JPH02192750A - Impurity recovery method of semiconductor substrate surface and equipment therefor - Google Patents
Impurity recovery method of semiconductor substrate surface and equipment thereforInfo
- Publication number
- JPH02192750A JPH02192750A JP1162589A JP1162589A JPH02192750A JP H02192750 A JPH02192750 A JP H02192750A JP 1162589 A JP1162589 A JP 1162589A JP 1162589 A JP1162589 A JP 1162589A JP H02192750 A JPH02192750 A JP H02192750A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor substrate
- chamber
- oxide film
- acid solution
- hydrofluoric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 51
- 239000000758 substrate Substances 0.000 title claims abstract description 51
- 239000012535 impurity Substances 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims description 23
- 238000011084 recovery Methods 0.000 title claims description 9
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 60
- 238000001816 cooling Methods 0.000 claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 238000009833 condensation Methods 0.000 claims abstract description 7
- 230000005494 condensation Effects 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 24
- 235000012431 wafers Nutrition 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000000516 activation analysis Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は半導体基板表面における不純物回収方法及び装
置に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method and apparatus for recovering impurities on the surface of a semiconductor substrate.
(従来の技術)
半導体基板表面に形成される半導体薄膜中にNa(ナト
リウム)、K(カリウム)、Fe(鉄)等の金属不純物
が含まれていると、これらの不純物は容易に前記半導体
薄膜中を移動する。このため、その量が少なくても半導
体素子の電気的特性に大きな影響を与えることは良く知
られている。(Prior Art) When metal impurities such as Na (sodium), K (potassium), Fe (iron), etc. are contained in a semiconductor thin film formed on the surface of a semiconductor substrate, these impurities easily penetrate into the semiconductor thin film. move inside. Therefore, it is well known that even a small amount of it has a large effect on the electrical characteristics of a semiconductor element.
従って、電気的特性を向上させるためには半導体基板表
面の不純物量を正確に把握し、その含有量を極力押える
ことが必要である。Therefore, in order to improve the electrical characteristics, it is necessary to accurately grasp the amount of impurities on the surface of the semiconductor substrate and to suppress the content as much as possible.
従来、半導体基板表面の不純物を測定するには、二次イ
オン質量分析(Secondary ton Mass
SpectromeLry、以下SIMSという。)、
オージェ電子分光(Auger Electron 5
pectroscopy、以下AESという。) 放射
化分析等の機器分析が用いられていた。ところが、これ
らSIMS。Traditionally, secondary ion mass spectrometry has been used to measure impurities on the surface of semiconductor substrates.
SpectromeLry, hereinafter referred to as SIMS. ),
Auger electron spectroscopy (Auger Electron 5
spectroscopy, hereinafter referred to as AES. ) Instrumental analysis such as activation analysis was used. However, these SIMS.
AES及び放射化分析等の機器分析は、半導体基板の表
面全体を簡便かつ高感度に分析するには問題があった。Instrumental analyzes such as AES and activation analysis have had problems in easily and highly sensitively analyzing the entire surface of a semiconductor substrate.
また、これらに代わり基板表面を簡便に分析できる方法
として気相分解分析法が知られている。Additionally, instead of these, a gas phase decomposition analysis method is known as a method that can easily analyze the substrate surface.
この方法は、あらかじめ半導体基板表面に7ip]定に
必要な分解液量が得られるだけの適切な熱酸化膜を形成
した後、この熱酸化膜を自然酸化膜とともに弗化水素酸
溶液の蒸気により溶解する。この後、溶解した熱酸化膜
を回収し、分光分析装置にかけて不純物のAl1定を行
なうというものである。In this method, after forming an appropriate thermal oxide film on the surface of the semiconductor substrate in advance (7 ip) to obtain the required amount of decomposition liquid, this thermal oxide film is removed together with the natural oxide film using the vapor of a hydrofluoric acid solution. dissolve. Thereafter, the dissolved thermal oxide film is collected and subjected to a spectroscopic analyzer to determine Al1 of impurities.
