JPH02191716A - Conjugate fiber having latent crimpability and imparting method of high crimp to same conjugate fiber - Google Patents

Conjugate fiber having latent crimpability and imparting method of high crimp to same conjugate fiber

Info

Publication number
JPH02191716A
JPH02191716A JP1005784A JP578489A JPH02191716A JP H02191716 A JPH02191716 A JP H02191716A JP 1005784 A JP1005784 A JP 1005784A JP 578489 A JP578489 A JP 578489A JP H02191716 A JPH02191716 A JP H02191716A
Authority
JP
Japan
Prior art keywords
melting point
fiber
density
crimp
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1005784A
Other languages
Japanese (ja)
Inventor
Hirofumi Yashiro
弘文 矢代
Akiro Kamaya
釜谷 彰郎
Kazuaki Toda
和昭 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP1005784A priority Critical patent/JPH02191716A/en
Publication of JPH02191716A publication Critical patent/JPH02191716A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject fiber capable of smoothly treating by card without revealing of a natural crimp at the drying treatment and capable of revealing crimp at subsequent heating, being subjected to conjugate spinning of respectively a specific high-melting component and a low-melting component and satisfying a specific condition. CONSTITUTION:(A) A high-melting component composed of crystalline polypropylene and (B) a low-melting component composed of mixture of (i) high-density crystalline polyethylene having 0.94-0.97g/cm<3> density as a main component and (ii) low-density crystalline polyethylene having 0.915-0.93g/cm<3> density in an amount of 10-30wt.% of total of (A) and (B) are subjected to melt conjugate spinning to afford the aimed fiber as parallel-type or eccentric sheath-core type conjugate fiber comprising 4/6-6/4 fiber cross-section ratio of components A/B, and for the eccentric sheath-core type conjugate fiber, having >=10% eccentricity E given by the formula E=D/RX100 (D is distance between the center of the conjugate fiber and the center of core component; R is radius of a circle having same cross section as the cross section of the conjugate fiber).

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は潜在的な捲縮能を有する複合繊維及び該複合繊
維の高捲縮化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a composite fiber having a latent crimp ability and a method for increasing the crimp of the composite fiber.

[従来の技術] ポリオレフィン系原料を用いた複合繊維としては、結晶
性ポリプロピレンの如き高融点成分と高密度ポリエチレ
ンの如き低融点成分とを貼り合せた並列型複合繊維や、
上記高融点成分と低融点成分のいずれか一方を芯成分、
他方を鞘成分とし、芯成分の中心が複合繊維の中心と一
致せず偏心している、鋼心鞘芯型複合繊維等があり、こ
れらの複合繊維においては、紡糸、延伸工程で、高融点
成分と低融点成分との収縮力差により、自然捲縮が発生
ずるので、嵩高性不繊布の製造用材料として用いられて
いる。
[Prior art] Composite fibers using polyolefin raw materials include parallel composite fibers in which a high melting point component such as crystalline polypropylene and a low melting point component such as high density polyethylene are bonded together;
Either one of the above high melting point component or low melting point component is used as a core component,
There are steel-core sheath-core composite fibers in which the other is a sheath component and the center of the core component is eccentric rather than coincident with the center of the composite fiber.In these composite fibers, the high melting point component is Natural crimp occurs due to the difference in shrinkage force between the fiber and the low melting point component, so it is used as a material for manufacturing bulky nonwoven fabrics.

また上記複合繊維の自然捲縮の発現力を大きくし、その
コイル状の弾性力を利用し、フェルトなどに混綿したり
、伸縮性不繊布用に利用することが検討されている。
In addition, it is being considered to increase the natural crimp force of the above-mentioned composite fibers and utilize its coiled elasticity to blend it into felts or the like, or to use it for stretchable nonwoven fabrics.

[発明が解決しようとする問題点] しかしながら、高融点ポリオレフィン成分と低融点ポリ
オレフィン成分とのメルトインデックス比や紡糸温度を
変えることにより延伸後の両成分に収縮力差をもたせて
自然捲縮を発現させる従来の高捲縮性複合繊維を用いて
伸縮性不織布を製造する場合には、延伸および延伸後に
行なわれる乾燥処理で捲縮数20個/′インチ以上の自
然捲縮が既に発現してしまい、乾燥処理後に行なわれる
カード処理を円滑に行なうことができず、一方、カード
処理を円滑に行なわせようとして上記延伸および乾燥処
理における自然捲縮を抑えようとすると、得られる複合
繊維の捲縮数が少なく、伸縮性に劣るという欠点があっ
た。
[Problems to be solved by the invention] However, by changing the melt index ratio and spinning temperature of the high-melting point polyolefin component and the low-melting point polyolefin component, a difference in shrinkage force is created between the two components after stretching, resulting in natural crimp. When producing stretchable nonwoven fabrics using conventional highly crimpable composite fibers, natural crimps with a number of 20 crimps/inch or more have already appeared during stretching and the drying process performed after stretching. , the carding process that is carried out after the drying process cannot be performed smoothly, and on the other hand, if an attempt is made to suppress the natural crimp in the above-mentioned drawing and drying process in order to perform the carding process smoothly, the resulting conjugate fiber will not be crimped. They had the disadvantage of being small in number and having poor elasticity.

従って本発明の第1の目的は、紡糸後の乾燥処理におけ
る自然捲縮の顕在化に対して防止又は抑止力を有し、乾
燥処理後のカード処理を円滑に行なうことができ、しか
もカード処理後の加熱処理により自然捲縮を顕在化する
ことができる、潜在的な捲縮能を有する複合繊維を提供
することにある。
Therefore, the first object of the present invention is to have the ability to prevent or suppress the appearance of natural crimp in the drying process after spinning, and to be able to smoothly carry out card processing after the drying process. The object of the present invention is to provide a composite fiber having a latent crimp ability that can manifest natural crimp through subsequent heat treatment.

また本発明の第2の目的は、前記の、潜在的な捲縮能を
有する複合繊維の高捲縮化方法を提供することにある。
A second object of the present invention is to provide a method for increasing the crimp of the composite fiber having potential crimp ability.

U問題点を解決するための手段] 本発明の第1の目的は、高融点成分と低融点成分とを溶
融複合紡糸してなる並列型又は偏心鞘芯型複合繊維であ
って、下記の条件(i) 、 (ii)及び(iii)
を満たすことを特徴とする潜在的な捲縮能を有する複合
繊維によって達成された。
Means for Solving Problem U] The first object of the present invention is to provide a parallel type or eccentric sheath-core type composite fiber formed by melting composite spinning of a high melting point component and a low melting point component, and which is provided under the following conditions. (i), (ii) and (iii)
This was achieved by composite fibers with a potential crimp ability characterized by satisfying

(i)  前記高融点成分が結晶性ポリプロピレンから
なり、他方、前記低融点成分は、密度09t10〜0.
970g/a(の高密度結晶性ポリエチレンを主要成分
とし、これに、密度0915〜0.930g/at(の
低密度結晶性ポリエチレンを、全低融点成分を基準にし
て10〜30重量?1.添加した混合物からなる。
(i) The high melting point component consists of crystalline polypropylene, while the low melting point component has a density of 09t10 to 0.
The main component is high-density crystalline polyethylene of 970 g/a (weight), and to this, low-density crystalline polyethylene with a density of 0915 to 0.930 g/at (10 to 30% by weight based on the total low melting point components) is added. consisting of an added mixture.

