JPH02191369A - Monolithic semiconductor device - Google Patents

Monolithic semiconductor device

Info

Publication number
JPH02191369A
JPH02191369A JP1090789A JP1090789A JPH02191369A JP H02191369 A JPH02191369 A JP H02191369A JP 1090789 A JP1090789 A JP 1090789A JP 1090789 A JP1090789 A JP 1090789A JP H02191369 A JPH02191369 A JP H02191369A
Authority
JP
Japan
Prior art keywords
electrodes
capacitor
mmic
per unit
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1090789A
Other languages
Japanese (ja)
Inventor
Juichi Ozaki
寿一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1090789A priority Critical patent/JPH02191369A/en
Publication of JPH02191369A publication Critical patent/JPH02191369A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase capacitance per unit length by forming a conductor section on a layer different from a layer constructing a pair of electrodes between the electrodes in a capacitor. CONSTITUTION:A conductor section 12 is formed between a pair of electrodes 101, 102 in a capacitor and on a layer different from a layer constructing the electrode 101, 102. Accordingly, since part of an electric field 13 passes through the interior of the conductor section 12, an interelectrode distance is equivalently reduced, and if the width of the conductor 12 is increased, a capacitance per unit length of the length of the electrodes can be increased. Hereby, an area of the capacitor, which occupies a large area in a monolithic microwave integrated circuit(MMIC) can be reduced to miniaturize the MMIC and improve electrical characteristics.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、GaAs (ガリウム砒素)等の半絶縁性半
導体基板に形成されるモノリシックマイクロ波集積回路
(MMIC)に用いるインタディジタル形キャパシタの
構造に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to an interface used in a monolithic microwave integrated circuit (MMIC) formed on a semi-insulating semiconductor substrate such as GaAs (gallium arsenide). Concerning the structure of a digital capacitor.

(従来の技術) GaAs等の半絶縁性半導体基板に形成されるMMIC
のキャパシタンス素子として用いられるインタディジタ
ル形キャパシタは、素子値(素子の容量値)がそのパタ
ーン形状だけで決定されるため素子値の精度が高く、回
路の特性に対する素子感度の高い箇所でも用いることが
できる。しかし、そのパターンの占める面積当り得られ
る容量値が小さく、パターンが大形化し、MMICのチ
ップサイズに与える影響が大きい。
(Prior art) MMIC formed on a semi-insulating semiconductor substrate such as GaAs
Interdigital capacitors, which are used as capacitance elements, have high accuracy because the element value (element capacitance value) is determined only by the pattern shape, and can be used even in places where the element is highly sensitive to circuit characteristics. can. However, the capacitance value obtained per area occupied by the pattern is small, the pattern becomes large, and the influence on the MMIC chip size is large.

第2図に従来のインタディジタル形キャパシタの対向電
極の配置を示す平面図(a)とA−A線に沿う断面図(
b)を示す。
Figure 2 shows a plan view (a) showing the arrangement of opposing electrodes of a conventional interdigital capacitor and a cross-sectional view taken along line A-A (
b).

通常インタディジタルキャパシタは、電極のメツキ等の
後工程の容易さからMMICの上部メタル層に形成され
る。第2図において、101.102はキャパシタを形
成する対向電極、103はGaAs半絶縁性半導体基板
、104はFETのゲート電極あるいは下部メタル層の
形成に用いられる誘電体膜(通常SiO□膜を用いる)
、105はFETの保護あるいは平行平板(MIN)形
キャパシタに用いられるM電体膜(通常SiNx膜が用
いられる)である。
Interdigital capacitors are usually formed in the upper metal layer of an MMIC for ease of post-processing such as electrode plating. In FIG. 2, 101 and 102 are counter electrodes forming a capacitor, 103 is a GaAs semi-insulating semiconductor substrate, and 104 is a dielectric film (usually a SiO□ film is used to form the gate electrode or lower metal layer of the FET). )
, 105 is an M electric film (usually a SiNx film) used for FET protection or a parallel plate (MIN) type capacitor.

