1のものに対する容量の
出現率を求めた。
The fabricated ceramic multilayer capacitor element was heated at 20℃ and 1K.
Measure the capacitance and tanδ with alternating current of Hz and signal voltage of 1■,
Furthermore, for 10 samples, the internal electrode layer was polished perpendicular to the electrode surface to expose it, and pattern analysis of the SEM photograph of the electrode part was performed to determine the average thickness of the electrode and the pores that do not cover the dielectric layer in the internal electrode. The average diameter of the sample and the actual occupancy z of the electrode relative to the external area of the electrode layer were measured, and the presence or absence of interlayer peeling and cracks in the sample was also confirmed. Regarding capacitance, the appearance rate of capacitance for each dielectric film thickness with respect to z=1 was determined.

第4表に各試料番号と誘電体厚、電極膜厚、細孔の平均
径および誘電体厚さXと細孔の平均径yの比y/x、z
、容量出現率、tanδ、試料10ケ中の欠陥数を示す
。また第4図には特許請求の範囲第7項に示された範囲
付近のy/x、  内部電極占有率を持つ試料番号を示
した。
Table 4 shows each sample number, dielectric thickness, electrode film thickness, average diameter of pores, and ratio of dielectric thickness X to average diameter of pores y/x, z.
, capacity appearance rate, tan δ, and number of defects in 10 samples. Further, FIG. 4 shows sample numbers having y/x and internal electrode occupancy rates near the range indicated in claim 7.

第  4 表 廿印は本発明の範囲外の比較例 を印は請求項7の範囲外の比較例 第4表より明かなように、内部電極層が誘電体層を覆っ
ていない′S満を−pj!毎に有する構造からなるもの
は、実施例のような5xI7!の電極層からなる高積層
数の素子においても積層欠陥が発生しにくい。またさら
に特許請求の範囲第3項記載の範囲内に誘電体厚、細孔
径、2があるものは、内部電極層に完全な板状に内部電
極があるものに比べ、90%以上の容、@が得られる利
点を有しており、この範囲も実施例1.2より広い。こ
のことは内部電極コストのさらなる低減も可能とする。
Table 4: Comparative examples outside the scope of the present invention are marked with Comparative examples outside the scope of the present invention.As is clear from Table 4, the internal electrode layer does not cover the dielectric layer. -pj! The structure that each has is 5xI7! as in the example. Stacking faults are less likely to occur even in devices with a high number of laminated electrode layers. Furthermore, in the case where the dielectric thickness and the pore diameter are within the range described in claim 3, the internal electrode layer has a volume of 90% or more compared to the case where the internal electrode is in the form of a complete plate. It has the advantage that @ can be obtained, and this range is also wider than that of Example 1.2. This also allows for further reduction of internal electrode costs.

また本実施例では触れなかったが、円板コンデンサにお
いても焼き付ける電極の構成を本実施例の如くしたとき
少ない電極使用量で、容量を得ることができることは本
実施例より自明である。
Although not mentioned in this embodiment, it is obvious from this embodiment that when the structure of the electrodes to be baked in a disk capacitor is configured as in this embodiment, a large capacity can be obtained with a small amount of electrodes used.

発明の効果 本発明のセラミックコンデンサは、とくに積層構造をも
つものに対して高積層数をとる構造にしても、欠陥が少
ないものである。また、そのなかの条件を選択したもの
は、少ない電極使用量で大きい容量を得ることができ、
電極コストを削減できる。
Effects of the Invention The ceramic capacitor of the present invention has few defects even when the ceramic capacitor has a laminated structure with a high number of laminated layers. In addition, if the conditions are selected, a large capacity can be obtained with a small amount of electrode usage.
Electrode costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は、本発明の特許請求の範囲に示された
範囲付近のy/x、  内部電極占有率を持つ試料番号
を示すグラフである。 代理人の氏名 弁理士 粟野重孝 はか1名細几1!/
請電俸葺 口の11;謂1tT13の範囲内 線孔邊/話を体厚 口のystズ5w1m3力■[η
FIGS. 1 to 4 are graphs showing sample numbers having y/x and internal electrode occupancy rates near the range indicated in the claims of the present invention. Name of agent: Patent attorney Shigetaka Awano 1 name, 1 name! /
11 of the so-called 1tT13 range of 1tT13;

Claims (7)