しかしながら、気相分解分析法には熱酸化膜を形成する
ための熱酸化工程があるため、この熱酸化工程により雰
囲気ガスや基板中から熱酸化膜へ不純物が混入し、また
、逆に、熱酸化膜中の不純物が基板に拡散したり蒸発し
てしまう可能性が大きく、不純物量の分析精度やその信
頼性が低下する欠点がある。However, since the vapor phase decomposition analysis method includes a thermal oxidation process to form a thermal oxide film, this thermal oxidation process can cause impurities to enter the thermal oxide film from the atmospheric gas or the substrate. There is a high possibility that impurities in the oxide film will diffuse into the substrate or evaporate, resulting in a disadvantage that the accuracy and reliability of analyzing the amount of impurities decreases.
(発明が解決しようとする課題)
このように、従来は、半導体基板表面の不純物を簡便に
alll定するにあたり、分析精度やその信頼性の面で
問題があった。(Problems to be Solved by the Invention) As described above, conventionally, there have been problems in terms of analysis accuracy and reliability in easily determining all impurities on the surface of a semiconductor substrate.
よって、本発明の目的は、半導体基板表面の不純物を熱
酸化工程なしで回収することにより、前記不純物を高感
度に4Ilj定し、その分析精度及び信頼性の向上を達
成する半導体基板表面の不純物回収方法及び装置を提供
することである。Therefore, an object of the present invention is to recover impurities on the surface of a semiconductor substrate without a thermal oxidation process, thereby determining the impurities with high sensitivity and improving the accuracy and reliability of the analysis. An object of the present invention is to provide a recovery method and device.
[発明の構成]
(課題を解決するための手段)
上記目的を達成するために、本発明の半導体基板表面の
不純物回収方法は、弗化水素酸溶液の蒸気雰囲気中で半
導体基板を冷却することにより、前記弗化水素酸溶液の
蒸気を前記半導体基板の一主表面に露結凝縮させ、前記
半導体基板の一主表面の自然酸化膜を分解液化し、得ら
れた溶解酸化膜を回収するというものである。[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the method for recovering impurities on the surface of a semiconductor substrate of the present invention includes cooling a semiconductor substrate in a vapor atmosphere of a hydrofluoric acid solution. The vapor of the hydrofluoric acid solution is dewdened and condensed on one main surface of the semiconductor substrate, the natural oxide film on the one main surface of the semiconductor substrate is decomposed and liquefied, and the obtained dissolved oxide film is recovered. It is something.
また、半導体基板の冷L17とともに弗化水素酸溶液の
蒸気雰囲気を加熱すれば、さらに効果的である。Further, it is even more effective to heat the vapor atmosphere of the hydrofluoric acid solution together with the cold L17 of the semiconductor substrate.
さらに、前記半導体基板の回転による遠心力を利用して
、得られた溶解酸化膜を回収することもできる。Furthermore, the obtained dissolved oxide film can also be recovered using centrifugal force due to the rotation of the semiconductor substrate.
なお、前記方法を実施するための装置としては、弗化水
素酸溶液の蒸気を充満させるチャンバを用意し、このチ
ャンバ内に回転軸の設けられた保持台を配置し、この保
持台に半導体基板を装着する。前記半導体基板を冷却す
る冷却手段を設け、前記保持台の周囲に一方へ傾斜をつ
けた液回収部材を取り付けるというものである。Note that as an apparatus for carrying out the above method, a chamber filled with vapor of a hydrofluoric acid solution is prepared, a holding table provided with a rotating shaft is placed in this chamber, and a semiconductor substrate is placed on this holding table. Attach. A cooling means for cooling the semiconductor substrate is provided, and a liquid recovery member inclined to one side is attached around the holding table.
また、前記チャンバの周囲に弗化水素酸溶液の蒸気雰囲
気の温度を上げるための加熱手段を設け、かつ、前記チ
ャンバの天井に傾斜を付ければさらに効果的である。Further, it is more effective if heating means for increasing the temperature of the vapor atmosphere of the hydrofluoric acid solution is provided around the chamber, and the ceiling of the chamber is sloped.
(作用)
このような方法及び装置によれば、半導体基板表面上で
露結凝縮した弗化水素酸溶液により自熱酸化膜を分解液
化し、得られた溶解酸化膜のみを回収することができる
。従って、半導体基板表面の不純物を熱酸化工程なしで
回収することができるため、前記不純物を高感度にAl
l[定し、その分析精度及び信頼性の向上を達成するこ
とができる。(Function) According to such a method and apparatus, an autothermal oxide film can be decomposed and liquefied by a hydrofluoric acid solution that is dew-condensed and condensed on the surface of a semiconductor substrate, and only the resulting dissolved oxide film can be recovered. . Therefore, since the impurities on the surface of the semiconductor substrate can be recovered without a thermal oxidation process, the impurities can be removed with high sensitivity into Al.