(旨)前記高融点成分/′低融点成分の繊維断面積比が
4/6〜6/4である。
(Effect) The fiber cross-sectional area ratio of the high melting point component/'low melting point component is 4/6 to 6/4.

(iii)偏心鞘芯型複合繊維の場合には、複合繊維の
中心と芯成分の中心との距N(D)を複合繊維の断面積
と同一断面積の円の半径(R)で徐することにより得ら
れた偏心率(E=D/Rx1OO)が10%以上である
(iii) In the case of eccentric sheath-core type composite fibers, the distance N (D) between the center of the composite fiber and the center of the core component is divided by the radius (R) of a circle with the same cross-sectional area as the cross-sectional area of the composite fiber. The eccentricity ratio (E=D/Rx1OO) obtained by this is 10% or more.

また本発明の第2の目的は、上述の潜在的な捲縮能を有
する複合繊維を、その潜在的な捲縮能が発現しないよう
に、低密度結晶性ポリエチレンの融点未満の温度で乾燥
処理し、次いでカード処理した後、得られたウェブを高
融点成分の融点と低密度結晶性ポリエチレンの融点の間
の温度で加熱処理して高捲縮化させることを特徴とする
潜在的な捲縮能を有する複合繊維の高捲縮化方法によっ
て達成された。
A second object of the present invention is to dry the composite fibers having the above-mentioned latent crimpability at a temperature below the melting point of low-density crystalline polyethylene so that the latent crimpability is not expressed. and then, after carding, the resulting web is heat treated at a temperature between the melting point of the high melting point component and the melting point of the low density crystalline polyethylene to achieve high crimp. This was achieved by a method of making highly crimped composite fibers with high crimping properties.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の対象となる複合繊維は、低融点成分と高融点成
分とが貼り合された並列型複合繊維又は低融点成分と高
融点成分のいずれか一方を芯成分、他方を鞘成分とし、
芯成分の中心が複合繊維の中心と一致せず偏心している
、いわゆる偏心鞘芯型複合繊維である。
The conjugate fiber that is the object of the present invention is a parallel conjugate fiber in which a low melting point component and a high melting point component are bonded together, or one of the low melting point component and the high melting point component is a core component and the other is a sheath component,
This is a so-called eccentric sheath-core type conjugate fiber in which the center of the core component does not coincide with the center of the conjugate fiber and is eccentric.

ここに上記並列型複合繊維の例としては、第1図(イ)
に示したような、低融点成分(L)と高融点成分(F(
)との断面がほぼ半円の並列型複合繊維1や、第1図(
ロ)に示したような、低融点成分(L)の断面積が高融
点成分(H)の断面積よりも大きい並列型複合繊維1等
が挙げられる。
Here, as an example of the above-mentioned parallel type composite fiber, Fig. 1 (a)
The low melting point component (L) and the high melting point component (F(
) and the parallel type composite fiber 1 whose cross section is almost semicircular, and the parallel type composite fiber 1 with a cross section of
Parallel type conjugate fibers 1 and the like shown in b) in which the cross-sectional area of the low-melting point component (L) is larger than the cross-sectional area of the high-melting point component (H) are exemplified.

また偏心鞘芯型複合繊維の例としては、第1図(ハ)、
(ニ)、(ホ)、(へ)に示されたものが挙げられる。
Examples of eccentric sheath-core composite fibers are shown in Figure 1 (c).
Examples include those shown in (d), (e), and (f).

すなわち、これらの図において、Cは芯成分、Sは鞘成
分、2は偏心鞘芯型複合繊維を示すが、第1図(ハ)は
芯成分C1複合m維2ともに断面が円形であるもの、(
ニ)は複合繊維2の断面は円形であるが、芯成分Cの断
面は楕円形であって、その長軸が図の垂直方向に伸びて
いるもの、(ホ)は芯成分C1複合繊維2ともに楕円形
であり、その長軸が図の同一水平方向に伸びているもの
、(へ)は芯成分Cの断面は円形であるが、複合繊維2
の断面は楕円形であって、その長軸か図の水平方向に伸
びているものをそれぞれ表わしている。
That is, in these figures, C indicates a core component, S indicates a sheath component, and 2 indicates an eccentric sheath-core type composite fiber, but in FIG. ,(
D) is a case in which the cross section of the composite fiber 2 is circular, but the cross section of the core component C is elliptical, with its long axis extending in the vertical direction of the figure, and (E) is a case in which the core component C1 is a composite fiber 2. Both are elliptical, with their long axes extending in the same horizontal direction in the figure, and (f) is a composite fiber 2 whose core component C has a circular cross section.
The cross-section of is elliptical, and each represents its long axis extending in the horizontal direction of the figure.

次に本発明の複合繊維の上記条件(i) 、 (ii)
及び(iii)について順次説明する。
Next, the above conditions (i) and (ii) for the composite fiber of the present invention
and (iii) will be explained in order.

(1)  高融点成分及び低融点成分の材料本発明の複
合繊維においては、高融点成分が結晶性ポリプロピレン
、特に融点が160℃以上の結晶性ポリプロピレンから
なり、他方、低融点成分は、密度0.940〜0.97
0g/酬の高密度結晶性ポリエチレンを主要成分とし、
こhに、密度0.915〜0.930g/cm3の低密
度結晶性ポリエチレンを、全低融点成分を基準にして1
0〜30王量%添加した混合物からなる。
(1) Materials for high melting point component and low melting point component In the composite fiber of the present invention, the high melting point component consists of crystalline polypropylene, particularly crystalline polypropylene with a melting point of 160°C or higher, while the low melting point component has a density of 0. .940-0.97
The main component is high-density crystalline polyethylene with a weight of 0g/hundred,
In this, low-density crystalline polyethylene with a density of 0.915 to 0.930 g/cm3 is added to
It consists of a mixture containing 0 to 30% of royal weight.

前記複合繊維の紡糸、延伸条件等を適切に選定すること
により、延伸後の低融点成分と高融点成分との収縮力差
が小さく保たれるので、延伸後の乾燥処理において、自
己捲縮の発現が抑えられ、機械捲縮加工により捲縮数を
調節することが可能となり、その結果、乾燥処理後のカ
ード処理を円滑に実施することができる。
By appropriately selecting the spinning and drawing conditions of the composite fiber, the difference in shrinkage force between the low-melting point component and the high-melting point component after drawing can be kept small, so self-crimping can be prevented in the drying process after drawing. This suppresses the occurrence of crimps, making it possible to adjust the number of crimps by mechanical crimping, and as a result, card processing after drying processing can be carried out smoothly.