インタディジタル形キャパシタの電極対における単位長
当りの容量値は主に電極間距離(S)と電極下の誘電体
の比誘電率(、、)で決定される。そして、インタディ
ジタル形キャパシタの電極対の単位長当りの容量値を大
きくするには電極間距離を小さくすれば良い、電極は通
常エツチングあるいはリフトオフ工程で形成するが5歩
留りを考慮すると電極間距離としては5=tOμm程度
が限界である。また、第2図に示される構造では1図中
に破線矢で示される電界121はSiNx層に集中する
The capacitance value per unit length of an electrode pair of an interdigital capacitor is mainly determined by the distance between the electrodes (S) and the dielectric constant (, , ) of the dielectric material under the electrodes. In order to increase the capacitance value per unit length of the electrode pair of an interdigital capacitor, the distance between the electrodes can be reduced.The electrodes are usually formed by an etching or lift-off process, but considering the yield, the distance between the electrodes can be reduced. The limit is about 5=tOμm. Further, in the structure shown in FIG. 2, an electric field 121 shown by a broken line arrow in FIG. 1 is concentrated in the SiNx layer.

従って電極対の単位長当りの容量値は主に電極間距離と
S i N xのε、で決定される。 SiNxのE1
値はi、47であり、GaAsのそれはg、=12.7
である。
Therefore, the capacitance value per unit length of the electrode pair is mainly determined by the distance between the electrodes and ε of S i N x. SiNx E1
The value is i, 47, and that of GaAs is g, = 12.7
It is.

従ってGaAs直上に電極を作る場合よりも電極対の単
位長当りの容量値は、さらに小さいものになる。
Therefore, the capacitance value per unit length of the electrode pair becomes even smaller than when electrodes are formed directly on GaAs.

次に、第2図に示されるインタディジタル形キャパシタ
の構造において、電極幅(W)W=10μm。
Next, in the structure of the interdigital capacitor shown in FIG. 2, the electrode width (W) is 10 μm.

5=10μm、導体厚(t)t=1’pmとした場合、
電極対の単位長当りの容量値(CO)は。
5=10μm, conductor thickness (t) t=1'pm,
The capacitance value (CO) per unit length of the electrode pair is.

Go=0.03〜0.04pF/ m     ・・・
(1)である。ここで1例えば容量値(C) C= 0
.5pFのキャパシタを形成しようとした場合、パター
ンの占める面積は200μmX200μm程度の大きさ
が必要である0通常MMICのチップサイズは歩留りを
考慮すると1 m X 1 rm程度である。
Go=0.03~0.04pF/m...
(1). Here 1 For example, capacitance value (C) C= 0
.. When trying to form a 5 pF capacitor, the area occupied by the pattern needs to be about 200 μm x 200 μm.The chip size of a normal MMIC is about 1 m x 1 rm considering the yield.

叙上によってもMNICの中でインタディジタル形キャ
パシタのパターンが占める割合の大きいことがわかる。
It can be seen from the above that the interdigital capacitor pattern occupies a large proportion of the MNIC.

(発明が解決しようとする課題) 以上述べた様に、従来のインタディジタル形キャパシタ
では、電極対の単位長当りの容量値を大きくできないた
め、パターン寸法が大きくなりMMICのチップサイズ
に大きな影響を与えていた。
(Problems to be Solved by the Invention) As described above, in conventional interdigital capacitors, the capacitance value per unit length of the electrode pair cannot be increased, so the pattern size increases, which has a large impact on the MMIC chip size. was giving.