It is possible to improve the accuracy and reliability of the analysis.
また、半導体基板の冷却とともに弗化水素酸溶液の蒸気
雰囲気を加熱すれば、前記半導体基板と前記弗化水素酸
溶液の蒸気との温度差が大きくなるので、前記弗化水素
酸溶液の蒸気を前記半導体基板の一主表面に露結凝縮さ
せる時間が速くなる。Furthermore, if the vapor atmosphere of the hydrofluoric acid solution is heated together with the cooling of the semiconductor substrate, the temperature difference between the semiconductor substrate and the vapor of the hydrofluoric acid solution increases. The time required for dew condensation on one main surface of the semiconductor substrate becomes faster.
さらに、前記半導体基板の回転による遠心力を利用して
、得られた溶解酸化膜を回収すれば、操作が簡単であり
、また、凝縮液滴として一ケ所に回収することができる
。Furthermore, if the obtained dissolved oxide film is collected using the centrifugal force generated by the rotation of the semiconductor substrate, the operation is simple and it can be collected in one place as condensed droplets.
なお、弗化水素酸溶液の蒸気を充満させるチャンバと、
このチャンバ内に配置され半導体基板が装管される、回
転軸の設けられた保持台と、前記半導体基板を冷却する
冷却手段と、前記保持台の周囲に一方へ傾斜をつけて取
り付けられた液回収部材とを用意することにより、前記
方法を具体的に実現できる。In addition, a chamber filled with vapor of a hydrofluoric acid solution,
A holding stand provided with a rotating shaft and arranged in the chamber and loaded with a semiconductor substrate, a cooling means for cooling the semiconductor substrate, and a liquid installed around the holding stand so as to be inclined to one side. By preparing a collecting member, the method described above can be concretely realized.
また、前記チャンバの周囲に加熱手段を設け、また、前
記チャンバの天井に傾斜を付ければ、チャンバ内の温度
にムラが生じて天井に露結が発生した場合に、その液滴
がウェーハI上へ滴下するのを防ぐことができる。Furthermore, if a heating means is provided around the chamber, and if the ceiling of the chamber is sloped, when dew condensation occurs on the ceiling due to uneven temperature within the chamber, the droplets will be deposited on the wafer I. This can prevent dripping.
(実施例)
以下、図面を参照して本発明の一実施例を詳細に説明す
る。(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
第1図は本発明の半導体基板表面の不純物回収方法の実
施をするための装置の一例を示すものである。チャンバ
l内の中央部には例えば円柱型の保持台2が配置されて
いる。この保持台2には回転軸3が設けられており、図
示しない駆動源により回転させることができる。保持台
2上にはつ工−ハ(半導体基板)4が装着されており、
具体的にはウェーハ4は吸引管5に接続された例えば図
示しないポンプにより保持台2に吸着される。FIG. 1 shows an example of an apparatus for carrying out the method of recovering impurities from the surface of a semiconductor substrate according to the present invention. For example, a cylindrical holding table 2 is arranged in the center of the chamber l. This holding table 2 is provided with a rotating shaft 3, and can be rotated by a drive source (not shown). A holder (semiconductor substrate) 4 is mounted on the holding table 2.
Specifically, the wafer 4 is sucked onto the holding table 2 by, for example, a pump (not shown) connected to the suction pipe 5 .
保持台2の周囲には液回収部材6が取り付けられている
。この液回収部材6は上部及び下部がそれぞれ内方へ湾
曲しており、下部の湾曲により満7が形成されている。A liquid recovery member 6 is attached around the holding table 2. The liquid recovery member 6 has an upper part and a lower part each curved inwardly, and the lower part is curved to form a shape 7.
なお、溝7には一方へ傾斜がつけてあり、凝縮液的12
が一ケ所に集まるようになっている。また、ウェーハ4
を冷却するために冷却部8が設けられている。さらに、
チャンバl内底部の周囲には弗化水素酸溶液9を溜めて
おく溝IOが設けられ、これによりチャンバ 1内に弗
化水素酸溶液9の蒸気を充満させることができる。Note that the groove 7 is sloped to one side, so that the condensate level 12
are now gathered in one place. Also, wafer 4
A cooling section 8 is provided to cool the. moreover,
A groove IO for storing the hydrofluoric acid solution 9 is provided around the inner bottom of the chamber 1, so that the chamber 1 can be filled with the vapor of the hydrofluoric acid solution 9.