また本発明の複合繊維の低融点成分において、前記高密
度結晶性ポリエチレンよりも融点の低い、密度0.91
5〜0.930g/cm3の低密度結晶性ポリエチレン
(直鎮低密度ポリエチレンを含む)を、全低融点成分を
基準にして10〜30重厘%添加したのは、カード処理
後に、前記低密度ポリエチレンの融点以上で高融点成分
の融点未満の温度で加熱処理すると、前記の低密度ポリ
エチレンが融解することにより、潜在化している自然捲
縮が顕在化して複合繊維の高捲縮化を円滑に行なうこと
かて′きるからである。なお、低密度ポリエチレンが1
0%未満の場合には、加熱処理により十分な自己捲縮を
発現さぜることかできず、また35%を超える場合には
、カード性が悪化し、いずれも本発明の目的を達成する
ことができない。
In addition, in the low melting point component of the composite fiber of the present invention, the melting point is lower than the high density crystalline polyethylene, and the density is 0.91.
5 to 0.930 g/cm3 of low density crystalline polyethylene (including directly cast low density polyethylene) was added in an amount of 10 to 30% by weight based on the total low melting point components after card processing. When heat treated at a temperature higher than the melting point of polyethylene and lower than the melting point of the high-melting point component, the low-density polyethylene melts and the latent natural crimp becomes apparent, making it easier to increase the crimp of the composite fiber. Because there is nothing you can do. In addition, low density polyethylene is 1
If it is less than 0%, sufficient self-crimping cannot be achieved by heat treatment, and if it exceeds 35%, the cardability deteriorates, and in either case, the object of the present invention cannot be achieved. I can't.

(11)高融点成分/′低融点成分の断面積沈木発明の
複合繊維においては、高融点成分/低融点成分の断面積
比も必須条件であり、その範囲は、4 y’ 6〜6/
4に限定される。その理由は、断面積比が4/′6未満
の場合は、延伸後のカード処理を円滑に行なうことがで
きず、−方6/4を超える場合は、カード処理後の加熱
処理により十分な自己捲縮を発現さぜることかできない
のに対し、4/6〜6/′4の場合には、延伸後のカー
ド処理を円滑に行なうことができるだけでなく、カード
処理後の加熱処理により十分な自己捲縮を発現させるこ
とができるからである。
(11) Cross-sectional area of high-melting point component/'low-melting point component In the composite fiber of the sunken wood invention, the cross-sectional area ratio of high-melting point component/low-melting point component is also an essential condition, and its range is 4 y' 6 to 6/
Limited to 4. The reason for this is that if the cross-sectional area ratio is less than 4/'6, card processing after stretching cannot be carried out smoothly, and if it exceeds -6/4, heat treatment after card processing is insufficient. In contrast, in the case of 4/6 to 6/'4, not only can card processing after stretching be carried out smoothly, but also the heat treatment after card processing This is because sufficient self-crimping can be caused.

(iii)偏心鞘芯型複合繊維の場合の偏心率第1図(
ハ)において、Rを複合繊維の断面積と同一断面積の円
の半径、01を複合繊維の中心、02を芯成分の中心と
すると、olと02の距離をDとした時、偏心率EはF
式によって求められる。
(iii) Eccentricity in the case of eccentric sheath-core composite fibers Figure 1 (
In c), if R is the radius of a circle with the same cross-sectional area as the cross-sectional area of the composite fiber, 01 is the center of the composite fiber, and 02 is the center of the core component, then when the distance between ol and 02 is D, the eccentricity E is F
It is determined by the formula.

E=D/RX100 (%) 上式によって求められる偏心率が10%未満の場合は、
カード処理後の加熱処理により充分な自然捲縮が発現し
ない。。
E=D/RX100 (%) If the eccentricity calculated by the above formula is less than 10%,
Sufficient natural crimp does not develop due to heat treatment after card processing. .

従って本発明の偏心鞘芯型複合繊維の偏心率は10%以
−Eに限定される。
Therefore, the eccentricity of the eccentric sheath-core composite fiber of the present invention is limited to -E of 10% or more.

上記条件(i) 、(肖)、(iii)を満足する本発
明の複合繊維は、これを乾燥処理し、次いでカード事理
することにより得らノ′Lるウェブの加熱処理まで、そ
の捲縮能が潜在化しているので、カード処理を円滑に行
なうことができ、また得られたウェブを加熱処理するこ
とにより、それまで潜在化していた捲縮を顕在化し、高
捲縮化することが可能であるので、伸縮性不織布材料と
して好ましく用いられる。
The composite fiber of the present invention that satisfies the above conditions (i), (port), and (iii) can be obtained by drying the composite fiber and then carding it. Since the ability is latent, card processing can be carried out smoothly, and by heat-treating the obtained web, it is possible to make the crimp that was hidden until then visible and increase the crimp. Therefore, it is preferably used as a stretchable nonwoven fabric material.

本発明の複合繊維の高捲縮化方法においては、紡糸後の
乾燥処理は、複合繊維の潜在的な捲縮能が発現しないよ
うに低密度結晶性ポリエチレンの融点未満の温度(例え
ば約100℃〉で行なう<g要がある。また乾燥処理後
、カード処理することにより得られたウェブを利用して
熱風加熱融着して高伸縮性不織布を作製する際、高密度
ポリエチレンの融点以上で加熱処理を行なうと、複合繊
維の自然捲縮顕在化が十分になされないうちに繊維内で
融着が発生する。そのため前もって複合繊維の高捲縮化
(潜在的な捲縮能の顕在化)が十分に達成されるように
高密度結晶性ポリエチレンの融点と低密度結晶性ポリエ
チレンの融点との間の温度(例えば約125℃)で加熱
処理を行なうことが望ましい。
In the method for making composite fibers highly crimped according to the present invention, the drying treatment after spinning is carried out at a temperature below the melting point of low-density crystalline polyethylene (for example, about 100 °C It is necessary to carry out the process at a temperature above the melting point of high-density polyethylene. When the treatment is carried out, fusion occurs within the fibers before the natural crimp of the composite fibers has fully manifested.Therefore, the high crimp of the composite fibers (manifestation of latent crimp ability) is caused in advance. It is desirable to conduct the heat treatment at a temperature between the melting point of high density crystalline polyethylene and the melting point of low density crystalline polyethylene (eg, about 125°C) to ensure that the heat treatment is satisfactorily achieved.

[実施例] 以下、実施例により本発明を更に説明する。[Example] The present invention will be further explained below with reference to Examples.

実施例1 一軸押出機2台とホール径0.6+II!nの複合繊維
用円形ノズルからなる偏心鞘芯型複合繊維紡糸設備を使
用し、芯成分(高融点成分)として結晶性ポリプロピレ
ン(宇部興産 8130MV>を、また鞘成分(低融点
成分)として高密度ポリエチレン(旭化成サンチックJ
310、密度0.962 g / cd )に、全鞘成
分(全低融点成分)基準で20重量%の直鎖低密度ポリ
エチレン(日本石油化学リニレックス、AJ6380、
密度0.919 g / ayi 、融点120°C)
を添加したものを50;50の比率で紡糸温度240℃
、引取り速度666m/l1linで紡糸し、単糸デニ
ール9、Odeの、潜在的な捲縮能を有する偏心鞘芯型
複合繊維を得た。
Example 1 Two single screw extruders and hole diameter 0.6+II! Using an eccentric sheath-core type composite fiber spinning equipment consisting of a circular nozzle for composite fibers, crystalline polypropylene (Ube Industries 8130MV> is used as the core component (high melting point component) and high density polypropylene (Ube Industries, Ltd. 8130MV) is used as the sheath component (low melting point component). Polyethylene (Asahi Kasei Santic J
310, density 0.962 g/cd), and 20% by weight based on all sheath components (all low melting point components) linear low density polyethylene (Japan Petrochemical Linilex, AJ6380,
density 0.919 g/ayi, melting point 120°C)
was added at a spinning temperature of 240°C at a ratio of 50:50.
The fibers were spun at a take-up speed of 666 m/l lin to obtain an eccentric sheath-core type composite fiber having a single yarn denier of 9 and an Ode and having a potential crimp ability.

