JPH0219384B2 - - Google Patents

Info

Publication number
JPH0219384B2
JPH0219384B2 JP56194031A JP19403181A JPH0219384B2 JP H0219384 B2 JPH0219384 B2 JP H0219384B2 JP 56194031 A JP56194031 A JP 56194031A JP 19403181 A JP19403181 A JP 19403181A JP H0219384 B2 JPH0219384 B2 JP H0219384B2
Authority
JP
Japan
Prior art keywords
pressure side
valve
bellows
pressure
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56194031A
Other languages
Japanese (ja)
Other versions
JPS5895173A (en
Inventor
Minoru Yonemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP56194031A priority Critical patent/JPS5895173A/en
Publication of JPS5895173A publication Critical patent/JPS5895173A/en
Publication of JPH0219384B2 publication Critical patent/JPH0219384B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Fluid-Driven Valves (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】 本発明は、高圧密閉容器タイプの圧縮機、例え
ばロータリコンプレツサを用い、減圧器に例えば
キヤピラリチユーブを配設した冷凍サイクルユニ
ツトに用いる冷媒制御バルブに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigerant control valve used in a refrigeration cycle unit that uses a high-pressure closed container type compressor, such as a rotary compressor, and has, for example, a capillary tube disposed in a pressure reducer.

一般にコンプレツサをON−OFF運転制御して
冷却温度コントロールする冷凍装置に於いては、
吸入弁を不要とする直吸い方式化による吸入効率
の向上より、圧縮運転中の冷却効率は一般に向上
する。しかし、一方吸入弁を不要とするバルブ構
造及び圧縮機外殼内部(高圧密閉容器)が高圧側
となることにより、圧縮機停止時には、冷凍装置
の高圧側と低圧側の圧力バランスがレシプロ形コ
ンプレツサの場合は減圧器であるキヤピラリチユ
ーブを介して行なわれるのに対し、ロータリコン
プレツサ適用の装置に於いては、それ以外に、コ
ンプレツサから吸入管を介して圧力バランスすべ
く冷却器に向けて冷媒流が起る。又、ロータリコ
ンプレツサに於いては圧縮機外殼内部が高圧側と
なる為、高圧側容量が大きくなり、結果としてレ
シプロタイプコンプレツサ適用時に比べ、適正封
入冷媒量も多くなる。以上の点からロータリコン
プレツサを適用したシステムに於いては圧縮機停
止時、レシプロタイプコンプレツサ適用時に比較
し多量の高圧側の高温冷媒が冷却器へ流入して圧
力バランスする為、これら高温冷媒による熱負荷
量が増加し、運転、停止を繰返すサイクリング運
転を全体的にみた場合運転中の冷媒吸入効率向上
による冷却効率向上を前述した停止時の熱負荷上
昇によりそこなうという欠点を有している。この
為、ロータリコンプレツサをより効率良く冷凍装
置に適用するには吸入管途中にチエツクバルブ
(逆止弁)を設け、かつキヤピラリチユーブ入口
部に圧縮機停止時閉塞する、電磁弁を配設する等
の手法で高温冷媒の冷却器への流入を防止する必
要がある。しかしこの方法にてはチエツクバルブ
(逆止弁)、電磁弁、電磁コイルを必要とし、部品
点数が増加し、かつ電磁コイル通電による電力消
費の増加等の欠点を有している。
In general, in refrigeration equipment that controls the cooling temperature by controlling the ON/OFF operation of the compressor,
Cooling efficiency during compression operation is generally improved by improving suction efficiency by adopting a direct suction system that eliminates the need for a suction valve. However, due to the valve structure that eliminates the need for a suction valve and the fact that the inside of the compressor shell (high-pressure sealed container) is on the high-pressure side, when the compressor is stopped, the pressure balance between the high-pressure side and the low-pressure side of the refrigeration system is different from that of a reciprocating compressor. This is done through a capillary tube, which is a pressure reducer, whereas in equipment that uses a rotary compressor, refrigerant is also sent from the compressor to the cooler through the suction pipe to balance the pressure. A flow occurs. In addition, in a rotary compressor, since the inside of the compressor shell is on the high pressure side, the capacity on the high pressure side is large, and as a result, the appropriate amount of refrigerant to be filled is larger than when a reciprocating type compressor is used. From the above points, in a system that uses a rotary compressor, when the compressor is stopped, a larger amount of high-pressure refrigerant flows into the cooler than when a reciprocating type compressor is used, and the pressure is balanced, so these high-temperature refrigerants When viewed as a whole, cycling operation, which repeatedly starts and stops, has the drawback that the improvement in cooling efficiency due to improved refrigerant suction efficiency during operation is diminished by the increase in heat load when stopped as described above. . Therefore, in order to apply the rotary compressor to refrigeration equipment more efficiently, a check valve (check valve) should be installed in the middle of the suction pipe, and a solenoid valve should be installed at the inlet of the capillary tube to close it when the compressor is stopped. It is necessary to prevent high-temperature refrigerant from flowing into the cooler by methods such as However, this method requires a check valve, an electromagnetic valve, and an electromagnetic coil, which increases the number of parts and has disadvantages such as an increase in power consumption due to energization of the electromagnetic coil.

