JPH02194501A - Resistor - Google Patents
ResistorInfo
- Publication number
- JPH02194501A JPH02194501A JP1012758A JP1275889A JPH02194501A JP H02194501 A JPH02194501 A JP H02194501A JP 1012758 A JP1012758 A JP 1012758A JP 1275889 A JP1275889 A JP 1275889A JP H02194501 A JPH02194501 A JP H02194501A
- Authority
- JP
- Japan
- Prior art keywords
- zirconium
- resistor
- carbide
- silicon
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 claims abstract description 17
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 13
- 229910026551 ZrC Inorganic materials 0.000 claims abstract description 12
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 claims abstract description 12
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 11
- 150000001875 compounds Chemical class 0.000 claims abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 239000010703 silicon Substances 0.000 claims abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000010409 thin film Substances 0.000 abstract description 7
- 239000010408 film Substances 0.000 abstract description 5
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000919 ceramic Substances 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- 229910007159 Si(CH3)4 Inorganic materials 0.000 abstract 1
- 238000005566 electron beam evaporation Methods 0.000 abstract 1
- 230000008020 evaporation Effects 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 abstract 1
- 238000007733 ion plating Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910001120 nichrome Inorganic materials 0.000 description 2
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 2
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 2
- 241000255925 Diptera Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- UVGLBOPDEUYYCS-UHFFFAOYSA-N silicon zirconium Chemical compound [Si].[Zr] UVGLBOPDEUYYCS-UHFFFAOYSA-N 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- -1 tantalum nitride Chemical class 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- GBNDTYKAOXLLID-UHFFFAOYSA-N zirconium(4+) ion Chemical compound [Zr+4] GBNDTYKAOXLLID-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Electronic Switches (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Non-Adjustable Resistors (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
この発明はサーマルヘッド等における発熱抵抗体に関す
る。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heating resistor in a thermal head or the like.
この発明はサーマルヘッド等に用いる発熱抵抗体におい
て、抵抗体材料として、ジルコニウムケイ素、炭素の三
元素の組み合わせから成る化合物の複合材料を用いるこ
とにより、高性能の抵抗体を提供するものである。The present invention provides a high-performance resistor for a heat generating resistor used in a thermal head etc. by using a composite material of a compound consisting of a combination of three elements, zirconium silicon and carbon, as the resistor material.
(従来の技術〕
従来、サーマルヘッド等に用いる抵抗体として、気相め
っきや印刷・焼成による3膜抵抗体が用いられているが
、これらの薄膜抵抗体材料として、窒化タンタル、ニク
ロム、酸化ルテニウムなどが用いられていた。(Prior art) Conventionally, three-film resistors made by vapor phase plating, printing, and firing have been used as resistors for thermal heads, etc., but these thin-film resistor materials include tantalum nitride, nichrome, and ruthenium oxide. etc. were used.
サーマルヘッド等における発熱抵抗体においても、近年
の電子工業の発展とともに、その精度、安定性の向上が
望まれている。しかしながら、従来から用いられている
抵抗体材料においては、比抵抗率そのものや温度による
比抵抗率の変化、さらに再現性、信較性などにも問題が
あった。たとえば、ニクロム4クンタルなどの金属ある
いは窒化タンタル、炭化チタンなどの侵入型金属化合物
では、金属型の電気伝導を示すため、比抵抗率が低いた
めに薄膜抵抗体として用いる場合、膜厚を薄くするか、
または、配線を細く、長くする必要があった。このため
、抵抗体を作製する場合における歩留まりの低下をきた
し、信転性をも低下させていた。さらに、このような抵
抗体材料では、電力を加えることによる温度上昇のため
に生じる比抵抗率の大きな上昇が本来目的とする抵抗値
からのずれを生していた。With the recent development of the electronic industry, it is desired to improve the precision and stability of heating resistors in thermal heads and the like. However, conventionally used resistor materials have problems with the resistivity itself, changes in resistivity due to temperature, and reproducibility and reliability. For example, metals such as nichrome 4-cuntal or interstitial metal compounds such as tantalum nitride and titanium carbide exhibit metal-type electrical conductivity and have low specific resistivity, so when used as a thin film resistor, the film thickness must be reduced. mosquito,
Or, the wiring needed to be thinner and longer. For this reason, the yield in manufacturing resistors has been reduced, and reliability has also been reduced. Furthermore, in such resistor materials, a large increase in specific resistivity due to temperature rise due to the application of electric power causes a deviation from the originally intended resistance value.