本発明は電極対の単位長当りの容量値が従来のインタデ
ィジタル形キャパシタより大きくなる構造をしたインタ
ディジタル形キャパシタを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an interdigital capacitor having a structure in which the capacitance value per unit length of an electrode pair is larger than that of a conventional interdigital capacitor.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明にかかるモノリシック半導体装置は、半絶縁性
半導体基板に形成されたインタディジタル形キャパシタ
を備えてなるモノリシック半導体装置において、キャパ
シタにおける電極対の間で。
(Means for Solving the Problems) A monolithic semiconductor device according to the present invention includes an interdigital capacitor formed on a semi-insulating semiconductor substrate, in which a monolithic semiconductor device includes an interdigital capacitor formed on a semi-insulating semiconductor substrate.

かつ、この電極対を構成する層と異なる層に形成された
導体部を具備したことを特徴とする。
Further, the present invention is characterized in that it includes a conductor portion formed in a layer different from the layer constituting the electrode pair.

(作 用) 本発明のインタディジタル形キャパシタでは、対向電極
対間に形成した導体が1等価的に電極間距離を小さくす
る働きをする。これにより、fa電極対単位長当りの容
量値が大きくなり、インタディジタル形キャパシタのパ
ターン寸法を小さくすることができる。
(Function) In the interdigital capacitor of the present invention, the conductor formed between the pair of opposing electrodes functions to equivalently reduce the distance between the electrodes. This increases the capacitance value per unit length of the fa electrode pair, allowing the pattern dimensions of the interdigital capacitor to be reduced.

(実施例) 以下1本発明の一実施例につき第1図(a)、 (b)
を参照して説明する。
(Example) Figures 1 (a) and (b) are shown below for one example of the present invention.
Explain with reference to.

第1図(a)に一実施例のインタディジタル形キャパシ
タの対向電極と導体との配置を平面図にて、また同図(
b)に断面図で夫々示す、なお、図中の各部において、
従来と変わらない部分については従来と同じ符号をつけ
て示し、説明を省略する。
FIG. 1(a) shows a plan view of the arrangement of opposing electrodes and conductors of an interdigital capacitor according to an embodiment, and FIG.
b) is shown in a cross-sectional view, and in each part in the figure,
Portions that are the same as before are designated by the same reference numerals as before, and their explanation will be omitted.

同図において、W1極対101.102は上側の誘電体
膜105、−例のSiN、膜に取着されており、これら
電極対101.102の間隙部分で、かつ、前記Mi1
!体膜105の下側の誘電体膜11.−例のSin、膜
に導体部12が形成されている。本発明のインタディジ
タル形キャパシタでは、電界13は図中に破線矢で示さ
れるように、その一部が導体部12.の中を通過する。
In the same figure, the W1 pole pair 101.102 is attached to the upper dielectric film 105, an example SiN film, and the W1 electrode pair 101.
! Dielectric film 11 below the body film 105. - The conductor portion 12 is formed in the example Sin film. In the interdigital capacitor of the present invention, the electric field 13 is partially transmitted to the conductor portion 12, as shown by the broken line arrow in the figure. pass through.

したがって1等価的に電極間距離は小さくなったように
なり、導体幅(We)を大きくすれば、電極対の単位長
当りの容量値を大きくすることができる。
Therefore, the distance between the electrodes becomes equivalently smaller, and by increasing the conductor width (We), the capacitance value per unit length of the electrode pair can be increased.

第2図の従来例と同一寸法の電極対で比較すると、電極
の導体幅W=10μm、電極間距離5=lOμm、電極
の導体厚t=1μmとし、電極対の空隙に形成する導体
幅Wc=5μm、導体厚(tc) tc=0.5μmと
した場合、電極対の単位長当りの容量値(Co’)は、 Go’ = 0.1pF/ tan        −
(2)である。
Comparing an electrode pair with the same dimensions as the conventional example in Fig. 2, the electrode conductor width W = 10 μm, the inter-electrode distance 5 = 10 μm, the electrode conductor thickness t = 1 μm, and the conductor width Wc formed in the gap between the electrode pairs. = 5 μm, conductor thickness (tc) When tc = 0.5 μm, the capacitance value (Co') per unit length of the electrode pair is Go' = 0.1 pF/tan −
(2).