本発明はこれらの欠点に対し、比較的簡易な冷
媒制御バルブを冷凍装置に供することで解決を図
るものであり、以下図例によつてその一実施例を
詳細に説明する。
The present invention aims to solve these drawbacks by providing a relatively simple refrigerant control valve to a refrigeration system, and one embodiment thereof will be described in detail below with reference to the drawings.

図において1はロータリコンプレツサ、2は凝
縮器、3はキヤピラリチユーブ、4は冷却器、5
は吸入管であり、公知の冷凍サイクルを構成す
る。6は本発明の主題をなす冷媒制御バルブであ
る。この冷媒制御バルブ6の構造について説明す
る。バルブ本体外殼6aには凝縮器2の出口に接
続した高圧流入接続管7(以下凝縮器出口接続管
という)、毛細管に接続した高圧流出接続管8
(以下、毛細管接続管という)、吸入管5に接続さ
れた低圧流入接続管9(以下吸入管入口接続管と
いう)、圧縮機吸入管17に接続した低圧流出接
続管10(以下吸入管出口接続管という)が設け
られている。11は、バルブ本体外殼6aの下方
のベース6bに固定したベローズであり、このベ
ローズ11によりバルブ本体外殼6aの内部をベ
ローズ11の外側の高圧側流路6cと、ベローズ
11の内側の低圧側流路6dに区割している。
In the figure, 1 is a rotary compressor, 2 is a condenser, 3 is a capillary tube, 4 is a cooler, and 5 is a condenser.
is a suction pipe and constitutes a known refrigeration cycle. 6 is a refrigerant control valve which is the subject of the present invention. The structure of this refrigerant control valve 6 will be explained. The valve body outer shell 6a includes a high pressure inflow connection pipe 7 (hereinafter referred to as the condenser outlet connection pipe) connected to the outlet of the condenser 2, and a high pressure outflow connection pipe 8 connected to the capillary tube.
(hereinafter referred to as the capillary connection pipe), a low pressure inflow connection pipe 9 connected to the suction pipe 5 (hereinafter referred to as the suction pipe inlet connection pipe), and a low pressure outflow connection pipe 10 connected to the compressor suction pipe 17 (hereinafter referred to as the suction pipe outlet connection). pipe) is provided. Reference numeral 11 denotes a bellows fixed to the base 6b below the valve body outer shell 6a, and this bellows 11 connects the inside of the valve body outer shell 6a to the high pressure side flow path 6c outside the bellows 11 and the low pressure side flow inside the bellows 11. It is divided into 6d roads.