また、酸化ルテニウムやタンタルとケイ素の酸化物系抵
抗体では、酸素欠陥による電気伝導のため、非常に不安
定な抵抗率を示し、高信頼性を必要とする物には適用が
できなかった。Furthermore, ruthenium oxide, tantalum, and silicon oxide resistors exhibit extremely unstable resistivity due to electrical conduction due to oxygen defects, and cannot be applied to products that require high reliability.
r!!W題を解決するための手段〕
上記の問題点を解決するために、本発明においては、ジ
ルコニウム、ケイ素、及び炭素の三元素の組み合わせか
ら成る化合物の複合打事4、とくに炭化ジルコニウムと
炭化ケイ素の複合材料を抵抗体として用いる。r! ! Means for Solving Problem W] In order to solve the above problems, in the present invention, a composite compound consisting of a combination of the three elements zirconium, silicon, and carbon, particularly zirconium carbide and silicon carbide, is used. composite material is used as a resistor.
上記のように、抵抗体材料としてジルコニウム。 As mentioned above, zirconium as the resistor material.
ケイ素1炭素の三元素の組み合わせから成る化合物の複
合材料を用いることにより、金属的電気伝導に比べ高比
抵抗率で、かつ、温度変化に対する比抵抗率変化の小さ
な抵抗体とすることができるが、これら三元素の組み合
わせから出来る化合物のうち炭化ジルコニウムと炭化ケ
イ素の複合材料がとくにこの効果に対する作用が大きい
、すなわち、炭化ジルコニウムは従来から用いられてい
る窒化タンタルと同様な特性を示す。一方、炭化ケイ素
は半導体的電気伝導を示す。すなわち、室温付近では炭
化ジルコニウムの103〜107倍の比)仄抗率を示し
、高温ではこれが10’〜103倍に下がる。したがっ
て、低温では炭化ケイ素は炭化ジルコニウム中の絶縁体
のごとく働くため、全体として従来の窒化タンタル等の
侵入型金属化合物に比べ、高比抵抗率を得ることができ
、同時に抵抗率の温度依存性を小さくすることが出来る
のである。By using a composite material of a compound consisting of a combination of the three elements silicon and carbon, it is possible to create a resistor that has a higher specific resistivity than metallic electrical conductivity and has a smaller change in specific resistivity with respect to temperature changes. Of the compounds made from the combination of these three elements, a composite material of zirconium carbide and silicon carbide has a particularly large effect on this effect. In other words, zirconium carbide exhibits similar properties to the conventionally used tantalum nitride. On the other hand, silicon carbide exhibits semiconductor-like electrical conductivity. That is, near room temperature, it exhibits a resistance ratio of 10 3 to 10 7 times that of zirconium carbide, and at high temperatures, this decreases to 10' to 10 3 times. Therefore, at low temperatures, silicon carbide acts like an insulator in zirconium carbide, so it is possible to obtain a higher specific resistivity overall than conventional interstitial metal compounds such as tantalum nitride, and at the same time, the temperature dependence of resistivity is can be made smaller.
また、炭化ジルコニウムと炭化ケイ素はいずれも立方晶
系の結晶構造を有しており、複合化しても極めて安定な
複合材0.!:なるため、信傾性等の品質面での向上が
図れるのである。In addition, both zirconium carbide and silicon carbide have a cubic crystal structure, and even when combined, the composite material is extremely stable. ! : Therefore, quality aspects such as reliability can be improved.
このように、金属的電気伝導を示す炭化ジルコニウムと
半導体的電気伝導を示す炭化ケイ素を複合化することに
より、両特性の相乗的効果が現れ温度変化の大きな条件
下においても、優れた電気抵抗特性を有する抵抗体を作
製できるのである。In this way, by combining zirconium carbide, which exhibits metallic electrical conductivity, and silicon carbide, which exhibits semiconducting electrical conductivity, a synergistic effect of both properties appears, resulting in excellent electrical resistance properties even under conditions of large temperature changes. Therefore, it is possible to fabricate a resistor having the following properties.
本発明の実施例として、反応性イオンブレーティング法
により作製した複合膜の抵抗体について説明する。As an example of the present invention, a composite membrane resistor fabricated by a reactive ion blating method will be described.
第1図は本発明であるジルコニウム、ケイ素及び炭素の
三元素の組み合わせからなる化合物の複合膜抵抗体を形
成するための反応性イオンブレーティング装置の縦断面
図である。FIG. 1 is a longitudinal cross-sectional view of a reactive ion blating apparatus for forming a composite film resistor of a compound made of a combination of the three elements of zirconium, silicon, and carbon according to the present invention.
まず、真空槽1を10−’Torr圭で真空排気し、電
子ビーム蒸発装置2を用いジルコニウム3をI発した。First, the vacuum chamber 1 was evacuated to 10-' Torr, and zirconium 3 was evacuated using the electron beam evaporator 2.