【特許請求の範囲】[Claims] (1)誘電体磁器層を介して少なくとも2層以上の電極
層が形成されたセラミックコンデンサにおいて,電極層
が完全な面状ではなく誘電体層を覆っていない細孔部分
を有する網目構造を有し,電極層の平均厚さが2μm以
下であることを特徴とするセラミックコンデンサ。
(1) In a ceramic capacitor in which at least two or more electrode layers are formed through a dielectric ceramic layer, the electrode layer is not completely planar but has a network structure with pores that do not cover the dielectric layer. A ceramic capacitor characterized in that the average thickness of the electrode layer is 2 μm or less.
(2)誘電体磁器層を介して少なくとも2層以上の電極
層が形成されたセラミックコンデンサにおいて,電極層
が完全な面状ではなく、電極を外部に引き出している部
分からその他の部分に向かってセラミック誘電体層を覆
っていない細溝部分を有する構造を有ることを特徴とす
るセラミックコンデンサ。
(2) In a ceramic capacitor in which at least two or more electrode layers are formed through a dielectric ceramic layer, the electrode layer is not completely planar, and extends from the part where the electrode is drawn out to the other parts. A ceramic capacitor characterized by having a structure having a narrow groove portion that does not cover a ceramic dielectric layer.
(3)セラミックコンデンサの電極層外形の面積に対す
る実際に電極の存在する面積の占有率をz、誘電体層の
厚さをxμm、電極層中の細孔の径もしくは細溝の幅の
平均値をyμmとしたときつぎの範囲、y/x≦1 z≧0.5+0.5(y/x) にあることを特徴とした請求項1又は2記載のセラミッ
クコンデンサ。
(3) The occupancy rate of the area where the electrode actually exists relative to the area of the outer shape of the electrode layer of the ceramic capacitor is z, the thickness of the dielectric layer is x μm, and the average value of the diameter of the pores or the width of the narrow groove in the electrode layer. The ceramic capacitor according to claim 1 or 2, wherein the ceramic capacitor is in the following range, where yμm is y/x≦1 z≧0.5+0.5 (y/x).
(4)誘電体磁器層を介して少なくとも2層以上の電極
層を交互に積層したセラミックコンデンサにおいて,と
なりあう電極層が一方は欠陥のない面状で他方がセラミ
ック誘電体層を覆っていない部分を有する構造を有るこ
とを特徴とするセラミックコンデンサ。
(4) In a ceramic capacitor in which at least two or more electrode layers are alternately laminated with dielectric ceramic layers in between, one of the adjacent electrode layers has a defect-free surface and the other does not cover the ceramic dielectric layer. A ceramic capacitor characterized by having a structure.
(5)セラミックコンデンサのとなりあう電極層が一方
は欠陥のない面状で他方が完全な面状ではなく誘電体層
を覆っていない細孔部分を有する網目構造を有すること
を特徴とする請求項4記載のセラミックコンデンサ。
(5) A claim characterized in that one of the adjacent electrode layers of the ceramic capacitor has a planar shape with no defects and the other has a network structure that is not completely planar and has pores that do not cover the dielectric layer. 4. The ceramic capacitor described in 4.
(6)セラミックコンデンサのとなりあう電極層が一方
は欠陥のない面状で他方が完全な面状ではなく、電極を
外部に引き出している部分からその他の部分に向かって
セラミック誘電体層を覆っていない細溝部分を有する構
造を有ることを特徴とする請求項4記載のセラミックコ
ンデンサ。
(6) Adjacent electrode layers of a ceramic capacitor have one surface with no defects and the other with a perfect surface, and cover the ceramic dielectric layer from the part where the electrode is drawn out to the other parts. 5. The ceramic capacitor according to claim 4, wherein the ceramic capacitor has a structure having a narrow groove portion.
(7)セラミックコンデンサのとなりあう電極層のうち
、完全な面状でない層の外形の面積に対する実際に電極
の存在する面積の占有率をz、誘電体層の厚さをxμm
、電極層中の細孔の径もしくは細溝の幅の平均値をyμ
mとしたときつぎの範囲、y/x≦1 z≧0.35+0.65(y/x) にあることを特徴とした請求項5又は6記載のセラミッ
クコンデンサ。
(7) Among the adjacent electrode layers of a ceramic capacitor, the occupancy rate of the area where the electrodes actually exist relative to the external area of the layer that is not completely planar is z, and the thickness of the dielectric layer is x μm.
, the average value of the pore diameter or narrow groove width in the electrode layer is yμ
7. The ceramic capacitor according to claim 5, wherein m is in the following range: y/x≦1 z≧0.35+0.65 (y/x).
JP1013810A 1988-12-05 1989-01-23 Ceramic capacitors Expired - Lifetime JPH0650699B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1013810A JPH0650699B2 (en) 1989-01-23 1989-01-23 Ceramic capacitors
US07/443,167 US5016137A (en) 1988-12-05 1989-11-30 Multi-layer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013810A JPH0650699B2 (en) 1989-01-23 1989-01-23 Ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH02194511A true JPH02194511A (en) 1990-08-01
JPH0650699B2 JPH0650699B2 (en) 1994-06-29

Family

ID=11843632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013810A Expired - Lifetime JPH0650699B2 (en) 1988-12-05 1989-01-23 Ceramic capacitors

Country Status (1)