また、この程度のWeであれば電極と導体間でのMIN
キャパシタの効果は考慮しなくても良く、従来のインタ
ディジタル形キャパシタと同一の素子精度と考えて良い
Also, with this level of We, the MIN between the electrode and the conductor is
There is no need to consider the effect of the capacitor, and it can be considered that the device accuracy is the same as that of a conventional interdigital capacitor.

従って、本発明のインタディジタル形キャパシタでC=
0.5PFのキャパシタを形成した場合、パターンの占
める寸法は約110μmX110μm程度であり、従来
のインタディジタル形キャパシタと比べ約1/3の大き
さでパターニングが達成される。
Therefore, in the interdigital capacitor of the present invention, C=
When a 0.5PF capacitor is formed, the dimensions occupied by the pattern are approximately 110 μm x 110 μm, which is approximately 1/3 the size of a conventional interdigital capacitor.

また、この空隙に形成する導体は、 FETのゲート電
極あるいは下部メタル層と同一層に形成するため1本発
明のインタディジタル形キャパシタのためにMMICの
プロセスを変更することがなく、またMMICの歩留り
に影響しない。
In addition, since the conductor formed in this gap is formed in the same layer as the gate electrode or lower metal layer of the FET, there is no need to change the MMIC process for the interdigital capacitor of the present invention, and the yield of the MMIC can be reduced. does not affect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、素子値の精度が良く、かつ歩留りを低
下させることなく、従来のインタディジタル形キャパシ
タに比ベパターン面積の小さなインタディジタル形キャ
パシタを提供できる。これにより、 MMIC中にて大
きな面積を占めるキャパシタの面積を縮減でき、MMI
Cの小型化、電気的特性の向上に顕著な効果がある。
According to the present invention, it is possible to provide an interdigital capacitor that has high accuracy in element values and a smaller pattern area than conventional interdigital capacitors without reducing yield. As a result, the area of the capacitor, which occupies a large area in the MMIC, can be reduced, and the MMIC
This has a remarkable effect on miniaturizing C and improving electrical characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための図で、(a
)は対向電極と導体部との配置を示す平面図、(b)は
断面図、第2図は従来例を説明するための図で、(a)
は対向電極の配置を示す平面図、(b)は断面図である
。 11−−−−−−−−−−−−一誘電体MtJ(SiO
2)12−−−−−−−−−−−−−4体部13−−−
−−−−−−−−−一電界 101、102−−−−−−一対向電極105−−−−
−−−−−−−一誘電体j漠(SiNx)代理人 弁理
人 大 胡 典 夫 (α) IO! /2 12;連射β 第  1 囚 第  2  図
FIG. 1 is a diagram for explaining one embodiment of the present invention, (a
) is a plan view showing the arrangement of the counter electrode and the conductor part, (b) is a cross-sectional view, FIG. 2 is a diagram for explaining the conventional example, and (a)
is a plan view showing the arrangement of counter electrodes, and (b) is a cross-sectional view. 11----------One dielectric MtJ (SiO
2) 12------------4 body parts 13---
----------One electric field 101, 102---One counter electrode 105------
−−−−−−−Dielectric material (SiNx) agent Patent attorney Norifu Ogo (α) IO! /2 12; Rapid fire β 1st prisoner 2nd figure

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性半導体基板に形成されたインタディジタル形キ
ャパシタを備えてなるモノリシック半導体装置において
、キャパシタにおける電極対の間で、かつ、この電極対
を構成する層と異なる層に形成された導体部を具備した
ことを特徴とするモノリシック半導体装置。
A monolithic semiconductor device comprising an interdigital capacitor formed on a semi-insulating semiconductor substrate, comprising a conductor portion formed between a pair of electrodes in the capacitor and in a layer different from the layer constituting the pair of electrodes. A monolithic semiconductor device characterized by:
JP1090789A 1989-01-19 1989-01-19 Monolithic semiconductor device Pending JPH02191369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1090789A JPH02191369A (en) 1989-01-19 1989-01-19 Monolithic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090789A JPH02191369A (en) 1989-01-19 1989-01-19 Monolithic semiconductor device

