JPH0219347A - Production of dimethyl carbonate - Google Patents

Production of dimethyl carbonate

Info

Publication number
JPH0219347A
JPH0219347A JP63168595A JP16859588A JPH0219347A JP H0219347 A JPH0219347 A JP H0219347A JP 63168595 A JP63168595 A JP 63168595A JP 16859588 A JP16859588 A JP 16859588A JP H0219347 A JPH0219347 A JP H0219347A
Authority
JP
Japan
Prior art keywords
methanol
magnesium
dimethyl carbonate
carbon monoxide
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63168595A
Other languages
Japanese (ja)
Inventor
Haruhisa Suzuki
晴久 鈴木
Hiroshi Noda
博 野田
Hiroaki Kase
加瀬 博明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP63168595A priority Critical patent/JPH0219347A/en
Publication of JPH0219347A publication Critical patent/JPH0219347A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the subject compound useful as a methylation agent, etc., from methanol, carbon monoxide and oxygen in high catalytic activity and efficiency and improved selectivity of carbon monoxide by using a catalyst consisting of a platinum-group compound, a copper salt and a basic complex of magnesium. CONSTITUTION:Dimethyl carbonate is produced by reacting methanol with carbon monoxide and oxygen in the presence of a catalyst consisting of a platinum-group compound (especially preferably palladium), a copper salt (e.g. cuprous chloride) and a basic complex of magnesium (prepared in the form of a methanol solution by calcining magnesium carbonate and reacting the obtained magnesium oxide with methanol and CO2 in an autoclave). The combustion loss of methanol and carbon monoxide can be decreased. Dimethyl carbonate is useful as a production intermediate for polyurethane and polycarbonate and a substitute for extremely poisonous phosgene.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は触媒の存在下にメタノールを一酸化炭素および
酸素と反応させて炭酸ジメチルを製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing dimethyl carbonate by reacting methanol with carbon monoxide and oxygen in the presence of a catalyst.

〔従来の技術及び発明が解決しようとする課題〕炭酸ジ
メチルは、きわめて有毒なヨウ化メチルや硫酸ジメチル
等のメチル化剤の代替物として、また近年、エンジニア
リングプラスチックスとして重要度が高まりつつあるポ
リウレタンやポリカーボネートの製造用中間体として使
用されている、きわめて有毒なホスゲンの代替物として
工業上有用な物質である。炭酸ジメチルの製造法として
は■ホスゲンとメタノールを反応させて製造する方法、
■パラジウム・銅レドックス触媒の存在下にメタノール
を一酸化炭素および酸素と酸化的カルボニル化反応させ
て製造する方法(特公昭61−8816.特公昭6l−
43338)、及び■炭酸エステルとのエステル交換反
応によって製造する方法が知られている。特に■の方法
では助触媒としてアルカリ金属ハロゲン化物やアルカリ
金属弱酸塩を用いることが提案されている。
[Prior art and problems to be solved by the invention] Dimethyl carbonate is used as a substitute for highly toxic methylating agents such as methyl iodide and dimethyl sulfate, and in polyurethane, which has become increasingly important as an engineering plastic in recent years. It is an industrially useful substance as a substitute for the extremely toxic phosgene, which is used as an intermediate in the production of polycarbonate and polycarbonate. Methods for producing dimethyl carbonate include: ■Producing by reacting phosgene and methanol;
■Production method by oxidative carbonylation reaction of methanol with carbon monoxide and oxygen in the presence of a palladium-copper redox catalyst (Japanese Patent Publication No. 61-8816.
43338) and (2) a method of producing by transesterification reaction with a carbonate ester. In particular, in method (2), it has been proposed to use an alkali metal halide or a weak alkali metal salt as a cocatalyst.

しかし、これら三種の製造方法にはそれぞれ次のような
問題点が残されている。即ち上記■の方法はホスゲンの
毒性がきわめて強いこと、及びホスゲンを製造するのに
必要な電解塩素が高価なことであり、上記■の方法はメ
タノール。
However, these three manufacturing methods each have the following problems. That is, in method (1) above, the toxicity of phosgene is extremely strong and the electrolytic chlorine required to produce phosgene is expensive, and in method (2) above, methanol is used.