なお、チャンバl内のものはすべてテフロンコトされて
いる。Note that everything inside the chamber 1 is coated with Teflon.
次に、本発明の方法を前記第1図の装置に実施した場合
について同図をもとに説明する。Next, a case in which the method of the present invention is applied to the apparatus shown in FIG. 1 will be described with reference to the same figure.
まず、測定したい面を上にしてウェーハ4を保持台2に
載せる。吸引管5に接続された例えば図示しないポンプ
を作動させウェーハ4を真空チャックで固定する。チャ
ンバl内底部の周囲に設けられた溝10に弗化水素酸溶
液9を50〜200m、Q入れた後、チャンバlを密閉
する。冷却部8の例えば液体窒素又は冷却水によりウェ
ーハ4を一100℃〜0℃の温度に冷却する。チャンバ
l内を常温にして約10分間このまま放置すると、弗化
水素酸溶液9が蒸発してチャンバl内にその蒸気が充満
する。弗化水素酸溶液9の蒸気はつ工−ハ4の表面で露
結凝縮することにより、ウェーハ4表面上の自然酸化膜
4′が分解液化され不純物(Na、Ka、Fe等)を含
んだ自然酸化膜4′の溶解物(以下「溶解酸化膜」とい
う。)が形成される。自然酸化膜4′が完全に分解され
つ工−ハ4表面が疎水性になったら、回転軸3を軸とし
て矢印aに示すように保持台2を回転数10〜1100
0rpで回転させる。この結果、ウェーハ4上に形成さ
れた溶解酸化膜は遠心力により飛散するが、保持台3周
囲に設けられた液回収部材6に受容され、また、一方へ
傾斜がつけられた溝7により一ケ所に集まって凝縮液滴
12が形成される。なお、凝縮液滴12の液量は10〜
1000μgである。この凝縮液M12を例えばマイク
ロピペットを用いて回収した後、フレームレス原子吸光
装置等のA11j定器にかけて不純物の分析を行い−連
の操作が完了する。First, the wafer 4 is placed on the holding table 2 with the surface to be measured facing upward. For example, a pump (not shown) connected to the suction tube 5 is operated to fix the wafer 4 with a vacuum chuck. After 50 to 200 m of hydrofluoric acid solution 9 is poured into the groove 10 provided around the inner bottom of the chamber 1, the chamber 1 is sealed. The wafer 4 is cooled to a temperature of -100° C. to 0° C. using, for example, liquid nitrogen or cooling water in the cooling unit 8 . When the inside of the chamber 1 is left at room temperature for about 10 minutes, the hydrofluoric acid solution 9 evaporates and the chamber 1 is filled with its vapor. As the steam of the hydrofluoric acid solution 9 dews and condenses on the surface of the wafer 4, the natural oxide film 4' on the surface of the wafer 4 is decomposed and liquefied, containing impurities (Na, Ka, Fe, etc.). A dissolved product of the natural oxide film 4' (hereinafter referred to as "dissolved oxide film") is formed. When the natural oxide film 4' is completely decomposed and the surface of the workpiece 4 becomes hydrophobic, rotate the holding table 2 at a rotational speed of 10 to 1100 around the rotating shaft 3 as shown by arrow a.
Rotate at 0 rpm. As a result, the dissolved oxide film formed on the wafer 4 is scattered by the centrifugal force, but is received by the liquid recovery member 6 provided around the holding table 3, and is also collected by the groove 7 inclined to one side. The condensed droplets 12 are formed by condensation. Note that the liquid volume of the condensed droplets 12 is 10~
It is 1000 μg. After collecting this condensate M12 using, for example, a micropipette, it is applied to an A11j analyzer such as a flameless atomic absorption spectrometer to analyze impurities, and the series of operations is completed.
第2図は本発明の方法の実施をするための装置の他の例
を示すものである。なお、前記第1図と同一の部分には
同じ符号が付しである。FIG. 2 shows another example of an apparatus for carrying out the method of the invention. Note that the same parts as in FIG. 1 are given the same reference numerals.