得られた複合繊維は、高融点成分(芯成分)/低融点成
分(鞘成分)の断面積比が515であり、複合繊維の中
心01と芯成分の中心02の距離りを複合繊維断面積と
同一断面積の円の半径Rで徐することにより得られた偏
心率Eが17%であった(第1図(ハ)参照)。
The obtained composite fiber has a high melting point component (core component)/low melting point component (sheath component) cross-sectional area ratio of 515, and the distance between the center 01 of the composite fiber and the center 02 of the core component is the composite fiber cross-sectional area. The eccentricity E obtained by multiplying by the radius R of a circle with the same cross-sectional area as , was 17% (see Figure 1 (c)).

このマルチフィラメントを100本集めて、トータルデ
ニールを約40万としステープルファイバー試作設備に
て、第1延伸ローラーのみ60°C1第2、第3延伸ロ
ーラー、第1、第2延伸槽は90℃にて4.0倍延伸、
オイリンク゛、機械捲縮加工、カット、乾燥処理を行な
い、カット長51mm、機械捲縮加工時の捲縮数10個
/インチのステープルファイバーを得た。
100 of these multifilaments were collected, with a total denier of approximately 400,000, and the first drawing roller was heated to 60°C. The second and third drawing rollers and the first and second drawing tanks were heated to 90°C. Stretched 4.0 times,
Oiling, mechanical crimping, cutting, and drying were performed to obtain a staple fiber with a cut length of 51 mm and a number of crimps per inch of mechanical crimping of 10.

なお、上記機械捲縮加工を行なうクリンパ−は中25m
mの金属ロール2本からなり、通常の機械捲縮を付与す
る場合と同様、スタフィンボックスを使用した。また乾
燥処理は、低融点成分として添加した直鎖低密度ポリエ
チレンの融点以下の100℃の熱風中にて10分間行な
った。この乾燥処理による自然捲縮の顕在化は小さく、
乾燥処理後の捲縮数は14個/インチであった。
In addition, the crimper that performs the above mechanical crimping process has a medium size of 25 m.
A stuffing box consisting of two metal rolls of 50 mm was used as in the case of applying normal mechanical crimping. The drying process was carried out for 10 minutes in hot air at 100°C, which is below the melting point of the linear low density polyethylene added as a low melting point component. The natural crimp caused by this drying process is small;
The number of crimps after drying was 14/inch.

次に、上で得られたステープルファイバーを350+n
m巾のサンプルカード機に通し、十分開繊しな。カード
性は良好でまったく問題なかった。次に直鎖低密度ポリ
エチレンの融点以上で高密度ポリエチレンの融点以下の
125℃の熱風中にて10分間加熱処理し、自然捲縮の
発現程度を観察したところ、捲縮数が28個/インチで
ある高捲縮化された複合繊維が得られた。
Next, the staple fiber obtained above was added to 350+n
Pass it through a m-wide sample card machine and spread it thoroughly. The card quality was good and there were no problems at all. Next, heat treatment was performed for 10 minutes in hot air at 125°C, which is above the melting point of linear low-density polyethylene and below the melting point of high-density polyethylene, and the degree of natural crimp development was observed, and the number of crimp was 28/inch. A highly crimped composite fiber was obtained.

実施例2 直鎖低密度ポリエチレンを30重量%添加した以外は実
施例1と同じ方法にて、カッI・長51mTl+、機械
捲縮加工時の捲縮数が10個/インチのステーブルファ
イバーを得た。なお、乾燥処理による自然捲縮の顕在化
は、実施例1よりも大きいか、それでも従来法よりも小
さく、乾燥処理後の捲縮数は18個/インチであった。
Example 2 A stable fiber with a cut I and length of 51 mTl+ and a number of crimps of 10 per inch during mechanical crimping was produced in the same manner as in Example 1 except that 30% by weight of linear low-density polyethylene was added. Obtained. It should be noted that the appearance of natural crimp due to the drying treatment was greater than in Example 1, but still smaller than in the conventional method, and the number of crimp after the drying treatment was 18/inch.

次に、上で得られたステープルファイバーを350mm
巾のサンプルカード機に通し、十分開繊した。カード性
は良好でまったく問題なかった。次に125℃の熱風中
にて10分間加熱処理し、自然捲縮の発現程度を観察し
たところ、捲縮数が31個/インチである高捲縮化され
た複合繊維が得られた。
Next, the staple fiber obtained above is cut into 350mm
It was passed through a wide sample card machine and thoroughly opened. The card quality was good and there were no problems at all. Next, the fibers were heat-treated in hot air at 125° C. for 10 minutes, and the degree of natural crimping was observed. As a result, highly crimped composite fibers with a number of crimps of 31/inch were obtained.

実施例3 偏心率を大きくしたノズルを使用したこと及び直鎖低密
度ポリエチレンを10重量%添加したことを除き、実施
例1と同じ方法にて、カット長51m+n、機械捲縮加
工時の捲縮数10個/インチ、偏心率29%のステープ
ルファイバーを得た。乾燥処理による自然捲縮の顕在化
は小さく、乾燥処理後の捲縮数は13個/インチであっ
た。
Example 3 The same method as in Example 1 was used, except that a nozzle with a larger eccentricity was used and 10% by weight of linear low density polyethylene was added, the cut length was 51 m + n, and the crimping during mechanical crimping was reduced. Several ten staple fibers/inch and an eccentricity of 29% were obtained. The appearance of natural crimp due to the drying treatment was small, and the number of crimp after the drying treatment was 13 crimps/inch.

次に、上で得られたステープルファイバーを350舶巾
のサンプルカード機に通し十分開繊した。
Next, the staple fibers obtained above were passed through a sample card machine with a width of 350 mm to fully open the fibers.

カード性は良好でまったく問題なかった。次に125℃
の熱風中にて10分間加熱処理し、自然捲縮の発現程度
を観察したところ捲縮数が26個/インチである高捲縮
化された複合繊維が得られた。
The card quality was good and there were no problems at all. Then 125℃
After heat treatment in hot air for 10 minutes and observing the degree of natural crimp, a highly crimp composite fiber with a number of crimp of 26/inch was obtained.

実施例4 低密度ポリエチレン(宇部興産 UBEポリエチレンJ
2522、密度0.920g/cJ、融点104℃)を
15重量%添加した以外は実施例1と同じ方法にて、カ
ット長51順、機械捲縮加工時の捲縮数10個/インチ
のステープルファイバーを得た。乾燥処理による自然捲
縮の顕在化は実施例1よりも大きいが、それでも従来法
よりも小さく、乾燥処理後の捲縮数は16個/インチで
あった。
Example 4 Low density polyethylene (Ube Industries UBE Polyethylene J
2522, density 0.920 g/cJ, melting point 104°C) was added in an amount of 15% by weight, but the same method as in Example 1 was used to prepare staples with a cut length of 51 and a number of crimps of 10/inch during mechanical crimping. I got the fiber. Although the appearance of natural crimp due to the drying treatment was larger than that in Example 1, it was still smaller than that in the conventional method, and the number of crimp after the drying treatment was 16/inch.