そして、前記した凝縮器出口接続管7と毛細管
接続管8がそれぞれ高圧側流路6cに接続されて
おり、また吸入管入口接続管9と吸入管出口接続
管10がそれぞれ低圧側流路6dに接続されてい
る。又、ベローズ11の上面には、これに固着さ
れたバルブ台座12に設けたボール状の高圧側バ
ルブ13がセツトされている。このバルブ13は
バルブ本体外かく6aの上方ベース6eに形成し
た高圧弁座12aをベローズ伸張時閉塞する。即
ち、高圧側流路6cを閉鎖する。又ベローズ11
内部には、ベース6bに設けた凹部6fの口径よ
りも大きく、下端縮径部14aは凹部6fよりも
小さくした円筒状ストツパー部材14がベローズ
上面の裏面に固着されており、その下端縮径部1
4aはバルブ本体外殼6aの吸入管入口接続管9
を接続した下方ベース6bに設けられた凹部6f
に対向していて、ベローズ収縮時に凹部6fの肩
部6gに下端縮径部14aの段部14bが当接し
過収縮を防止すると同時に、非常に軽い薄片状の
低圧側バルブ15の浮上り規制部材を兼ねる。又
ストツパー部材14の下端縮径部14aには前記
段部14bが前記肩部6gに当接時、前記凹部6
fの内周部と前記下端縮径部14aの外周間に構
成される空隙部と前記ベローズ11内の低圧側流
路6dに連通させる切欠部16を設け、前述の薄
片状バルブ15浮上り時、吸入管入口接続管9と
吸入管出口接続管10の導通回路を構成してい
る。かかる構成にて、冷凍サイクルユニツト内に
冷媒ガス未封入時、すなわちバルブ本体が単体の
時、高圧側バルブ13がキヤピラリチユーブ接続
管につらなる高圧側流路6cを閉塞する当接力
P1は、冷凍装置が適用される運転条件の内、最
も高低圧力差が小さくなる時の圧力差P2に対し
P2>P1となるように設定してある。
The condenser outlet connecting pipe 7 and capillary connecting pipe 8 described above are each connected to the high pressure side flow path 6c, and the suction pipe inlet connecting pipe 9 and the suction pipe outlet connecting pipe 10 are respectively connected to the low pressure side flow path 6d. It is connected. Further, a ball-shaped high pressure side valve 13 is set on the upper surface of the bellows 11 and is provided on a valve pedestal 12 fixed to the bellows 11. This valve 13 closes a high-pressure valve seat 12a formed on the upper base 6e of the outer valve body 6a when the bellows is extended. That is, the high pressure side flow path 6c is closed. Also bellows 11
Inside, a cylindrical stopper member 14 is fixed to the back surface of the upper surface of the bellows, and the diameter of the lower end reduced diameter part 14a is larger than the diameter of the recessed part 6f provided in the base 6b, and the lower diameter reduced part 14a is smaller than the recessed part 6f. 1
4a is a suction pipe inlet connection pipe 9 of the valve body outer shell 6a
A recess 6f provided in the lower base 6b connected to the
When the bellows is contracted, the step part 14b of the lower end reduced diameter part 14a comes into contact with the shoulder part 6g of the concave part 6f to prevent over-contraction, and at the same time, it is a very light flaky floating regulating member for the low pressure side valve 15. Also serves as Further, when the stepped portion 14b abuts the shoulder portion 6g on the lower end reduced diameter portion 14a of the stopper member 14, the recessed portion 6
A notch 16 is provided to communicate the gap formed between the inner periphery of f and the outer periphery of the lower end reduced diameter portion 14a and the low pressure side flow path 6d in the bellows 11, and when the above-mentioned flaky valve 15 floats, , constitutes a conduction circuit between the suction pipe inlet connecting pipe 9 and the suction pipe outlet connecting pipe 10. With this configuration, when the refrigerant cycle unit is not filled with refrigerant gas, that is, when the valve body is a single unit, the high-pressure side valve 13 has a contact force that closes the high-pressure side flow path 6c connected to the capillary tube connection pipe.
P 1 is the pressure difference P 2 when the difference between high and low pressures is the smallest among the operating conditions to which the refrigeration equipment is applied.
It is set so that P 2 > P 1 .