−酸化炭素の燃焼損失が大きく、−酸化炭素の選択率が
小さいこと、及び反応速度が小さいことであり、又上記
■の方法は多段階の反応プロセスを要すること、などで
ある。
- The combustion loss of carbon oxide is large; - The selectivity of carbon oxide is low; and the reaction rate is low; and the method (2) above requires a multi-step reaction process.

本発明はこの様な先行技術をふまえて、メタノール、−
酸化炭素、酸素から炭酸ジメチルを製造する方法におい
て、更にメタノール、−酸化炭素の燃焼損失を低減し、
高選択率でかつ高められた量の炭酸ジメチルを得る方法
を提供することを目的とする。
Based on such prior art, the present invention is based on methanol, -
In the method for producing dimethyl carbonate from carbon oxide and oxygen, further reducing the combustion loss of methanol and carbon oxide,
It is an object of the present invention to provide a method for obtaining dimethyl carbonate in high selectivity and in increased amounts.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者等は、パラジウム・銅レドックス触媒系を用い
てメタノール、−酸化炭素、酸素より炭酸ジメチルを得
る反応について鋭意努力して助触媒の開発を検討したと
ころ、潤滑油用清浄分散添加剤として開発された塩基で
ある塩基性マグネシウム錯体(特公昭56−54298
 )が助触媒として、炭酸ジメチルの生成速度を増加さ
せる点及び−酸化炭素の燃焼損失を低減させる点で優れ
ており、十分に先に挙げた欠点を克服することができる
ことを見いだし、本発明に到ったものである。
The present inventors have made extensive efforts to develop a cocatalyst for the reaction of producing dimethyl carbonate from methanol, carbon oxide, and oxygen using a palladium-copper redox catalyst system. Basic magnesium complex, which is a base developed (Japanese Patent Publication No. 56-54298
) is excellent as a cocatalyst in increasing the production rate of dimethyl carbonate and reducing the combustion loss of carbon oxide, and has been found to be able to sufficiently overcome the above-mentioned drawbacks, and the present invention provides It has arrived.

即ち本発明は、■白金属化合物、■銅塩、(3)マグネ
シウムの塩基性錯体からなる触媒の存在下にメタノール
を一酸化炭素および酸素と反応させることを特徴とする
炭酸ジメチルの製造法を提供するものである。
That is, the present invention provides a method for producing dimethyl carbonate, which is characterized by reacting methanol with carbon monoxide and oxygen in the presence of a catalyst consisting of (1) a white metal compound, (2) a copper salt, and (3) a basic complex of magnesium. This is what we provide.

本発明においては、通常、−酸化炭素分圧0.5〜2Q
kg/cm”の条件下、一定量の一酸化炭素、酸素、不
活性な及び希釈ガスをオーククレープ内に挿入した回分
式あるいは液相連続式反応系において、メタノールを白
金属化合物、銅塩およびマグネシウムの塩基性錯体から
なる触媒の存在下に酸素および一酸化炭素と反応させる
ことにより炭酸ジメチルが製造される。
In the present invention, -carbon oxide partial pressure is usually 0.5 to 2Q
methanol is reacted with white metal compounds, copper salts and Dimethyl carbonate is produced by reaction with oxygen and carbon monoxide in the presence of a catalyst consisting of a basic complex of magnesium.

白金属化合物としては、ルテニウム、ロジウム、パラジ
ウムなどの化合物が用いられ、なかでもパラジウムが好
ましい。
As the platinum metal compound, compounds such as ruthenium, rhodium, and palladium are used, and palladium is particularly preferred.

白金属化合物は金属単体としても、或いはハロゲン化物
、硝酸塩、硫酸塩、燐酸塩、酢酸塩、スルホン酸塩など
の金属塩としても使用される。
The platinum metal compound is used either as an elemental metal or as a metal salt such as a halide, nitrate, sulfate, phosphate, acetate, or sulfonate.

又、これらを活性炭、グラファイト、アルミナ、シリカ
、シリカ−アルミナ、珪藻土、ポリビニールピリジン、
マグネシア、カルシア等の担体に担持したものも使用さ
れる。
In addition, these can be activated carbon, graphite, alumina, silica, silica-alumina, diatomaceous earth, polyvinylpyridine,
Those supported on carriers such as magnesia and calcia are also used.

銅塩は塩化第一銅、塩化第二銅等のハロゲン化物のほか
、オキシ塩化銅や硝酸塩、硫酸塩、スルホン酸塩、酢酸
塩、安息香酸塩、蓚酸塩、燐酸塩等の銅塩が使用される
Copper salts include halides such as cuprous chloride and cupric chloride, as well as copper oxychloride, nitrates, sulfates, sulfonates, acetates, benzoates, oxalates, and phosphates. be done.