次に、上で得られたステープルファイバーを350m巾
のサンプルカード機に通し十分開繊した。
Next, the staple fiber obtained above was passed through a sample card machine with a width of 350 m and thoroughly opened.

カード性は良好でまったく問題なかった。次に125℃
の熱風中にて10分間加熱処理し、自然捲縮の発現程度
を観察したところ捲縮数が29個/′インチである高捲
縮化された複合繊維が得られた。
The card quality was good and there were no problems at all. Then 125℃
After heat treatment in hot air for 10 minutes and observing the degree of natural crimp, a highly crimp composite fiber with a number of crimp of 29/inch was obtained.

比較例1 直鎖低密度ポリエチレンを本発明に規定した範囲外の3
5重量%添加した以外は実施例1と同じ方法にて、カッ
ト長51刷、機械捲縮加工時の捲縮数10個/インチの
ステープルファイバーを得た。乾燥処理による自然捲縮
の顕在化は大きく、乾燥処理後の捲縮数は23個/イン
チであった。
Comparative Example 1 Linear low density polyethylene 3 outside the range specified in the present invention
A staple fiber having a cut length of 51 prints and a number of crimps per inch of mechanical crimping of 10 was obtained in the same manner as in Example 1 except that 5% by weight was added. The natural crimp became more obvious due to the drying treatment, and the number of crimp after the drying treatment was 23/inch.

次に、上で得られたステープルファイバーを350舶巾
のサンプルカード機に通し、開繊したところ、シリンダ
ーに沈み込み、カードから出てこなかった。
Next, when the staple fiber obtained above was passed through a sample card machine with a width of 350 mm and opened, it sank into the cylinder and did not come out from the card.

比較例2 直鎖低密度ポリエチレンを本発明に規定した範囲外の8
重量%添加した以外は実施例3と同じ5方法にて、カッ
ト長51mm、機械捲縮加工時の捲縮数10個/インチ
のステープルファイバーを得た。
Comparative Example 2 Linear low density polyethylene 8 outside the range specified in the present invention
A staple fiber having a cut length of 51 mm and a number of crimps of 10 per inch during mechanical crimping was obtained by the same 5 methods as in Example 3 except that the weight percent was added.

乾燥処理による自然捲縮の顕在化はほとんどなく乾燥処
理後の捲縮数は11個/インチであった。
Natural crimps hardly appeared during the drying process, and the number of crimps after the drying process was 11 crimps/inch.

次に、上で得られたステープルファイバーを350mm
巾のサンプルカード機に通し、十分開繊し、125℃の
熱風中にて10分間加熱処理し、自然捲縮の発現程度を
観察したところ、捲縮数が19個/インチのものしか得
られなかった。
Next, the staple fiber obtained above is cut into 350mm
The fibers were passed through a wide sample card machine, thoroughly opened, and heat treated in hot air at 125°C for 10 minutes. When the degree of natural crimp was observed, only 19 crimp per inch was obtained. There wasn't.

比較例3 実施例1と同じ紡糸設備を使用し、芯成分(高融点成分
)として結晶性ポリプロピレン(宇部興産 3115M
)を使用し、鞘成分(低融点成分)として低密度ポリエ
チレンを使用せずに高密度ポリエチレン(昭和電工 F
6200、密度0.952g/cn)のみを使用して、
これらを50:50の比率で紡糸温度220℃、引取り
速度666m/minで紡糸し単糸デニール9.Ode
の偏心鞘芯型複合繊維を得た。得られた複合繊維の偏心
率は17%であった。
Comparative Example 3 Using the same spinning equipment as in Example 1, crystalline polypropylene (Ube Industries 3115M) was used as the core component (high melting point component).
), and high-density polyethylene (Showa Denko F
6200, density 0.952g/cn) using only
These were spun at a ratio of 50:50 at a spinning temperature of 220°C and a take-up speed of 666 m/min to obtain a single yarn denier of 9. Ode
An eccentric sheath-core composite fiber was obtained. The eccentricity of the obtained composite fiber was 17%.

このマルチフィラメントを100本集めてトータルデニ
ールを約40万としステープルファイバー試作設備にて
、第1、第2、第3延伸ローラーを30℃、第1、第2
延伸槽を90℃にして40倍延伸、オイリング、機械捲
縮加工、カット、乾燥処理を行ない、カット長51胴、
機械捲縮加工時の捲縮数10個/インチのステープルフ
ァイバーを得た。乾燥処理による自然捲縮の顕在化は非
常に大きく、乾燥処理後の捲縮数は26個/インチであ
った。
100 of these multifilaments were collected to have a total denier of about 400,000, and the first, second, and third drawing rollers were heated at 30°C and the
The stretching tank was heated to 90°C, and stretched 40 times, oiled, mechanically crimped, cut, and dried, resulting in a cut length of 51 cylinders.
A staple fiber having a number of 10 crimps/inch during mechanical crimping was obtained. The natural crimps became very noticeable during the drying process, and the number of crimps after the drying process was 26/inch.

次に、上で得られたステーアルファイバーを350rr
n巾のサンプルカード機に通したところ、シリンダーに
沈み込み、カードから出てこなかった。
Next, 350rr of the above-obtained stay fiber
When I passed it through an n-width sample card machine, it sank into the cylinder and did not come out of the card.

実施例5 実施例1と同じ紡糸設備を使い、芯成分(高融点成分)
として、結晶性ポリプロピレン(宇部興産 8115M
>を、鞘成分(低融点成分)として高密度ポリエチレン
(旭化成サンチックJ320、密度0.962g/a&
)に30重量%の直鎖低密度ポリエチレン(日本石油化
学リニレックス、AJ6381、密度0.921g/a
H5融点121°C)を添加したものを60:40の比
率で紡糸温度250℃、引取り速度666m/minで
紡糸し、単糸デニール9.Odeの潜在的な捲縮能を有
する偏心鞘芯型複合繊維を得な。得られた複合繊維は、
高融点成分(芯成分)/低融点成分(鞘成分)の断面積
比が6/4で、偏心率が23%であった。
Example 5 Using the same spinning equipment as in Example 1, the core component (high melting point component)
As crystalline polypropylene (Ube Industries 8115M
>, high-density polyethylene (Asahi Kasei Santic J320, density 0.962 g/a &
) with 30% by weight of linear low-density polyethylene (Japan Petrochemical Linyrex, AJ6381, density 0.921 g/a
H5 (melting point: 121°C) was added at a ratio of 60:40 at a spinning temperature of 250°C and a take-up speed of 666 m/min, resulting in a single yarn denier of 9. To obtain an eccentric sheath-core type composite fiber having the potential crimp ability of Ode. The obtained composite fiber is
The cross-sectional area ratio of the high melting point component (core component)/low melting point component (sheath component) was 6/4, and the eccentricity was 23%.