以下作動状態を説明する。図面はロータリコン
プレツサ1の運転時の状態を示す。この場合冷媒
は実線矢印に示すように流れ、即ち高圧側流路6
cは高圧となり、又ベローズ11の内側即ち低圧
側流路6dは低圧となつてその差圧P2はベロー
ズ11の初期特性である高圧側バルブ13のバル
ブ閉鎖当接力P1より大となつてキヤピラリチユ
ーブ接続管8側の高圧側流路6cを開とする。
又、吸入管出口接続管10を介しての吸入圧及び
冷却器4よりの戻りガス流の吸入管入口接続管9
よりの噴上げ力によつて薄片状の低圧バルブ15
は図示するようにもちあげられ、結局高、低圧側
バルブ13,15は共に開となり冷凍運転が行な
われる。又、この場合、高圧側圧力と低圧側圧力
の圧力差が大きく、下方ベース6bの肩部6gと
ストツパー部材14の縮径段部14bが近接また
は当接してもストツパー部材14の下端縮径部1
4aに設けた切欠部16により低圧側流路は確保
されていると同時に低圧側冷媒流路の抵抗を増加
させることなく冷凍運転が行なわれる。
The operating state will be explained below. The drawing shows the state of the rotary compressor 1 during operation. In this case, the refrigerant flows as shown by the solid arrow, that is, the high pressure side flow path 6
c becomes a high pressure, and the inside of the bellows 11, that is, the low pressure side flow path 6d, becomes a low pressure, and the differential pressure P2 becomes larger than the valve closing contact force P1 of the high pressure side valve 13, which is the initial characteristic of the bellows 11. The high pressure side flow path 6c on the side of the capillary tube connection pipe 8 is opened.
Also, a suction pipe inlet connection pipe 9 for the suction pressure and the return gas flow from the cooler 4 via the suction pipe outlet connection pipe 10.
The low pressure valve 15 becomes flaky due to the blowing force.
is raised as shown in the figure, and eventually both the high and low pressure side valves 13 and 15 are opened and refrigeration operation is performed. Further, in this case, even if the pressure difference between the high pressure side pressure and the low pressure side pressure is large, and the shoulder portion 6g of the lower base 6b and the reduced diameter step portion 14b of the stopper member 14 are close to each other or come into contact with each other, the lower end reduced diameter portion of the stopper member 14 1
The low-pressure side flow path is secured by the notch 16 provided in 4a, and at the same time, refrigeration operation is performed without increasing the resistance of the low-pressure side refrigerant flow path.

次にロータリコンプレツサ1が停止すると、コ
ンプレツサ内の高圧ガスが圧縮機吸入管17を介
して冷媒制御バルブ6の吸入管出口接続管10よ
り鎖線矢印に示すように低圧側流路6dに流入
し、このガス圧と低圧バルブ15の自重により吸
入管入口接続管9を閉塞するように落下しシール
する。これとほぼ同時にベローズ11内の圧力
(低圧側流路6d)は上昇し高圧側、すなわちベ
ローズ11の外周部圧力(高圧側流路6c)と同
一となり、ベローズ11の初期特性である高圧バ
ルブ13の閉塞力P1により、毛細管接続管8側
の高圧側流路6cを閉とし、ロータリコンプレツ
サ停止時の高圧側の高温冷媒のキヤピラリチユー
ブ3を介して冷却器4へ流れる冷媒、および吸入
管5を介しての冷却器への流入による冷媒の流れ
を阻止し冷却器4の吸熱負荷の侵入を防止せしめ
る。
Next, when the rotary compressor 1 stops, the high pressure gas in the compressor flows through the compressor suction pipe 17 and from the suction pipe outlet connection pipe 10 of the refrigerant control valve 6 into the low pressure side flow path 6d as shown by the chain arrow. Due to this gas pressure and the weight of the low pressure valve 15, the suction pipe inlet connecting pipe 9 is dropped and sealed. Almost at the same time, the pressure inside the bellows 11 (low-pressure side flow path 6d) rises and becomes the same as the pressure on the high-pressure side, that is, the outer peripheral part of the bellows 11 (high-pressure side flow path 6c), and the high-pressure valve 13, which is the initial characteristic of the bellows 11, rises. The closing force P 1 closes the high-pressure side flow path 6c on the capillary connecting tube 8 side, and the refrigerant flowing to the cooler 4 through the capillary tube 3 of the high-temperature refrigerant on the high-pressure side when the rotary compressor is stopped, and the suction This prevents the flow of refrigerant from flowing into the cooler through the pipe 5 and prevents the heat absorption load of the cooler 4 from entering.