このとき、イオン化Tl極4に40 V −30Aの電
圧・を流がかかるようにし、放電プラズマを形成した0
次に、放電が安定したのち、テトラメチルンラン(S
i (CHx)4)ガスをl X 10− ’Tor
rになるように導入し、ジルコニウムとテトラメチルシ
ランによる反応性イオンブレーティングを行い、ジルコ
ニウム英発源上部に置かれたセラミックス基)反5上に
2000人の薄膜を形成した。この薄膜を分析したとこ
ろ、第2図に示すように炭化ジルコニウムと炭化ケイ素
を主成分とする複合膜であることがわかった。また、こ
の薄膜の温度と比抵抗の関係を調べたところ、第3図に
示したようになり、サーマルヘッド等の発熱抵抗体とし
て極めて優れた特性を示した。At this time, a voltage of 40 V - 30 A was applied to the ionized Tl pole 4 to form a discharge plasma.
Next, after the discharge stabilized, tetramethylanran (S
i (CHx)4) Gas l x 10- 'Tor
A thin film of 2,000 layers was formed on a ceramic substrate placed above the zirconium source by reactive ion blating with zirconium and tetramethylsilane. When this thin film was analyzed, it was found that it was a composite film whose main components were zirconium carbide and silicon carbide, as shown in FIG. Further, when the relationship between temperature and specific resistance of this thin film was investigated, the result was as shown in FIG. 3, and it showed extremely excellent characteristics as a heat generating resistor for a thermal head or the like.
この発明によれば、ジルコニウム、リーイ素および炭素
の三元素のうち2つ以上の元素の組み合わせから成る化
合物の複合材料、とくに炭化ジルコニウムと炭化ケイ素
を主成分とする複合材料を用いることにより、従来の侵
入型金属炭化物や窒化物に比べ、比抵抗率を高めるこ吉
を可能にし、かつ、温度に対する比抵抗率の依存性を小
さくすることが可能になった。これにより、サーマルへ
。According to the present invention, by using a composite material of a compound consisting of a combination of two or more of the three elements zirconium, ion, and carbon, in particular a composite material whose main components are zirconium carbide and silicon carbide, Compared to interstitial metal carbides and nitrides, it has become possible to increase the specific resistivity and to reduce the dependence of the specific resistivity on temperature. This brings us to thermal.
ド等の微細な発熱抵抗体に対して、権めて信頼性が高く
、かつ、安定した抵抗体材f4として適用することが出
来る。すなわち、比抵抗率が高くなったことにより、発
熱部である薄膜抵抗体の膜厚を厚く、また、配線幅を故
意に細くする必要がなくなり、信頼性を高めることが出
来るのに加え、量産面においても従来に比べ、フォトリ
ソグラフィ工程などにおいて格段の歩留まりの向上を図
ることを可能にできる。さらに、比抵抗率の温度依存性
が小さいので、高速の温度制御を可能にすることが出来
る。It can be applied as a highly reliable and stable resistor material f4 to fine heat generating resistors such as wires and the like. In other words, the increased specific resistivity eliminates the need to increase the thickness of the thin film resistor, which is the heat generating part, and to intentionally narrow the wiring width, which not only improves reliability but also improves mass production. In terms of aspects as well, it is possible to significantly improve yields in photolithography processes and the like compared to conventional methods. Furthermore, since the temperature dependence of specific resistivity is small, high-speed temperature control can be achieved.
また、実施例では第3図に温度−比抵抗の関係を示した
が、三元素の組み合わせの割合、化合物の比率などを変
えることにより、広い範囲にわたり抵抗値を変えること
が可能であることが実験でわかっている。In addition, in the example, the relationship between temperature and resistivity is shown in Figure 3, but it is possible to change the resistance value over a wide range by changing the ratio of the combination of three elements, the ratio of compounds, etc. We know this from experiments.
なお、実施例では本発明である複合材料抵抗体の製造方
法として、反応性イオンブレーティングをあげたが、そ
の他の方法、たとえばスパッタリング法やCVD法を用
いたり、この材料そのものの粉末をペースト状にし、印
刷・焼成を行い抵抗体とする方法などが考えられるが、
いずれも実権例にあげた方法と同様の効果が期待出来る
ことは言うまでもない。In the examples, reactive ion blating was used as a method for manufacturing the composite material resistor of the present invention, but other methods such as sputtering or CVD may be used, or powder of this material itself may be used in the form of a paste. One possible method is to print, bake, and make a resistor.
It goes without saying that either method can be expected to have the same effect as the methods cited in the practical examples.