次に、上で得られたマルチフィラメントを、第1、第2
、第3延伸ローラー、第1、第2延伸槽90℃にて、4
.0倍延伸、オイリング、機械捲縮加工、カット、乾燥
処理を行ない、カット長51mm、機械捲縮加工時の捲
縮数10個/インチのステーブルファイバーを得な。乾
燥処理による自然捲縮の顕在化は小さく乾燥処理後の捲
縮数は15個/インチであった。
Next, the multifilament obtained above is applied to the first and second filaments.
, third stretching roller, first and second stretching tanks at 90°C, 4
.. 0x stretching, oiling, mechanical crimping, cutting, and drying to obtain a stable fiber with a cut length of 51 mm and a number of crimps per inch during mechanical crimping. The appearance of natural crimp due to drying was small, and the number of crimp after drying was 15/inch.

次に、上で得られたステープルファイバーを3501T
IIT+巾のサンプルカード機に通し十分開繊しな。
Next, the staple fiber obtained above was 3501T
Pass it through an IIT+ width sample card machine and spread it thoroughly.

カード性は良好でまったく問題なかった。次に125°
Cの熱風中にて10分間加熱処理し、自然捲縮の発現程
度を観察したところ捲縮数が27個/インチである高捲
縮化された複合繊維が得られた。
The card quality was good and there were no problems at all. then 125°
After heat treatment in hot air of C for 10 minutes and observing the degree of natural crimp, a highly crimp composite fiber with a number of crimp of 27/inch was obtained.

実施例6 実施例5に準じて、断面積比が4/6で、偏心率10%
、カット長51箇、機械捲縮加工時の捲縮数10個/イ
ンチのものを得た。乾燥処理による自然捲縮の顕在化は
実施例5よりも少し大きいが、それでも従来法よりも小
さく、乾燥処理後の捲縮数は18個/インチであった。
Example 6 According to Example 5, the cross-sectional area ratio was 4/6 and the eccentricity was 10%.
A piece with a cut length of 51 points and a number of crimps per inch during mechanical crimping processing was obtained. Although the appearance of natural crimp due to the drying treatment was slightly larger than that in Example 5, it was still smaller than that in the conventional method, and the number of crimp after the drying treatment was 18 crimps/inch.

次に、上で得られたステープルファイバーを350mm
巾のサンプルカード機に通し十分開繊した9カード性は
良好でまったく問題なかった。次に125℃の熱風中に
て、10分間加熱処理し、自然縮捲の発現程度を観察し
たところ、捲縮数が33個/インチである高捲縮化され
た複合繊維が得られた。
Next, the staple fiber obtained above is cut into 350mm
The fibers were passed through a wide sample card machine and the fibers were fully opened.The card properties were good and there were no problems at all. Next, the fibers were heat-treated in hot air at 125° C. for 10 minutes, and the degree of natural crimp was observed. As a result, highly crimped composite fibers with a number of crimps of 33 per inch were obtained.

比較例4 断面積比を本発明に規定した範囲外の6.5/3.5に
した以外は、実施例5に準じて、偏心率19%、カット
長51rnm、機械捲縮加工時の捲縮数10関/インチ
の複合繊維を得た。乾燥処理tこ、よる自然捲縮の顕在
化はほとんどなく、乾燥処理後の捲縮数は12個/イン
チであった。
Comparative Example 4 Same as Example 5, except that the cross-sectional area ratio was set to 6.5/3.5, which is outside the range specified in the present invention, with an eccentricity of 19%, a cut length of 51 nm, and a winding during mechanical crimping. A composite fiber with a reduction number of 10 mm/inch was obtained. Natural crimps hardly appeared due to the drying process, and the number of crimps after the drying process was 12 crimps/inch.

次に、上で得られたステーブルファイバーを35011
I!TI中のサンプルカード機に通し十分開繊し、12
5℃の熱風中にて10分間加熱処理し、自然縮捲の発現
程度を観察したところ、捲縮数18個/′インチのもの
しか得られなかった。
Next, the stable fiber obtained above was 35011
I! Pass it through the sample card machine in TI and fully open it for 12 minutes.
When heat-treated in hot air at 5° C. for 10 minutes and observing the degree of natural crimp, only 18 crimp/inch was obtained.

比較例5 断面積比を本発明に規定した範囲外の3,5/6.5に
した以外は、実施例5に準じて、偏心率10%、カット
長51mm、機械捲縮加工時の捲縮数10個/インチの
複合m維を得な。乾燥処理による自然捲縮の顕在化は非
常に大きく、乾燥処理後の捲縮数は23個/インチであ
った。
Comparative Example 5 The same procedure as Example 5 was carried out except that the cross-sectional area ratio was set to 3.5/6.5, which is outside the range specified in the present invention. Obtain a composite m-fiber with a reduction number of 10 pieces/inch. The natural crimps became very noticeable during the drying process, and the number of crimps after the drying process was 23/inch.

次に、上で得られたステープルファイバーを350ff
l!+1巾のサンプルカード機に通したところシリンダ
ーに沈み込み、カードから出てこなかった。
Next, 350ff of the staple fiber obtained above was
l! When I passed it through a +1 width sample card machine, it sank into the cylinder and did not come out of the card.

実施例7 実施例1と同じ紡糸設備を使用し、芯成分(高融点成分
)として、結晶性ポリプロピレン(宇部興産 R3L2
38>を、鞘成分(低融点成分)として高密度ポリエチ
レン(昭和電工 F6200、密度0.952g/胡)
に20重量%の直鎖低密度ポリエチレン(日本石油化学
リニレックスAJ5410、密度0.924g/cr#
、融点123℃)を添加したものを50 : 50の比
率で紡糸温度240℃、引取り速度666m/minで
紡糸し、単糸デニール9.Odeの潜在的な捲縮能を有
する偏心鞘芯型複合繊を得た。得られた複合繊維は、高
融点成分/低融点成分の断面積比が515で、偏心率が
13%であった。
Example 7 Using the same spinning equipment as in Example 1, crystalline polypropylene (Ube Industries R3L2) was used as the core component (high melting point component).
38>, high-density polyethylene (Showa Denko F6200, density 0.952 g/hu) as a sheath component (low melting point component)
20% by weight of linear low density polyethylene (Japan Petrochemical Linyrex AJ5410, density 0.924g/cr#
, melting point 123°C) was spun at a ratio of 50:50 at a spinning temperature of 240°C and a take-up speed of 666 m/min, and the single yarn denier was 9. An eccentric sheath-core type composite fiber having a potential crimp ability of Ode was obtained. The obtained composite fiber had a high melting point component/low melting point component cross-sectional area ratio of 515 and an eccentricity of 13%.

このマルチフィラメントを、第1延沖ローラーを30℃
、第2、第3延伸ローラー、第1、第2延伸槽を90℃
にして、4.0倍延伸、オイリング、機械捲縮加工、カ
ット、乾燥処理を行ない、カット長51rTn、機械捲
縮加工時の捲縮数10個/インチのステーブルファイバ
ーを得た。乾燥処理による自然捲縮の顕在化は小さく、
乾燥処理後の捲縮数は13個/インチであった。
This multifilament was heated at 30°C by the first Nobeoki roller.
, the second and third stretching rollers, and the first and second stretching tanks at 90°C.
The fiber was then stretched 4.0 times, oiled, mechanically crimped, cut, and dried to obtain a stable fiber with a cut length of 51 rTn and a number of crimps per inch during mechanical crimping. The appearance of natural crimp due to drying treatment is small;
The number of crimps after drying was 13 crimps/inch.