Publications (1)

Publication Number Publication Date
JPH02191369A true JPH02191369A (en) 1990-07-27

Family

ID=11763359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090789A Pending JPH02191369A (en) 1989-01-19 1989-01-19 Monolithic semiconductor device

Country Status (1)

Country Link
JP (1) JPH02191369A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784050B1 (en) 2000-09-05 2004-08-31 Marvell International Ltd. Fringing capacitor structure
US6974744B1 (en) 2000-09-05 2005-12-13 Marvell International Ltd. Fringing capacitor structure
US6980414B1 (en) 2004-06-16 2005-12-27 Marvell International, Ltd. Capacitor structure in a semiconductor device
JP2014053637A (en) * 2013-11-14 2014-03-20 Renesas Electronics Corp Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784050B1 (en) 2000-09-05 2004-08-31 Marvell International Ltd. Fringing capacitor structure
US6885543B1 (en) 2000-09-05 2005-04-26 Marvell International, Ltd. Fringing capacitor structure
US6974744B1 (en) 2000-09-05 2005-12-13 Marvell International Ltd. Fringing capacitor structure
US9017427B1 (en) 2001-01-18 2015-04-28 Marvell International Ltd. Method of creating capacitor structure in a semiconductor device
US6980414B1 (en) 2004-06-16 2005-12-27 Marvell International, Ltd. Capacitor structure in a semiconductor device
US7116544B1 (en) 2004-06-16 2006-10-03 Marvell International, Ltd. Capacitor structure in a semiconductor device
US7578858B1 (en) 2004-06-16 2009-08-25 Marvell International Ltd. Making capacitor structure in a semiconductor device
US7988744B1 (en) 2004-06-16 2011-08-02 Marvell International Ltd. Method of producing capacitor structure in a semiconductor device
US8537524B1 (en) 2004-06-16 2013-09-17 Marvell International Ltd. Capacitor structure in a semiconductor device
JP2014053637A (en) * 2013-11-14 2014-03-20 Renesas Electronics Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US4731696A (en) Three plate integrated circuit capacitor
KR20010039886A (en) Semiconductor device
US5041881A (en) Whiskerless Schottky diode
JPH02191369A (en) Monolithic semiconductor device
US3671793A (en) High frequency transistor structure having an impedance transforming network incorporated on the semiconductor chip
US3805129A (en) Field effect transistor having two gates for functioning at extremely high frequencies
US5227323A (en) Method of manufacturing capacitor elements in an integrated circuit having a compound semiconductor substrate
GB2236617A (en) A high frequency fet
JPS6348856A (en) Monolithic microwave integrated circuit
JPH01223757A (en) Semiconductor device
JP2690709B2 (en) Semiconductor device
JPH03138962A (en) Semiconductor integrated circuit
JPS62229958A (en) Semiconductor device
JPS61187278A (en) Semiconductor device
KR100424952B1 (en) LC Oscillator
JPH09306935A (en) Semiconductor device
JPH04109604A (en) Microwave semiconductor device
JPS629661A (en) Monolithic integrated circuit
JPH066150A (en) High frequency transistor circuit
JPH05160348A (en) Semiconductor device and overvoltage protective device
JPS60262462A (en) Semiconductor element
JPH06132490A (en) Semiconductor element and fabrication thereof
JPH06120425A (en) Semiconductor device
JPH0620021B2 (en) Capacitor for microwave integrated circuit
JPS63133652A (en) Structure and method for suppressing electric interference caused by capacitive coupling