マグネシウムの塩基性錯体は、特公昭56−54298
記載の製法に従って、炭酸マグネシウムを仮焼して得ら
れる酸化マグネシウム、メタノールおよび二酸化炭素を
オートクレーブで反応させてメタノール溶液として調製
したものが使用される。
The basic complex of magnesium is disclosed in Japanese Patent Publication No. 56-54298.
According to the described production method, a methanol solution prepared by reacting magnesium oxide obtained by calcining magnesium carbonate, methanol, and carbon dioxide in an autoclave is used.

なお、本発明の触媒には、銅塩の溶解性向上のために、
塩化物、臭化物、ヨウ化物等のマグネシウムハロゲン化
物を併用することもできる。
In addition, the catalyst of the present invention contains, in order to improve the solubility of copper salt,
Magnesium halides such as chlorides, bromides, and iodides can also be used in combination.

本発明の実施に当っては、通常は過剰量の原料のメタノ
ールや、反応によって生成する炭酸ジメチルが溶媒を兼
ねて使用されるが、別に溶媒を使用することもできる。
In carrying out the present invention, an excess amount of methanol as a raw material or dimethyl carbonate produced by the reaction is usually used as a solvent, but it is also possible to use a separate solvent.

溶媒としてはベンゼン、トルエン、キシレン、オクタン
、デカン等の炭化水素、ジブチルエーテノペテトラヒド
ロフラン、エチレングリコールジメチルエーテル等のエ
ーテル、酢酸エチル、安息香酸メチル、エチレンカーボ
ネート等のエステノヘアセトニトリノベベンゾニトリル
等のニトリル、N−メチルピロリドン、N、N−ジメチ
ルアセトアミド等のアミド、エチレンジメチルウレア等
の尿素などが用いられる。
Examples of solvents include hydrocarbons such as benzene, toluene, xylene, octane, and decane, ethers such as dibutylethenopeteterahydrofuran and ethylene glycol dimethyl ether, and ethyl acetate, methyl benzoate, and ethyl acetonitrinobenzonitrile such as ethylene carbonate. Nitrile, amides such as N-methylpyrrolidone, N,N-dimethylacetamide, and ureas such as ethylenedimethylurea are used.

本発明方法は回分式あるいは液相連続式で通常以下の条
件で実施される。温度条件は50〜200℃であり、−
酸化炭素分圧が0.5〜20kg/cm”、酸素分圧が
0.05〜lQkg/cm2で使用される。白金属化合
物の使用量は、通常、反応溶液1βにつき0.0001
〜10gの範囲で使用される。銅塩の使用量は白金属化
合物の0.5〜1oooo重量倍の範囲で使用される。
The method of the present invention is carried out either batchwise or continuously in a liquid phase under the following conditions. The temperature conditions are 50 to 200℃, -
It is used at a carbon oxide partial pressure of 0.5 to 20 kg/cm" and an oxygen partial pressure of 0.05 to 1Q kg/cm2. The amount of the platinum metal compound used is usually 0.0001 per 1 β of the reaction solution.
~10g is used. The amount of copper salt used is 0.5 to 100 times the weight of the white metal compound.

マグネシウムの塩基性錯体は特公昭56−54298に
従って調製され、その使用量は酸化マグネシウムにして
白金属化合物の0.5〜100000重量倍の範囲で使
用される。マグネシウムハロゲン化物を併用する場合は
白金属化合物の0.5〜20000重量倍の使用量が好
ましい。
The basic complex of magnesium is prepared according to Japanese Patent Publication No. 56-54298, and the amount used is 0.5 to 100,000 times the weight of the white metal compound in terms of magnesium oxide. When magnesium halide is used in combination, the amount used is preferably 0.5 to 20,000 times the weight of the white metal compound.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により、−酸化炭素の選択率が向上し、か
つ高活性で効率的に炭酸ジメチルを得ることができる。
By the method of the present invention, the selectivity of -carbon oxide is improved, and dimethyl carbonate can be obtained efficiently with high activity.

〔実施例〕〔Example〕

次に発明の詳細について以下に例示するいくつかの実施
例で説明するが、これらの実施例は本発明を限定するも
のではない。
Next, the details of the invention will be explained with reference to some examples illustrated below, but these examples are not intended to limit the invention.