次に、上で得られたステーブルファイバーを350mm
巾のサンプルカード機に通し、十分開繊した。カード性
は、良好でまったく問題なかった。
Next, the stable fiber obtained above was cut into a 350 mm
It was passed through a wide sample card machine and thoroughly opened. The card properties were good and there were no problems at all.

次に125℃の熱風中にて10分間熱処理し、自然捲縮
の発現程度を観察したところ、捲縮数が26個/インチ
である高捲縮化された複合繊維が得られた。
Next, the fibers were heat-treated in hot air at 125° C. for 10 minutes, and the degree of natural crimping was observed. As a result, highly crimped composite fibers with a number of crimps of 26/inch were obtained.

実施例8 少し偏心率を小さくしたノズルを使用した点及び直鎖低
密度ポリエチレンを30重量%添加した意思外は、実施
例7と同じ方法にて、カット長51 mm 、機械捲縮
加工時の捲縮数10個/インチのステーブルファイバー
を得た。得られた複合繊維の偏心率は10%であり、乾
燥処理による自然捲縮の顕在化は、小さく14個/イン
チであった。
Example 8 The same method as Example 7 was used except that a nozzle with a slightly reduced eccentricity was used and 30% by weight of linear low density polyethylene was added, with a cut length of 51 mm and mechanical crimping. A stable fiber with 10 crimps/inch was obtained. The eccentricity of the obtained conjugate fiber was 10%, and the number of natural crimps that appeared due to drying was small at 14 crimps/inch.

次に、上で得られたステーブルファイバーを350IT
1m巾のサンプルカード機に通し、十分開繊した。カー
ド性は良好でまったく問題なかった。次に125℃の熱
風中にて10分間熱処理し、自然捲縮の発現程度を観察
しなところ、捲縮数が28個/インチである高捲縮化さ
れた複合繊維が得られた。
Next, the stable fiber obtained above was
It was passed through a 1 m wide sample card machine and thoroughly opened. The card quality was good and there were no problems at all. Next, the fibers were heat-treated in hot air at 125° C. for 10 minutes, and the degree of natural crimping was observed. As a result, highly crimped composite fibers with a number of crimps of 28/inch were obtained.

比較例6 偏心率を小さくしたノズルを使用した以外は、実施例8
と同じ方法にて、カット長51叫、捲縮加工時の捲縮数
10個/インチのステーブルファイバーを得な。得られ
た複合繊維の偏心率は8%であり、乾燥処理による自然
捲縮の顕在化はほとんどなく乾燥後の捲縮数は12個/
インチであった。
Comparative Example 6 Example 8 except that a nozzle with a smaller eccentricity was used
Using the same method as above, obtain a stable fiber with a cut length of 51 mm and a crimping count of 10 crimps/inch. The eccentricity of the obtained composite fiber was 8%, and the number of crimps after drying was 12/1, with almost no natural crimps appearing during the drying process.
It was inches.

次に、上で得られたステーブルファイバーを350Mn
巾のサンプルカード機に通し、十分開繊し、125℃の
熱風中にて10分間熱処理し、自然捲縮の発現程度を観
察したところ捲縮数21個/インチのものしか得られな
かった。
Next, the stable fiber obtained above was
The fibers were passed through a wide sample card machine, fully opened, and heat treated in hot air at 125° C. for 10 minutes. When the degree of natural crimp was observed, only 21 crimp/inch was obtained.

実施例1〜8、比較例1〜6の条件及び結果は、表1に
まとめて示した。
The conditions and results of Examples 1 to 8 and Comparative Examples 1 to 6 are summarized in Table 1.

比較例7 添加剤である低密度ポリオレフィンを用いなかった点及
び偏心率が0%のノズルを用いた意思外は実施例1に準
じて、添加剤O%、偏心率O%で捲縮加工時捲縮数17
個/インチ、カット長51柵のステープルファイバーを
得た。ioo”cの乾燥処理後においても、またカード
処理後の125°Cの加熱処理後においても捲縮の発現
はなく、捲縮数は機械捲縮加工時のままの17個/イン
チで捲縮形態はジグザグ状の機械捲縮であった。
Comparative Example 7 The same procedure as in Example 1 was carried out except that the additive low-density polyolefin was not used and a nozzle with an eccentricity of 0% was used during crimping with an additive of 0% and an eccentricity of 0%. Number of crimps: 17
Staple fibers with a cut length of 51 pieces/inch and a cut length of 51 bars were obtained. There were no crimps after drying of ioo"c or after heat treatment at 125°C after card processing, and the number of crimps was 17 per inch, the same as during mechanical crimping. The morphology was a zigzag mechanical crimp.

実施例9 実施例1、比較例2.7で得られたステーブルファイバ
ーをサンプルカード機に通し、得られたウェブを125
℃で加熱処理し、高捲縮化させた後、試験熱風融着設備
にて、熱風融着し、目付約30〜32 g / tr?
′の不織布を製造した。次にテンシロン(UTM−n−
20)により、20%伸長応力、20%伸長弾性率を測
定しな。
Example 9 The stable fibers obtained in Example 1 and Comparative Example 2.7 were passed through a sample card machine, and the resulting web was
After being heat-treated at ℃ to make it highly crimped, it was hot-air fused in a test hot-air fusion equipment to give it a fabric weight of about 30 to 32 g/tr?
'A nonwoven fabric was produced. Next, Tensilon (UTM-n-
20), measure the 20% elongation stress and 20% elongation modulus.

なお20%伸長応力、20%伸長弾性率の測定方法は以
下の通りである。
The method for measuring 20% elongation stress and 20% elongation elastic modulus is as follows.

(1)20%伸長応力 伸長弾性率測定試験で、伸長率20%の応力を測定して
20%伸長応力とした。
(1) 20% elongation stress In the elongation modulus measurement test, the stress at an elongation rate of 20% was measured and defined as 20% elongation stress.

(2)20%伸長弾性率 J l5−L1096A法に準じて行なった。(2) 20% elongation modulus It was carried out according to the J 15-L1096A method.

すなわち、定速伸長型引張試験機により、試料幅50!
lTm、試料長20Trrm、引張速度20mm/mi
口、伸長率20%で測定した。
That is, the sample width was 50! using a constant speed extension type tensile tester.
lTm, sample length 20Trrm, tensile speed 20mm/mi
Measurement was made at an elongation rate of 20%.

初荷重を加え、伸長率20%のときの長さ1−mを測定
し、1分間放置し次に除重し、3分間放置後再び初荷重
と同一荷重をかけ、伸長率20%まで引き伸ばし、残留
伸びの長さLlmmを測定し下式により算出した。
Apply an initial load, measure the length of 1-m when the elongation rate is 20%, leave it for 1 minute, then remove the weight, leave it for 3 minutes, apply the same load as the initial load again, and stretch it to an elongation rate of 20%. The residual elongation length Llmm was measured and calculated using the following formula.

20%伸長弾性率(%)=     xio。20% elongation modulus (%) = xio.

し 測定結果は表2に示した。表2に示すように、実施例1
の複合繊維を用いて得られた不織布が、比較例2.7の
ものに比べ、小さい力で伸びやすく、また20%伸長弾
性率も10回目で80%と伸縮性にすぐれているという
結果が得られた。
The measurement results are shown in Table 2. As shown in Table 2, Example 1
The results showed that the nonwoven fabric obtained using the composite fibers of Comparative Example 2.7 was easier to stretch with a small force, and the elastic modulus of 20% elongation was 80% at the 10th time, indicating excellent elasticity. Obtained.