Country Link
JP (1) JPH0650699B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335726A (en) * 2006-06-16 2007-12-27 Tdk Corp Multilayer ceramic capacitor
JP2013243260A (en) * 2012-05-21 2013-12-05 Kyocera Corp Capacitor

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136354A (en) * 1976-05-10 1977-11-15 Murata Manufacturing Co Laminated ceramic capacitor
JPS55169841U (en) * 1979-05-22 1980-12-05
JPS58112319A (en) * 1981-12-25 1983-07-04 昭栄化学工業株式会社 Conductive paint for laminated condenser internal electrode
JPS58162624U (en) * 1982-04-21 1983-10-29 日本電気ホームエレクトロニクス株式会社 Multilayer ceramic capacitor
JPS5990916A (en) * 1982-11-17 1984-05-25 松下電器産業株式会社 Laminated condenser
JPS5993123U (en) * 1982-12-16 1984-06-25 ティーディーケイ株式会社 Chip-shaped porcelain capacitor
JPS607711A (en) * 1983-06-28 1985-01-16 東北金属工業株式会社 Laminated ceramic condenser and method of producing same
JPS6083314A (en) * 1983-10-14 1985-05-11 日本電気株式会社 Laminated ceramic capacitor and method of producing same
JPS61248412A (en) * 1985-04-25 1986-11-05 松下電器産業株式会社 Laminate ceramic capacitor
JPS62252126A (en) * 1986-04-24 1987-11-02 日本電気株式会社 Laminated ceramic capacitor and manufacture of the same
JPS63307715A (en) * 1987-05-28 1988-12-15 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Low inductance capacitor
JPH02156619A (en) * 1988-12-09 1990-06-15 Murata Mfg Co Ltd Laminated capacitor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52136354A (en) * 1976-05-10 1977-11-15 Murata Manufacturing Co Laminated ceramic capacitor
JPS55169841U (en) * 1979-05-22 1980-12-05
JPS58112319A (en) * 1981-12-25 1983-07-04 昭栄化学工業株式会社 Conductive paint for laminated condenser internal electrode
JPS58162624U (en) * 1982-04-21 1983-10-29 日本電気ホームエレクトロニクス株式会社 Multilayer ceramic capacitor
JPS5990916A (en) * 1982-11-17 1984-05-25 松下電器産業株式会社 Laminated condenser
JPS5993123U (en) * 1982-12-16 1984-06-25 ティーディーケイ株式会社 Chip-shaped porcelain capacitor
JPS607711A (en) * 1983-06-28 1985-01-16 東北金属工業株式会社 Laminated ceramic condenser and method of producing same
JPS6083314A (en) * 1983-10-14 1985-05-11 日本電気株式会社 Laminated ceramic capacitor and method of producing same
JPS61248412A (en) * 1985-04-25 1986-11-05 松下電器産業株式会社 Laminate ceramic capacitor
JPS62252126A (en) * 1986-04-24 1987-11-02 日本電気株式会社 Laminated ceramic capacitor and manufacture of the same
JPS63307715A (en) * 1987-05-28 1988-12-15 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Low inductance capacitor
JPH02156619A (en) * 1988-12-09 1990-06-15 Murata Mfg Co Ltd Laminated capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335726A (en) * 2006-06-16 2007-12-27 Tdk Corp Multilayer ceramic capacitor
JP2013243260A (en) * 2012-05-21 2013-12-05 Kyocera Corp Capacitor

Also Published As

Publication number Publication date
JPH0650699B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
JP6632808B2 (en) Multilayer ceramic capacitors
JP6415337B2 (en) Multilayer ceramic capacitor
TWI246695B (en) Laminated ceramic capacitor and manufacturing method thereof
KR100351039B1 (en) Monolithic ceramic electronic component and method for making the same
JP5930705B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JPH07211132A (en) Conductive paste, and manufacture of laminated ceramic capacitor using same
JP2021022754A (en) Multilayer ceramic capacitor and mounting board of the same
JP2016181597A (en) Multilayer ceramic capacitor
JP5462962B1 (en) Multilayer ceramic capacitor
JP7226896B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2017228587A (en) Multilayer ceramic capacitor
US8947849B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2018056239A (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4809173B2 (en) Multilayer ceramic capacitor
JP4688326B2 (en) Ceramic laminate and manufacturing method thereof
JPH02194511A (en) Ceramic capacitor
JP2003178926A (en) Manufacturing method for monolithic ceramic electronic part
JP2015043423A (en) Multilayer ceramic capacitor
JP4175284B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2004179349A (en) Laminated electronic component and its manufacturing method
JP7427460B2 (en) Ceramic electronic components, circuit boards, and methods of manufacturing ceramic electronic components
KR20150093022A (en) Multi-layered ceramic electronic part, manufacturing method thereof and board having the same mounted thereon
JPH0774047A (en) Manufacture of monolithic ceramic capacitor
JP5617026B2 (en) Multilayer ceramic capacitor
JP2018056292A (en) Layered electronic component