チャンバ1内の中央部には回転軸3の設けられた保持台
2が配置され、保持台2上にはウェハ4が装着されてい
る。保持台2には冷却部8が設けられ、また、保持台2
の周囲には一方へ傾斜がついた溝7をもつ液回収部材B
が取り付けられている。チャンバ1内底部の周囲には弗
化水素酸溶液9を溜めておく溝IOが設けられている。A holding table 2 provided with a rotating shaft 3 is arranged in the center of the chamber 1, and a wafer 4 is mounted on the holding table 2. The holding table 2 is provided with a cooling section 8, and the holding table 2 is also provided with a cooling section 8.
A liquid recovery member B having a groove 7 inclined to one side around the
is installed. A groove IO for storing a hydrofluoric acid solution 9 is provided around the inner bottom of the chamber 1 .
さらに、チャンバ1の天井には傾斜が設けられ、チャン
バ1周辺部には加熱源として例えば加熱ヒータ11が設
けられている。Further, the ceiling of the chamber 1 is sloped, and a heater 11, for example, is provided as a heating source around the chamber 1.
次に、本発明の方法を前記第2図の装置に実施した場合
について同図をもとに説明する。Next, a case in which the method of the present invention is applied to the apparatus shown in FIG. 2 will be described with reference to the same figure.
まず、ウェーハ4を保持台3に載せた後、このウェーハ
4を真空チャックで固定する。チャンバl内底部の周囲
に設けられた溝10に弗化水素酸溶液9を入れ、チャン
バlを密閉する。冷却部8によりウェーハ4を一100
℃〜0℃の温度に冷却するとともに、加熱ヒータ11に
より弗化水素酸溶液9及びチャンバl内を150℃〜2
50℃の温度に加熱する。この時、弗化水素酸溶液9の
蒸気とウェーハ4との温度差が大きくなり、ウェーハ4
表面での露結凝縮の反応速度が速くなる。従って、チャ
ンバl内を密閉した後、1分根度でつ工−ハ4表面の自
然酸化膜4′が完全に分解される。この後、保持台2を
回転させ、ウェーハ4上に形成された溶解酸化膜を遠心
力により飛散させる。また、この飛散した溶解酸化膜を
液回収部材6により受容し、溝7により一ケ所に集め凝
縮液滴12を形成する。この後、凝縮液滴12を例えば
マイクロピペットを用いて回収し、フレームレス原子吸
光装置等のAPj定器にかけて不純物の分析を行い一連
の操作が完了する。First, after placing the wafer 4 on the holding table 3, the wafer 4 is fixed with a vacuum chuck. A hydrofluoric acid solution 9 is poured into a groove 10 provided around the inner bottom of the chamber 1, and the chamber 1 is sealed. The cooling unit 8 cools the wafers 4 to 100
While cooling to a temperature of 0°C to 0°C, the hydrofluoric acid solution 9 and the inside of the chamber 1 are heated to 150°C to 2°C using a heater 11.
Heat to a temperature of 50°C. At this time, the temperature difference between the vapor of the hydrofluoric acid solution 9 and the wafer 4 increases, and the wafer 4
The reaction rate of dew condensation on the surface becomes faster. Therefore, after sealing the inside of the chamber 1, the natural oxide film 4' on the surface of the tool 4 is completely decomposed within one minute. Thereafter, the holding table 2 is rotated, and the dissolved oxide film formed on the wafer 4 is scattered by centrifugal force. Further, the scattered dissolved oxide film is received by the liquid recovery member 6 and collected in one place by the groove 7 to form condensed droplets 12. Thereafter, the condensed droplets 12 are collected using, for example, a micropipette, and subjected to an APJ analyzer such as a flameless atomic absorption spectrometer to analyze impurities, thereby completing a series of operations.
なお、チャンバ1の天井に傾斜を設けたのは、チャンバ
l内の温度にムラが生じて天井に露結が発生した場合に
、その液滴がウェーハ4上へ滴下するのを防ぐためであ
る。The reason why the ceiling of the chamber 1 is sloped is to prevent droplets from dripping onto the wafer 4 when dew condensation occurs on the ceiling due to uneven temperature inside the chamber 1. .
[発明の効果]
以上、本発明の半導体基板表面の不純物回収方法及び装
置によれば次のような効果を奏する。[Effects of the Invention] As described above, the method and apparatus for recovering impurities on the surface of a semiconductor substrate of the present invention have the following effects.