参考例(マグネシウムの塩基性錯体の調製例)23、2
7gの炭酸マグネシウムを電気炉で500℃、7時間仮
焼したところ10.20gの「活性」酸化マグネシウム
が得られた。
Reference example (preparation example of basic complex of magnesium) 23, 2
When 7 g of magnesium carbonate was calcined in an electric furnace at 500° C. for 7 hours, 10.20 g of “active” magnesium oxide was obtained.

撹拌機付き500rnlのオートクレーブに「活性」酸
化マグネシウム5.0g、メタノール165−を挿入し
、オートクレーブ内を窒素で置換した。次いで二酸化炭
素14゜Qkg/cm”を圧入したのち、室温で4時間
反応させたところ、ガス吸収は3.5kg/cm2であ
り、得られた液は均一であった。この液を塩基性マグネ
シウム錯体のメタノール溶液(マグネシウム基準0.7
52mol/β)として以下の実施例で使用した。
5.0 g of "active" magnesium oxide and 165 methanol were placed in a 500 rnl autoclave equipped with a stirrer, and the inside of the autoclave was purged with nitrogen. Next, 14゜Qkg/cm" of carbon dioxide was injected under pressure, and the reaction was allowed to proceed at room temperature for 4 hours. The gas absorption was 3.5 kg/cm2, and the resulting liquid was homogeneous. This liquid was mixed with basic magnesium Methanol solution of complex (magnesium standard 0.7
52 mol/β) was used in the following examples.

実施例1 テフロン加工した撹拌機付き380dのオートクレーブ
に塩化パラジウム0.30mmol、塩化第一銅7,5
mmol 、塩化マグネシウム3.75mmol、塩基
性マグネシウム錯体のメタノール溶液10m1およびメ
タノール30−を挿入し、オートクレーブ内を窒素で置
換した。次いで窒素を10.3kg/cm’、−酸化炭
素を2.7kg/cm2、酸素19mo1%含有のアル
ゴンガスを7.3kg7cm2を圧入したのち、オート
クレーブを130℃に保ち、1時間反応させたのち、常
温まで冷却し放圧して、反応ガスおよび反応生成液をガ
スクロマトグラフィーにより分析し、炭酸ジメチルの生
成量および一酸化炭素の反応量を定量した。その結果炭
酸ジメチルは12,3mmol得られ、S Co−[I
MC(注)は41%であった。
Example 1 Palladium chloride 0.30 mmol and cuprous chloride 7.5 were placed in a 380 d autoclave with a Teflon-treated stirrer.
3.75 mmol of magnesium chloride, 10 ml of a methanol solution of a basic magnesium complex, and 30 mmol of methanol were added, and the inside of the autoclave was purged with nitrogen. Next, 10.3 kg/cm' of nitrogen, 2.7 kg/cm2 of carbon oxide, and 7.3 kg/7 cm2 of argon gas containing 19 mo1% oxygen were injected, and the autoclave was kept at 130°C and reacted for 1 hour. After cooling to room temperature and releasing the pressure, the reaction gas and reaction product liquid were analyzed by gas chromatography to quantify the amount of dimethyl carbonate produced and the amount of carbon monoxide reacted. As a result, 12.3 mmol of dimethyl carbonate was obtained, S Co-[I
MC (note) was 41%.

(注) 炭酸ジメチルに対する一酸化炭素の選択率(S CO−
DMC)は、下式によって示される。
(Note) Selectivity of carbon monoxide to dimethyl carbonate (S CO-
DMC) is represented by the following formula.

実施例2 塩化パラジウA0.30mmol、塩化第二銅7,5m
mol、塩基性マグネシウム錯体のメタノール溶液10
1nI!およびメタノール30m1をもちいて実施例1
と同じ操作を行った。その結果炭酸ジメチルは21.6
mmol得られ、S Co−DMCは76%であった。
Example 2 Palladium chloride A 0.30 mmol, cupric chloride 7.5 m
mol, methanol solution of basic magnesium complex 10
1nI! Example 1 using 30 ml of methanol and
performed the same operation. As a result, dimethyl carbonate is 21.6
mmol was obtained, and S Co-DMC was 76%.

比較例1 塩化パラジウム0.30mmol、塩化第一銅7.5m
mol 。
Comparative Example 1 Palladium chloride 0.30 mmol, cuprous chloride 7.5 m
mol.