第1図は実施例−1であげたこの発明における抵抗体の
製造方法である反応性イオンブレーティング装置の縦断
面図であるゆ第2図は実施例=1で製作した抵抗体のオ
ージェ分析結果を示す図である。第3図は実施例−1で
製作した抵抗体の温度と比抵抗率の関係を示す図である
。
l・・・真空槽
2・・・電子ビーム蒸発装置
3・・・ジルコニウム
4・・・イオン化電極
5・・・セラミックス基板 以 上山願人
平 井 敏 雄
セイコー電子工業株式会社
代理人 弁理士 林 敬 之 助人、猾づ′ダ「
ご用いI”4定・1iイオンプレーカンブ秩置の縦断面
図81 図
5PuTTERTIME (min)
大7iti?l−1て世(トしに抵挑イトのオー−7−
分析粕果X示す図第 2 コFigure 1 is a longitudinal cross-sectional view of a reactive ion brating device, which is a method for manufacturing a resistor according to the present invention described in Example 1. Figure 2 is an Auger analysis of the resistor manufactured in Example 1. It is a figure showing a result. FIG. 3 is a diagram showing the relationship between temperature and specific resistivity of the resistor manufactured in Example-1. l...Vacuum chamber 2...Electron beam evaporator 3...Zirconium 4...Ionization electrode 5...Ceramics substrate
Toshio Hirai, agent for Seiko Electronics Industries Co., Ltd., patent attorney; Takayuki Hayashi, assistant;
Longitudinal cross-sectional view of I"4 constant 1i ion play Kambu Chichioki 81 Figure 5PuTTERTIME (min)
Diagram 2 showing analysis of lees
Claims (2)
前記発熱抵抗体材料として、ジルコニウム,ケイ素,及
び炭素の三元素の組み合わせから成る化合物の複合材料
を用いることを特徴とする抵抗体。(1) In a heating resistor used for a thermal head etc.,
A resistor characterized in that the heating resistor material is a composite material of a compound consisting of a combination of three elements: zirconium, silicon, and carbon.
素の三元素の組み合わせから成る化合物が炭化ジルコニ
ウムと炭化ケイ素であることを特徴とする請求項1記載
の抵抗体。(2) The resistor according to claim 1, wherein the compound comprising a combination of three elements, zirconium, silicon, and carbon, constituting the composite material is zirconium carbide and silicon carbide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1012758A JP2631316B2 (en) | 1989-01-21 | 1989-01-21 | Resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1012758A JP2631316B2 (en) | 1989-01-21 | 1989-01-21 | Resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02194501A true JPH02194501A (en) | 1990-08-01 |
JP2631316B2 JP2631316B2 (en) | 1997-07-16 |
Family
ID=11814309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1012758A Expired - Lifetime JP2631316B2 (en) | 1989-01-21 | 1989-01-21 | Resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2631316B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6295801A (en) * | 1985-10-23 | 1987-05-02 | 松下電器産業株式会社 | Thin film resistor |
JPS63283101A (en) * | 1987-05-15 | 1988-11-21 | Ube Ind Ltd | Thermal head and manufacture thereof |
-
1989
- 1989-01-21 JP JP1012758A patent/JP2631316B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6295801A (en) * | 1985-10-23 | 1987-05-02 | 松下電器産業株式会社 | Thin film resistor |
JPS63283101A (en) * | 1987-05-15 | 1988-11-21 | Ube Ind Ltd | Thermal head and manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2631316B2 (en) | 1997-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3763026A (en) | Method of making resistor thin films by reactive sputtering from a composite source | |
US4414274A (en) | Thin film electrical resistors and process of producing the same | |
US4010312A (en) | High resistance cermet film and method of making the same | |
JPS62294163A (en) | Production of low contact resistance composition | |
EP0408342B1 (en) | Thin high temperature heater and method for manufacturing the same | |
JPH06158272A (en) | Resistance film and production thereof | |
US3258413A (en) | Method for the fabrication of tantalum film resistors | |
JP2006313785A (en) | Thin film resistor and its manufacturing method | |
JP2923980B2 (en) | Method of manufacturing field emission cold cathode | |
US3503030A (en) | Indirectly-heated thermistor | |
Nagao et al. | Influence of the composition of a NbN x thin-film field emitter array on emission characteristics | |
JP3342590B2 (en) | Semiconductor integrated circuit | |
JPH02194501A (en) | Resistor | |
US3591479A (en) | Sputtering process for preparing stable thin film resistors | |
US3703456A (en) | Method of making resistor thin films by reactive sputtering from a composite source | |
JPH0397846A (en) | Formation of thin film of silicon compound | |
JPH02205001A (en) | Resistor | |
JPH0281401A (en) | Resistor | |
JPH0257143B2 (en) | ||
JPH0736453B2 (en) | Metal-insulator-metal element | |
Borisenko et al. | Nonself-sustained arc discharge in anode material vapors | |
JPH02234402A (en) | Manufacture of resistor | |
JP2870692B2 (en) | Thin-film thermal head | |
US3575833A (en) | Hafnium nitride film resistor | |
JP3049085B2 (en) | Thin-film two-terminal element and liquid crystal display device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090425 Year of fee payment: 12 |