以上のように本発明は比較的簡易なベローズを
配設したバルブにてロータリコンプレツサを使用
した冷凍装置に於ける圧縮機停止時の高圧高温ガ
スのキヤピラリチユーブ、吸入管を介しての冷却
器への流入を防止して冷却器吸熱負荷となるのを
防止すると共に、圧縮機停止中冷媒を高圧側に保
持している量が増える為、次の圧縮機始動時の冷
媒循環量の立上り性が向上し、冷却器の蒸発温度
の低下が早くなり冷却効率を向上させる効果を有
するものである。また、圧縮機運転中に於いては
ベローズ外周部は凝縮冷媒流、ベローズ内は低温
戻りガス流となり、ベローズを介して各々の冷媒
の熱交換が促進され、冷凍効果を大きくするメリ
ツトをも有している。またベローズ外周を高圧側
流路に、内部を低圧側流路とし、この低圧側流路
中に設けた逆止弁動作をなす低圧側バルブに相対
向して垂下したストツパー部材を前記ベローズ内
に設けてあるため、バルブ全体形状をコンパクト
にでき、かつこれによりベローズの過剰変形を防
止し、かつ低圧側バルブの移動規制が簡単な構成
により達成できる。また、低圧側バルブがストツ
パー部材の縮径部端面と当接しても切欠部により
冷媒流路が確保されるものである。
As described above, the present invention uses a relatively simple valve equipped with a bellows to cool high-pressure and high-temperature gas through the capillary tube and suction pipe when the compressor is stopped in a refrigeration system using a rotary compressor. This prevents the refrigerant from flowing into the cooler and causing an endothermic load on the cooler, and since the amount of refrigerant held on the high pressure side increases when the compressor is stopped, the amount of refrigerant circulating increases when the next compressor starts. This has the effect of improving cooling efficiency and reducing the evaporation temperature of the cooler more quickly. In addition, during compressor operation, the outer periphery of the bellows becomes a condensed refrigerant flow, and the inside of the bellows becomes a flow of low-temperature return gas, which promotes heat exchange between each refrigerant through the bellows, which has the advantage of increasing the refrigeration effect. are doing. Further, the outer periphery of the bellows is used as a high-pressure side flow path, and the inside thereof is used as a low-pressure side flow path, and a stopper member is provided inside the bellows and hangs down opposite to a low-pressure side valve that operates as a check valve provided in this low-pressure side flow path. Because of this, the overall shape of the valve can be made compact, thereby preventing excessive deformation of the bellows, and restricting the movement of the low pressure side valve with a simple configuration. Further, even if the low pressure side valve comes into contact with the end face of the reduced diameter portion of the stopper member, the refrigerant flow path is secured by the notch.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の冷媒制御バルブを適用した一実
施例を示す冷凍サイクル配管図である。 6a…バルブ本体外殼、11…ベローズ、6c
…高圧側流路、6d…低圧側流路、7…高圧流入
接続管、8…高圧流出接続管、9…低圧流入接続
管、10…低圧流出接続管、13…高圧側バル
ブ、15…低圧側バルブ、14…ストツパー部
材。
The drawing is a refrigeration cycle piping diagram showing an embodiment to which the refrigerant control valve of the present invention is applied. 6a... Valve body shell, 11... Bellows, 6c
...High pressure side flow path, 6d...Low pressure side flow path, 7...High pressure inflow connection pipe, 8...High pressure outflow connection pipe, 9...Low pressure inflow connection pipe, 10...Low pressure outflow connection pipe, 13...High pressure side valve, 15...Low pressure Side valve, 14...stopper member.

Claims (1)