弗化水素酸溶液の蒸気により溶解酸化膜を形成し、この
溶解酸化膜を回収した後、不純物の分析を行なうことに
より、非酸化で半導体基板表面の微量不純物が高感度に
測定できる。また、109〜10 ” a t o m
s / c m 2の不純物量が±20%以内で高精
度に迅速かつ簡便にalll定可能となる。By forming a dissolved oxide film with the vapor of a hydrofluoric acid solution, collecting the dissolved oxide film, and then analyzing the impurities, trace impurities on the surface of a semiconductor substrate can be measured with high sensitivity without oxidation. Also, 109 to 10” a t o m
All impurity amounts in s/cm 2 can be determined quickly and easily with high accuracy within ±20%.
第1図は本発明の半導体基板表面の不純物回収方法を実
施するための装置の一例を示す縦断面図、第2図は本発
明の半導体基板表面の不純物回収方法を実施するだめの
装置の他の例を示す縦断面図である。
■・・・チャンバ、2・・・保持台、3・・・回転軸、
4・・・ウェーハ、4′・・・自然酸化膜、5・・・吸
引管、6・・・液滴回収部材、7・・・溝、8・・・冷
却部、9・・・弗化水素酸溶液、10・・・溝、11・
・・加熱ヒータ、12・
凝縮液滴。FIG. 1 is a vertical cross-sectional view showing an example of an apparatus for carrying out the method of recovering impurities from the surface of a semiconductor substrate according to the present invention, and FIG. FIG. ■...Chamber, 2...Holding stand, 3...Rotating shaft,
4... Wafer, 4'... Natural oxide film, 5... Suction tube, 6... Droplet collecting member, 7... Groove, 8... Cooling part, 9... Fluorization Hydrogen acid solution, 10...groove, 11.
...Heating heater, 12. Condensed droplets.
Claims (5)
いて、 (a)半導体基板を冷却することにより この半導体基板の一主表面の表面温度を 下げ、かつ、前記チャンバを加熱するこ とにより前記弗化水素酸溶液の蒸気雰囲 気の温度を上げ、 (b)前記弗化水素酸溶液の蒸気を前記 半導体基板の一主表面上で露結凝縮させ、 (c)前記半導体基板の一主表面上の自 然酸化膜を不純物とともに分解液化し、 (d)得られた溶解酸化膜を回収するこ とを特徴とする半導体基板表面の不純物回収方法。(2) In a chamber filled with vapor of a hydrofluoric acid solution, (a) lowering the surface temperature of one main surface of the semiconductor substrate by cooling the semiconductor substrate, and lowering the surface temperature of one main surface of the semiconductor substrate by heating the chamber; increasing the temperature of the vapor atmosphere of the hydrofluoric acid solution; (b) causing the vapor of the hydrofluoric acid solution to dew and condense on one main surface of the semiconductor substrate; (c) on one main surface of the semiconductor substrate; A method for recovering impurities on the surface of a semiconductor substrate, comprising: decomposing and liquefying a natural oxide film together with impurities; and (d) recovering the obtained dissolved oxide film.
化膜は、半導体基板を回転させることによる遠心力を利
用して回収することを特徴とする半導体基板表面の不純
物回収方法。(3) A method for recovering impurities on the surface of a semiconductor substrate, characterized in that the dissolved oxide film obtained by the method according to claim 1 or 2 is recovered using centrifugal force caused by rotating the semiconductor substrate.
このチャンバ内に配置され半導体基板が装着される、回
転軸の設けられた保持台と、前記半導体基板を冷却する
冷却手段と、前記保持台の周囲に一方へ傾斜をつけて取
り付けられた液回収部材とを具備することを特徴とする
半導体基板表面の不純物回収装置。(4) a chamber filled with vapor of a hydrofluoric acid solution;
A holding stand provided with a rotating shaft, which is placed in the chamber and on which a semiconductor substrate is mounted, a cooling means for cooling the semiconductor substrate, and a liquid recovery installed around the holding stand with an inclination to one side. 1. A device for recovering impurities from a surface of a semiconductor substrate, comprising a member.