(以下余白) [発明の効果コ 以上詳述したように、本発明によれば、乾燥処理後のカ
ード処理を円滑に実施することができるとともに、カー
ド処理後の加熱処理により、潜在化していた自然捲縮を
顕在化することができる、潜在的な捲縮能を有する複合
繊維及び該複合繊維の高捲縮化方法が提供された。
(The following is a blank space) [Effects of the Invention] As detailed above, according to the present invention, card processing after drying processing can be carried out smoothly, and heat treatment after card processing can prevent latent A composite fiber having latent crimp ability that can manifest natural crimp, and a method for increasing the crimp of the composite fiber have been provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の複合繊維の断面構造を示す模式図で
ある。
FIG. 1 is a schematic diagram showing the cross-sectional structure of the composite fiber of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1) 高融点成分と低融点成分とを溶融複合紡糸して
なる並列型又は偏心鞘芯型複合繊維であつて、下記の条
件(i),(ii)及び(iii)を満たすことを特徴
とする潜在的な捲縮能を有する複合繊維。 (i) 前記高融点成分が結晶性ポリプロピレンからな
り、他方、前記低融点成分は、密度0.940〜0.9
70g/cm^3の高密度結晶性ポリエチレンを主要成
分とし、これに、密度0.915〜0.930g/cm
^3の低密度結晶性ポリエチレンを、全低融点成分を基
準にして10〜30重量%添加した混合物からなる。 (ii)前記高融点成分/低融点成分の繊維断面積比が
4/6〜6/4である。 (iii) 偏心鞘芯型複合繊維の場合には、複合繊維
の中心と芯成分の中心との距離(D)を複合繊維の断面
積と同一断面積の円の半径(R)で徐することにより得
られた偏心率(E=D/R×100)が10%以上であ
る。
(1) A parallel type or eccentric sheath-core type composite fiber made by melt-spinning a high melting point component and a low melting point component, and is characterized by satisfying the following conditions (i), (ii) and (iii). Composite fiber with potential crimp ability. (i) The high melting point component consists of crystalline polypropylene, while the low melting point component has a density of 0.940 to 0.9.
The main component is high-density crystalline polyethylene with a density of 70 g/cm^3, and a density of 0.915 to 0.930 g/cm.
It consists of a mixture in which 10 to 30% by weight of low-density crystalline polyethylene of ^3 is added based on the total low melting point components. (ii) The fiber cross-sectional area ratio of the high melting point component/low melting point component is 4/6 to 6/4. (iii) In the case of eccentric sheath-core type composite fibers, the distance (D) between the center of the composite fiber and the center of the core component is divided by the radius (R) of a circle with the same cross-sectional area as the cross-sectional area of the composite fiber. The eccentricity ratio (E=D/R×100) obtained is 10% or more.
(2) 請求項(1)に記載の潜在的な捲縮能を有する
複合繊維を、その潜在的な捲縮能が発現しないように、
低密度結晶性ポリエチレンの融点未満の温度で乾燥処理
し、次いでカード処理した後、得られたウエブを高融点
成分の融点と低密度結晶性ポリエチレンの融点の間の温
度で加熱処理して高捲縮化させることを特徴とする潜在
的な捲縮能を有する複合繊維の高捲縮化方法。
(2) The composite fiber having a latent crimp ability according to claim (1) is treated so that the latent crimp ability is not expressed.
After drying at a temperature below the melting point of low density crystalline polyethylene and then carding, the resulting web is heat treated at a temperature between the melting point of the high melting point component and the melting point of the low density crystalline polyethylene for high winding. 1. A method for increasing the crimp of a composite fiber having a potential crimp ability, the method comprising crimping the composite fiber.
JP1005784A 1989-01-12 1989-01-12 Conjugate fiber having latent crimpability and imparting method of high crimp to same conjugate fiber Pending JPH02191716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1005784A JPH02191716A (en) 1989-01-12 1989-01-12 Conjugate fiber having latent crimpability and imparting method of high crimp to same conjugate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1005784A JPH02191716A (en) 1989-01-12 1989-01-12 Conjugate fiber having latent crimpability and imparting method of high crimp to same conjugate fiber

Publications (1)

Publication Number Publication Date
JPH02191716A true JPH02191716A (en) 1990-07-27

Family

ID=11620734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1005784A Pending JPH02191716A (en) 1989-01-12 1989-01-12 Conjugate fiber having latent crimpability and imparting method of high crimp to same conjugate fiber

Country Status (1)

Country Link
JP (1) JPH02191716A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125645A (en) * 1991-10-28 1993-05-21 Unitika Ltd Stretchable bulky filament nonwoven fabric and its production
JPH11350255A (en) * 1998-06-02 1999-12-21 Mitsui Chem Inc Composite fiber and composite fiber non-woven fabric formed from the same fiber
JP2018145544A (en) * 2017-03-02 2018-09-20 旭化成株式会社 Bulky combined filament nonwoven fabric excellent in barrier property

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125645A (en) * 1991-10-28 1993-05-21 Unitika Ltd Stretchable bulky filament nonwoven fabric and its production
JPH11350255A (en) * 1998-06-02 1999-12-21 Mitsui Chem Inc Composite fiber and composite fiber non-woven fabric formed from the same fiber
JP2018145544A (en) * 2017-03-02 2018-09-20 旭化成株式会社 Bulky combined filament nonwoven fabric excellent in barrier property

Similar Documents

Publication Publication Date Title
EP2220273B1 (en) Hot-melt adhesive polyester conjugate fiber
JPS5823951A (en) Production of bulky nonwoven fabric
US4261373A (en) Tobacco filters and method for forming same
EP0696655B1 (en) Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
JPS58191215A (en) Polyethylene hot-melt fiber
JPH11508969A (en) New polyester toe
DE60317094T2 (en) Nonwoven fabric with high work capacity and manufacturing process
JPH03119112A (en) Readily processable yarn and molded article using same yarn
JPH02191720A (en) Latently crimping conjugate yarn and production thereof
DE1297280B (en) Multi-component composite fibers and threads
JP2002180331A (en) Heat-bonding type conjugated fiber, method for producing the same and fiber formed product using the same
JPH02191716A (en) Conjugate fiber having latent crimpability and imparting method of high crimp to same conjugate fiber
JPS5887323A (en) Preparation of heat-resistant spun yarn
US6001752A (en) Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
JP4056733B2 (en) Method for producing non-torque false twisted yarn
JPH0754213A (en) Sheath-core type composite short fiber and production thereof
DE1660357A1 (en) Curled fibers and apparatus for making the same
JP4379127B2 (en) Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the composite fiber
JPH0138902B2 (en)
JPH0291217A (en) Polypropylenic conjugate fiber and stretchable nonwoven fabric obtained therefrom
JP2955406B2 (en) Polypropylene composite staple fiber and nonwoven fabric thereof
JP2916985B2 (en) Polypropylene-based bulky composite yarn and method for producing the same
JP2788140B2 (en) Method for producing polypropylene-based composite short fiber and nonwoven fabric
JP4081338B2 (en) Polypropylene-based fluid disturbed fiber and method for producing the same
JPS60259664A (en) Fiber sheet like article