【特許請求の範囲】[Claims] 1 バルブ本体外殼内にベローズを配置し、前記
ベローズの外側と前記バルブ本体外殼間を凝縮器
出口とキヤピラリチユーブ入口間を接続する高圧
側流路となし、かつ凝縮器出口に接続する高圧流
入接続管と、キヤピラリチユーブ入口に接続する
高圧流出接続管を配設し、前記ベローズの内側を
冷却器よりの吸入管と圧縮機吸入管との間を接続
する低圧側流路となし、かつ冷却器よりの吸入管
に接続する低圧流入接続管、圧縮機吸入管に接続
する低圧側流出接続管を配設すると共に、前記高
圧側流路に、前記高圧側圧力と低圧側圧力の圧力
差が所定値以下のとき、前記高圧側流出接続管側
を閉塞する高圧バルブを前記ベローズに設け、前
記ベローズ内部上端に、逆止弁動作をなす低圧側
バルブと相対向する筒状のストツパー部材を固着
垂下させ、このストツパー部材の下端には低圧側
流入接続管に連通し低圧側バルブを収納するバル
ブ本体外殻の下方ベースに設けられた凹部内に位
置し、前記ベローズ収縮時に前記凹部の肩部に当
接する縮径段部を有する下端縮径部を設け、この
下端縮径部の縮径段部を含むストツパー部材に
は、前記縮径段部が前記凹部の肩部に当接した状
態で前記下端縮径部外周と前記凹部内周部とより
構成される空隙部と前記ベローズ内側に構成した
低圧側流路とを連通させる切欠部を設けた流体制
御バルブ。
1. A bellows is disposed inside the outer shell of the valve body, and the outer side of the bellows and the outer shell of the valve body are used as a high-pressure side flow path connecting the condenser outlet and the capillary tube inlet, and a high-pressure inflow passage connecting the condenser outlet. A connecting pipe and a high-pressure outflow connecting pipe connected to the capillary tube inlet are arranged, and the inside of the bellows is used as a low-pressure side flow path connecting between the suction pipe from the cooler and the compressor suction pipe, and A low-pressure inflow connection pipe that connects to the suction pipe from the cooler and a low-pressure side outflow connection pipe that connects to the compressor suction pipe are provided, and the high-pressure side flow path is provided with a pressure difference between the high-pressure side pressure and the low-pressure side pressure. is below a predetermined value, the bellows is provided with a high-pressure valve that closes the high-pressure side outflow connection pipe side, and a cylindrical stopper member is provided at the upper end of the inside of the bellows, facing the low-pressure side valve that acts as a check valve. The lower end of this stopper member is located in a recess provided in the lower base of the outer shell of the valve body which communicates with the low pressure side inflow connection pipe and accommodates the low pressure side valve, and when the bellows is contracted, the stopper member is located in a recess provided in the lower base of the valve main body outer shell which communicates with the low pressure side inflow connection pipe and houses the low pressure side valve. A stopper member including the diameter-reducing step portion of the lower end diameter-reducing portion is provided with a lower end diameter-reducing portion having a diameter-reducing step portion abutting the lower end diameter-reducing step portion, and the stopper member including the diameter-reducing step portion of the lower end diameter-reducing portion is in a state where the diameter-reducing step portion is in contact with the shoulder portion of the recessed portion. and a fluid control valve provided with a notch that communicates a gap formed by the outer periphery of the lower end reduced diameter portion and the inner periphery of the concave portion with a low pressure side flow path formed inside the bellows.
JP56194031A 1981-12-02 1981-12-02 Control valve for refrigerant Granted JPS5895173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56194031A JPS5895173A (en) 1981-12-02 1981-12-02 Control valve for refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56194031A JPS5895173A (en) 1981-12-02 1981-12-02 Control valve for refrigerant

Publications (2)

Publication Number Publication Date
JPS5895173A JPS5895173A (en) 1983-06-06
JPH0219384B2 true JPH0219384B2 (en) 1990-05-01

Family

ID=16317782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56194031A Granted JPS5895173A (en) 1981-12-02 1981-12-02 Control valve for refrigerant

Country Status (1)

Country Link
JP (1) JPS5895173A (en)

Also Published As

Publication number Publication date
JPS5895173A (en) 1983-06-06

Similar Documents

Publication Publication Date Title
JPH0219384B2 (en)
JPS5899671A (en) Fluid control valve for refrigerator
JPS5852958A (en) Refrigerator
JP2921213B2 (en) refrigerator
JPS5888577A (en) Fluid control valve for refrigerator
JP2001074321A (en) Supercritical vapor compressing cycle device and pressure control valve with release valve
JPH0419408Y2 (en)
JPH0144796Y2 (en)
JPS6016268A (en) Cooling device
JPS6016269A (en) Cooling device
JPH0113968Y2 (en)
JPH025316Y2 (en)
JPH0442682Y2 (en)
JPH0129498Y2 (en)
JPS6132208Y2 (en)
JPH0240455Y2 (en)
JPH0138235B2 (en)
JPS5852955A (en) Refrigerator
JPS5899674A (en) Refrigerator
JPS6042856B2 (en) Pressure reducing device for heat pump air conditioning equipment
JPS6222969A (en) Flow controller for solution of absorption refrigerator
JPS60181554A (en) Refrigeration cycle
JPS5899657A (en) Refrigerator
JPH0345304B2 (en)
JPH03102148A (en) Fluid control valve