塩化カリウA 15. Qmmo 1 、カリウムメチ
ラー)15.0mmolおよびメタノール40m1をも
ちいて実施例1と同じ操作を行った。その結果炭酸ジメ
チルは4.2mmol得られ、S CO−DMCは24
%であった。
Potassium chloride A 15. The same operation as in Example 1 was carried out using 15.0 mmol of Qmmo 1 , potassium methylate) and 40 ml of methanol. As a result, 4.2 mmol of dimethyl carbonate was obtained, and 24 mmol of S CO-DMC was obtained.
%Met.

Claims (1)

【特許請求の範囲】[Claims] (1)白金属化合物、(2)銅塩、(3)マグネシウム
の塩基性錯体からなる触媒の存在下にメタノールを一酸
化炭素および酸素と反応させることを特徴とする炭酸ジ
メチルの製造法。
A method for producing dimethyl carbonate, which comprises reacting methanol with carbon monoxide and oxygen in the presence of a catalyst consisting of (1) a platinum metal compound, (2) a copper salt, and (3) a basic complex of magnesium.
JP63168595A 1988-07-06 1988-07-06 Production of dimethyl carbonate Pending JPH0219347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63168595A JPH0219347A (en) 1988-07-06 1988-07-06 Production of dimethyl carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63168595A JPH0219347A (en) 1988-07-06 1988-07-06 Production of dimethyl carbonate

Publications (1)

Publication Number Publication Date
JPH0219347A true JPH0219347A (en) 1990-01-23

Family

ID=15870967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63168595A Pending JPH0219347A (en) 1988-07-06 1988-07-06 Production of dimethyl carbonate

Country Status (1)

Country Link
JP (1) JPH0219347A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477376A1 (en) * 1990-03-19 1992-04-01 Daicel Chemical Industries, Ltd. Process for producing polyurethane
US5228183A (en) * 1991-04-16 1993-07-20 Tachi-S. Co., Ltd. Arrangement and method for securing headrest stay in seat
US9249082B2 (en) 2010-02-09 2016-02-02 King Abdulaziz City for Science and Technology (KACST) Synthesis of dimethyl carbonate from carbon dioxide and methanol

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0477376A1 (en) * 1990-03-19 1992-04-01 Daicel Chemical Industries, Ltd. Process for producing polyurethane
US5228183A (en) * 1991-04-16 1993-07-20 Tachi-S. Co., Ltd. Arrangement and method for securing headrest stay in seat
US9249082B2 (en) 2010-02-09 2016-02-02 King Abdulaziz City for Science and Technology (KACST) Synthesis of dimethyl carbonate from carbon dioxide and methanol

Similar Documents

Publication Publication Date Title
JP2618546B2 (en) Method for producing dialkyl carbonate
JPH0219347A (en) Production of dimethyl carbonate
JP4168644B2 (en) Process for producing cyclohexanol and / or cyclohexanone
JP2757885B2 (en) Method for producing carbonic acid diester
JPS63101348A (en) Production of 1,1-diester
JP2638174B2 (en) Method for producing carbonate ester
JPS5943938B2 (en) Method for producing unsaturated diester
EP0186349B1 (en) Process for the preparation of cinnamate ester
JPH06145113A (en) Production of carbonate diester
JPS62255456A (en) Production of diethylformamide
JPH0219346A (en) Production of carbonic acid ester
CN114874127B (en) Preparation method of difluoro carbonyl indolone compound
KR960003797B1 (en) Process for preparing aceticacid by methanol carbonylation
JPS62258335A (en) Production of methyl isobutyl ketone
JP3752044B2 (en) Method for producing 1,6-octadiene
JPH02256651A (en) Production of carbonic ester
JPH026445A (en) Catalytic production of n-acylamino acid
JPS61172851A (en) Method of dimerization of orthophthalic ester through oxidation and dehydrogenation
JPH04193849A (en) Production of substituted aromatic carboxylic acid ester
JPH024737A (en) Production of carbonic acid ester
JP3139106B2 (en) Method for producing carbonate ester
JP2900565B2 (en) Method for producing aminoanthraquinone
JPH04356446A (en) Production of carbonic acid ester
JPS5911525B2 (en) Carbon monoxide manufacturing method
JPS581089B2 (en) Manufacturing method of cyclohexanol