ための加熱手段を設け、かつ、前記チャンバの天井に傾
斜を付けたことを特徴とする請求項4記載の半導体基板
表面の不純物回収装置。(5) The apparatus for recovering impurities on the surface of a semiconductor substrate according to claim 4, wherein a heating means for heating the inside of the chamber is provided around the outer periphery of the chamber, and a ceiling of the chamber is sloped.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1011625A JP2909086B2 (en) | 1989-01-20 | 1989-01-20 | Method and apparatus for collecting impurities on semiconductor substrate surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1011625A JP2909086B2 (en) | 1989-01-20 | 1989-01-20 | Method and apparatus for collecting impurities on semiconductor substrate surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02192750A true JPH02192750A (en) | 1990-07-30 |
JP2909086B2 JP2909086B2 (en) | 1999-06-23 |
Family
ID=11783110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1011625A Expired - Fee Related JP2909086B2 (en) | 1989-01-20 | 1989-01-20 | Method and apparatus for collecting impurities on semiconductor substrate surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2909086B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5578504A (en) * | 1993-07-16 | 1996-11-26 | Shin-Etsu Handotai Co., Ltd. | Method for determination of resistivity of N-type silicon epitaxial layer |
JP2000193570A (en) * | 1998-09-24 | 2000-07-14 | Toshiba Ceramics Co Ltd | Sample treating device for highly sensitive analysis of impurities in siliceous sample to be analyzed, and analyzing method using the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6196736A (en) * | 1984-10-17 | 1986-05-15 | Toshiba Corp | Decomposing device of semiconductor thin film |
JPH0192657A (en) * | 1988-01-23 | 1989-04-11 | Kyushu Electron Metal Co Ltd | Reacting device for analyzing surface of si semiconductor substrate |
-
1989
- 1989-01-20 JP JP1011625A patent/JP2909086B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6196736A (en) * | 1984-10-17 | 1986-05-15 | Toshiba Corp | Decomposing device of semiconductor thin film |
JPH0192657A (en) * | 1988-01-23 | 1989-04-11 | Kyushu Electron Metal Co Ltd | Reacting device for analyzing surface of si semiconductor substrate |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5578504A (en) * | 1993-07-16 | 1996-11-26 | Shin-Etsu Handotai Co., Ltd. | Method for determination of resistivity of N-type silicon epitaxial layer |
JP2000193570A (en) * | 1998-09-24 | 2000-07-14 | Toshiba Ceramics Co Ltd | Sample treating device for highly sensitive analysis of impurities in siliceous sample to be analyzed, and analyzing method using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2909086B2 (en) | 1999-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2944099B2 (en) | Method and instrument for measuring impurity | |
JP2013190403A (en) | Apparatus and method for analysing impurity | |
US5442175A (en) | Gas evolution component analysis | |
JP3473699B2 (en) | Silicon wafer etching method and apparatus and impurity analysis method | |
JPH0658927B2 (en) | Method for analyzing semiconductor thin film and device for collecting sample for analysis | |
JPH02192750A (en) | Impurity recovery method of semiconductor substrate surface and equipment therefor | |
JP2002368052A (en) | Method for desorbing silicon and method for analyzing impurities in silicon wafer | |
JP2973638B2 (en) | Impurity analysis method | |
JP3532786B2 (en) | Method for preparing sample for analysis of metal impurities contained in synthetic resin and method for measuring metal impurities using the same | |
JP3718459B2 (en) | Analytical sample liquid concentration method and apparatus | |
EP0339561B1 (en) | Impurity measuring method | |
JP2004109072A (en) | Analysis method for metal impurity in solution | |
JP4000027B2 (en) | Semiconductor sample impurity analysis method and semiconductor sample impurity concentration apparatus | |
JPH10339691A (en) | Method for measuring surface impurities | |
JPH10332554A (en) | Method for measuring surface impurities | |
KR100187448B1 (en) | Concentrating method and apparatus of chemical for semiconductor process | |
JPH08160032A (en) | Analysis of impurities on surface of semiconductor substrate | |
JPH1019747A (en) | Method for analyzing impurity | |
JPH11190730A (en) | Method for analyzing metallic impurity at surface of and inside of semiconductor substrate | |
JP2005003422A (en) | Total reflection fluorescent x-ray analyzing method and gaseous phase decomposition treatment apparatus | |
JP2000332072A (en) | Surface analysis method of semiconductor substrate | |
JP3562260B2 (en) | Substrate surface analysis method | |
JPS6241703A (en) | Sulfuric acid concentration apparatus | |
JP2009069137A (en) | Method for measuring trace chemical substance and its apparatus | |
JP2000221185A (en) | Method and apparatus for analyzing boron in steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |