JPH02191349A - Dielectric substrate with metal film - Google Patents

Dielectric substrate with metal film

Info

Publication number
JPH02191349A
JPH02191349A JP1090389A JP1090389A JPH02191349A JP H02191349 A JPH02191349 A JP H02191349A JP 1090389 A JP1090389 A JP 1090389A JP 1090389 A JP1090389 A JP 1090389A JP H02191349 A JPH02191349 A JP H02191349A
Authority
JP
Japan
Prior art keywords
metal film
dielectric substrate
film
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1090389A
Other languages
Japanese (ja)
Other versions
JP2839523B2 (en
Inventor
Masaru Ishibashi
勝 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1010903A priority Critical patent/JP2839523B2/en
Publication of JPH02191349A publication Critical patent/JPH02191349A/en
Application granted granted Critical
Publication of JP2839523B2 publication Critical patent/JP2839523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Abstract

PURPOSE:To avoid a peeling-off defect between a dielectric substrate made of quartz glass or the like and a metal film by a method wherein a silicon nitride film is provided between the dielectric substrate and the metal film. CONSTITUTION:A laminated metal film 11 composed of a titanium layer 3, a platinum layer 4 and a metal (Au) layer 5 is formed on one main surface of a quartz glass substrate 1 with a silicon nitride film 2 between to form a dielectric substrate with a metal film. The Si3N4 film 2 is formed by a low- pressure CVD method and the Ti layer 3 and the Pt layer 4 are both formed by a sputtering deposition method. With this construction, adhesion strength between the quartz glass and the silicon nitride film and adhesion strength between the silicon nitride film and the metal film are both high, so that the peeling-off defect between the dielectric substrate and the metal film can be avoided.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、高周波半導体装置に用いられる内部整合回路
部品の金属膜付き誘電体基板に係り、特に石英ガラス、
セラミック等の誘電体基板とこれに接着される金属膜と
の接着に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Field of Application) The present invention relates to a dielectric substrate with a metal film for an internal matching circuit component used in a high-frequency semiconductor device, and particularly relates to a dielectric substrate with a metal film for an internal matching circuit component used in a high-frequency semiconductor device.
This field relates to adhesion between a dielectric substrate such as a ceramic substrate and a metal film bonded thereto.

(従来の技術) 高周波半導体装置に用いられる内部整合回路は、半導体
素子ベレットの持つ特性インピーダンスを50Ωに変換
して、半導体素子ベレットの高周波特性(RF特性)、
を最大限に引き出すための回路である。この内部整合回
路は、集中定数回路と分布定数回路に分けられる場合が
多い。この集中定数回路は、インダクタンス成分である
金(Au>ワイヤと、キャパシタンス成分である誘電体
基板等で構成され、半導体素子ベレットの特性インピー
ダンスを、インダクタンス成分とキャパシタンス成分で
50Ωになるように大まかな調整を行なうものである。
(Prior art) An internal matching circuit used in a high-frequency semiconductor device converts the characteristic impedance of the semiconductor element pellet to 50Ω, and improves the high frequency characteristics (RF characteristics) of the semiconductor element pellet.
This is a circuit that brings out the maximum potential. This internal matching circuit is often divided into lumped constant circuits and distributed constant circuits. This lumped constant circuit is composed of a gold (Au> wire as an inductance component) and a dielectric substrate as a capacitance component. It is for making adjustments.

次に分布定数回路には、50Ωストリツプラインに加え
てトリミングパターンを有する場合が多い。50Ωスト
リツプライン幅は、整合回路用誘電体幕板の厚さ及び誘
電率と使用周波数で決まる。トリミングパターンは、前
記集中定数回路で大まかに調整した特性インピーダンス
を、さらに50Ωに近づけるように微調整するものであ
る。
Next, distributed constant circuits often have a trimming pattern in addition to the 50Ω stripline. The width of the 50Ω stripline is determined by the thickness and dielectric constant of the dielectric curtain plate for the matching circuit, and the frequency used. The trimming pattern is used to finely adjust the characteristic impedance roughly adjusted by the lumped constant circuit so that it approaches 50Ω.

(発明が解決しようとする課題) 近年、高周波半導体素子の超高周波化の進歩は目覚まし
く、これに対応する整合回路の開発も盛んに行われてい
る。使用周波数が20GHzを越える超高周波半導体装
置の分布定数回路の整合回路用基板に、アルミナ基板を
用いた場合には、50Ωストリップライン幅が細くなり
、ライン抵抗が大きくなる。このため、内部整合回路の
電力損失は増大し、半導体装置のRF特性の低下を起こ
し易い。
(Problems to be Solved by the Invention) In recent years, there has been remarkable progress in increasing the frequency of high-frequency semiconductor elements to ultra-high frequencies, and matching circuits corresponding to this have been actively developed. When an alumina substrate is used as a matching circuit substrate for a distributed constant circuit of an ultra-high frequency semiconductor device whose operating frequency exceeds 20 GHz, the width of the 50Ω strip line becomes narrower and the line resistance increases. Therefore, the power loss of the internal matching circuit increases, and the RF characteristics of the semiconductor device tend to deteriorate.

しかし、石英ガラス基板を分布定数回路の整合回路用基
板に用いた場合には、ストリップライン幅を広くできる
ので、ライン抵抗は小さくできる。
However, when a quartz glass substrate is used as a matching circuit substrate for a distributed constant circuit, the strip line width can be increased, and the line resistance can be reduced.

つまり、内部整合回路の電力損失を最少限に押さえるこ
とができる。この理由は、次の第1表に示すように、石
英ガラス基板はアルミナ基板に比べ比誘電率が172で
あることによる。
In other words, power loss in the internal matching circuit can be minimized. The reason for this is that the quartz glass substrate has a dielectric constant of 172 compared to the alumina substrate, as shown in Table 1 below.

第1表 また、内部整合回路の集中定数回路で、長いボンディン
グワイヤの支えとしての補助部材として中継用基板にア
ルミナ基板を用いる場合、この基板の上部電極部と対向
する部分の間に発生する寄生容量が大きくなって、整合
回路の広帯域化は難しかった。奇生容量を小さくするに
は、この基板を厚くしなければならず、この場合、伯の
回路部品との段差が大きくなり、Auワイヤとの接続が
難しくなるという欠点があった。しかしながら、石英ガ
ラス基板を用いる場合には、比誘電率が小さいため基板
が比較的薄くても奇生容量を小さくできるので、整合回
路の広帯域化が可能になると共に、他の回路部品との段
差を小さくできるためにAuワイヤとの接続が容易にな
った。
Table 1 also shows that when an alumina substrate is used as a relay substrate as an auxiliary member to support a long bonding wire in a lumped constant circuit of an internal matching circuit, parasitics occur between the upper electrode part and the opposing part of this substrate. As the capacitance increased, it was difficult to widen the bandwidth of the matching circuit. In order to reduce the stray capacitance, this substrate must be made thicker, and in this case, there was a drawback that the height difference between the substrate and the other circuit components became large, making it difficult to connect with the Au wire. However, when using a silica glass substrate, the dielectric constant is small, so even if the substrate is relatively thin, the stray capacitance can be reduced, making it possible to widen the band of the matching circuit and to reduce the level difference between other circuit components. Since it can be made smaller, connection with Au wire becomes easier.

一般に、電子部品用材料の中で広範囲に用いられている
石英ガラスやセラミックスからなる誘電体基板は、それ
が化学的に非常に安定であるために、金属との接着が極
めて封しい。この接着法に関して)Io−Mn法、蒸着
法などの種々の技術が既に開発されている。しかし、こ
れらはその簡易さ、製品コスト、システムの信頼性など
、実装面で一長一短がある。)lo−)In法は、最も
安定した誘電体基板への金属の接着方法である。しかし
、この場合、周波数が高くなるに従ってパターンも微細
になるので、この微細加工の点に限界があり、近年の高
周波化には対応が難しくなるという欠点があった。
In general, dielectric substrates made of quartz glass or ceramics, which are widely used as materials for electronic components, are chemically very stable and therefore bond extremely tightly to metals. Regarding this bonding method, various techniques such as the Io-Mn method and the vapor deposition method have already been developed. However, these have advantages and disadvantages in terms of implementation, such as simplicity, product cost, and system reliability. )lo-)In method is the most stable method for bonding metal to dielectric substrates. However, in this case, as the frequency becomes higher, the pattern becomes finer, so there is a limit to this fine processing, and there is a drawback that it becomes difficult to cope with the recent trend toward higher frequencies.

他方、蒸着法は微細加工の点で優れており、高周波化対
応に最適である。しかし、この方法には、以下に述べる
様なプロセス上の問題がある。まず、前処理工程におい
ては、弗酸処理による誘電体基板表面の腐蝕が必要であ
ること、及び誘電体基板表面の水気を除去するために、
7S温に加熱したまま金属を蒸着する必要があることで
ある。このため、特殊な装置が必要となった。ざらに悪
いことには、この様な特殊プロセスを用いても、金属膜
と誘電体基板との接着力に再現性がなく、温度サイクル
試験、ボンディング強度試験で、金属膜が剥れる不良が
多発するという致命的な技術的課題があった。
On the other hand, the vapor deposition method is superior in terms of microfabrication and is optimal for high frequency applications. However, this method has process problems as described below. First, in the pretreatment process, it is necessary to corrode the surface of the dielectric substrate by hydrofluoric acid treatment, and in order to remove moisture from the surface of the dielectric substrate,
It is necessary to vapor-deposit metal while heating to 7S temperature. This required special equipment. To make matters worse, even with this special process, the adhesion between the metal film and the dielectric substrate is not reproducible, resulting in frequent failures in which the metal film peels off during temperature cycle tests and bonding strength tests. There was a fatal technical problem.

以上述べたように、従来の高周波用の金属膜付き誘電体
基板の構造では、金属膜と誘電体基板との接着力が弱く
、金属膜の剥れ不良が発生していた。
As described above, in the conventional structure of a dielectric substrate with a metal film for high frequency use, the adhesion between the metal film and the dielectric substrate is weak, resulting in failure of the metal film to peel off.

この発明は上記の欠点を除去するもので、誘電体基板と
金属膜との剥れ不良を排除した金属膜付き誘電体基板の
構造を提供することを目的とする。
The present invention eliminates the above-mentioned drawbacks, and aims to provide a structure of a dielectric substrate with a metal film that eliminates peeling defects between the dielectric substrate and the metal film.

〔発明の構成〕[Structure of the invention]

(課題を解決するだめの手段) 本発明にかかる金属膜付き誘電体基板は、誘電体基板と
、該誘電体基板の主面に被着された窒化シリコン膜と、
該窒化シリコン膜に積層して形成された金属膜とを具備
したことを特徴とするものである。
(Means for Solving the Problems) A dielectric substrate with a metal film according to the present invention includes a dielectric substrate, a silicon nitride film deposited on the main surface of the dielectric substrate,
It is characterized by comprising a metal film formed in a laminated manner on the silicon nitride film.

(作 用) 本発明の金属膜付き誘電体基板は、誘電体基板と金属膜
との両方に接着力の強い中間層として窒化シリコン膜が
構成されているので、誘電体基板と金属膜の剥れ不良が
なくなる。
(Function) The dielectric substrate with a metal film of the present invention has a silicon nitride film as an intermediate layer with strong adhesion between both the dielectric substrate and the metal film, so it is easy to separate the dielectric substrate and the metal film. This eliminates defects.

(実施例) 以下、本発明にかかる金属膜付き誘電体基板の一実施例
につき第1図を参照して説明する。
(Example) Hereinafter, an example of a dielectric substrate with a metal film according to the present invention will be described with reference to FIG.

第1図に示す金属膜付き誘電体基板は、石英ガラス基板
1の一重部に窒化シリコン膜(St3N4膜)2を介し
て、チタニウム層(Ti層)3と白金層(Pt層)4と
金属(Au層)5よりなる(積層)金属膜旦が形成され
たものである。上記S’1sN4膜2は減圧CVD法に
より一例の膜厚が1000人に、Ti層3.Pt層4は
いずれもスパッタ蒸着法により層厚1500人に、Au
層の一部下地層5aはスパッタ蒸着法により層厚500
0人に夫々が順次積層して形成され、ざらにこのAu層
5a上には電解めっき法によってAU層5bが4μm厚
に被着されてAu層5が構成されている。
The dielectric substrate with a metal film shown in FIG. (Au layer) A (laminated) metal film layer consisting of 5 is formed. The S'1sN4 film 2 was formed by low pressure CVD to a film thickness of 1000 mm, for example, and a Ti layer 3. The Pt layer 4 was formed to a thickness of 1500 mm by sputter deposition, and then Au
A part of the base layer 5a is formed to a thickness of 500 mm by sputter deposition.
The Au layer 5 is formed by sequentially laminating each of the two layers, and an AU layer 5b having a thickness of 4 μm is roughly deposited on the Au layer 5a by electrolytic plating.

以上の構造により、金属膜の剥れ不良は排除された。こ
の理由は、石英ガラスと窒化シリコン膜の接着力及び窒
化シリコン膜と金属膜の接着力が共に強いためと考えら
れる。
The above structure eliminates the problem of peeling of the metal film. The reason for this is thought to be that both the adhesive strength between the quartz glass and the silicon nitride film and the adhesive strength between the silicon nitride film and the metal film are strong.

さらに、この構造では、前工程の弗酸処理と蒸着時の加
熱が省略できるという利点も生まれた。
Furthermore, this structure has the advantage that the pre-process hydrofluoric acid treatment and heating during vapor deposition can be omitted.

なお、石英ガラス表面と金属膜との間に、中間層として
二酸化シリコン膜を有する構造が考えられる。この構造
においては、石英ガラス基板と二酸化シリコン膜との接
着力は充分改善されたが、しかし、金属膜と二酸化シリ
コン膜(S ! 02膜)との接着力は改善されず、金
属膜の剥れ不良は相変わらず生じた。これににす、窒化
シリコン膜を中間層として用いることに意味があると判
断できる。
Note that a structure having a silicon dioxide film as an intermediate layer between the quartz glass surface and the metal film can be considered. In this structure, the adhesion between the quartz glass substrate and the silicon dioxide film was sufficiently improved, but the adhesion between the metal film and the silicon dioxide film (S!02 film) was not improved, and the metal film was easily peeled off. Failures continued to occur. Based on this, it can be concluded that it is meaningful to use a silicon nitride film as an intermediate layer.

なお、石英ガラスを用いた場合には、従来のアルミナ基
板を用いた場合に比べ比誘電率が半減するため中継用基
板の容量を半分にすることができ、例えば、3GHz帯
用高周波トランジスタの帯域特性は、従来のものに比べ
て、1.2倍に広帯域化ができるなど、大いに半導体素
子の性能を向上させることができた。
Furthermore, when quartz glass is used, the relative dielectric constant is halved compared to when a conventional alumina substrate is used, so the capacity of the relay substrate can be halved. In terms of characteristics, it was possible to greatly improve the performance of semiconductor devices, such as making the band 1.2 times wider than that of conventional devices.

以上、本発明の実施例として、ボンディングワイヤの石
英ガラスから成る中継用基板について説明したが、これ
に限定されるものではなく、超高周波半導体装置の内部
整合回路部品用の金属膜付き誘電体基板にも同様の効果
が1qられること、及び他の用途についても本発明の構
造は適用でき同様の効果が期待できることは明らかであ
る。
As an example of the present invention, a relay substrate made of quartz glass for bonding wires has been described above, but the present invention is not limited to this, and the dielectric substrate with a metal film for internal matching circuit components of ultra-high frequency semiconductor devices is described above. It is clear that the same effect can be obtained for 1q, and that the structure of the present invention can be applied to other uses and similar effects can be expected.

次に、上記実施例では金属膜として誘電体基板側からT
i/Pt/Auをこの順に積層した膜を用いた場合を例
示したが、これに限らず、他の金属膜、例えばCr/A
LIの積層膜を用いても同様の効果が得られた。
Next, in the above embodiment, T is applied as a metal film from the dielectric substrate side.
Although a case in which a film in which i/Pt/Au is laminated in this order is used, the case is not limited to this, and other metal films such as Cr/A
A similar effect was obtained using a laminated film of LI.

(発明の効果) 上述の如く本発明によれば、石英ガラスなどの誘電体基
板と金属膜との間に窒化シリコン膜を介在させることに
より、特別な表面処理を施すことなく金属の接着の信頼
性を高められる金属膜付き誘電体基板が得られる顕著な
効果がある。
(Effects of the Invention) As described above, according to the present invention, by interposing a silicon nitride film between a dielectric substrate such as quartz glass and a metal film, reliable metal adhesion can be achieved without any special surface treatment. This has the remarkable effect of providing a dielectric substrate with a metal film that has improved properties.

なお、この発明は誘電体基板の表面に、例えば酸化シリ
コン膜が形成された塁仮に対しても適用でき、有効であ
る。
Note that the present invention is also applicable and effective to a base plate in which, for example, a silicon oxide film is formed on the surface of a dielectric substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる金属膜付き誘電体基板の断面図
である。 1・・・石英ガラス基板   2・・・SI3N4膜1
1・・・(積層)金属膜 代理人 弁理士 大 胡 典 夫 、SD : c め、::(=) AL1ノ1j:;旦
:Jl)錫膜 @  1  図
FIG. 1 is a sectional view of a dielectric substrate with a metal film according to the present invention. 1... Quartz glass substrate 2... SI3N4 film 1
1... (Laminated) metal film agent Patent attorney Norio Ogo, SD: c め、:: (=) AL1ノ1j:;dan:Jl) Tin film @ 1 Figure

Claims (1)

【特許請求の範囲】[Claims] 誘電体基板と、該誘電体基板の主面に被着された窒化シ
リコン膜と、該窒化シリコン膜に積層して形成された金
属膜とを具備した金属膜付き誘電体基板。
A dielectric substrate with a metal film, comprising a dielectric substrate, a silicon nitride film deposited on a main surface of the dielectric substrate, and a metal film laminated on the silicon nitride film.
JP1010903A 1989-01-19 1989-01-19 Dielectric substrate with metal film for matching circuit formation Expired - Lifetime JP2839523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010903A JP2839523B2 (en) 1989-01-19 1989-01-19 Dielectric substrate with metal film for matching circuit formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010903A JP2839523B2 (en) 1989-01-19 1989-01-19 Dielectric substrate with metal film for matching circuit formation

Publications (2)

Publication Number Publication Date
JPH02191349A true JPH02191349A (en) 1990-07-27
JP2839523B2 JP2839523B2 (en) 1998-12-16

Family

ID=11763256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010903A Expired - Lifetime JP2839523B2 (en) 1989-01-19 1989-01-19 Dielectric substrate with metal film for matching circuit formation

Country Status (1)

Country Link
JP (1) JP2839523B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350397B1 (en) 1999-03-10 2002-02-26 Aspen Research Corporation Optical member with layer having a coating geometry and composition that enhance cleaning properties
JP2010154525A (en) * 2008-12-23 2010-07-08 Internatl Business Mach Corp <Ibm> Structure, method, and design structure for slow phase velocity (millimeter wave transmission line for slow phase velocity)
JP2019070672A (en) * 2011-02-11 2019-05-09 テラビュー リミテッド Test system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133758A (en) * 1983-12-21 1985-07-16 Seiko Epson Corp Manufacture of mos type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60133758A (en) * 1983-12-21 1985-07-16 Seiko Epson Corp Manufacture of mos type semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350397B1 (en) 1999-03-10 2002-02-26 Aspen Research Corporation Optical member with layer having a coating geometry and composition that enhance cleaning properties
JP2010154525A (en) * 2008-12-23 2010-07-08 Internatl Business Mach Corp <Ibm> Structure, method, and design structure for slow phase velocity (millimeter wave transmission line for slow phase velocity)
JP2019070672A (en) * 2011-02-11 2019-05-09 テラビュー リミテッド Test system
US11169202B2 (en) 2011-02-11 2021-11-09 Teraview Limited Test system
US11726136B2 (en) 2011-02-11 2023-08-15 Teraview Limited Test system

Also Published As

Publication number Publication date
JP2839523B2 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
US5699025A (en) Thin film chip-type filter with an external electrode formed on an adhesion layer
US4903110A (en) Single plate capacitor having an electrode structure of high adhesion
US11006516B2 (en) Wiring board, semiconductor device, and method of manufacturing wiring board
US6197619B1 (en) Method for reinforcing a semiconductor device to prevent cracking
JPH02191349A (en) Dielectric substrate with metal film
JPH06334105A (en) Multilayer lead frame
JP2002270730A (en) Power semiconductor module having high insulation strength
US10923365B2 (en) Connection structure and method for forming the same
RU2799811C1 (en) Method for manufacturing a thin-film capacitor for electronic equipment
JP2003045744A (en) Thin film capacitor
JP2001307948A (en) Thin-film electric parts
JP3481353B2 (en) Integrated circuit substrate and method of manufacturing the same
US6239400B1 (en) Method and device for connecting two millimeter elements
JPH10135077A (en) Thin film capacitor
US7105909B2 (en) Configuration and method for manufacturing filters comprising LC circuit
JP2001332441A (en) Single-plate capacitor
KR20090093211A (en) Method for Manufacturing of Multi-layer Thin film Substrate
US7018720B1 (en) Layer sequence built on a substrate in thin-film technology
JPH08335777A (en) Multilayer thin film wiring board
JP4001354B2 (en) Plasma processing equipment
JPH08148380A (en) Cr composite component
JPH0766070A (en) Manufacture of laminated ceramic capacitor
JPH0669611A (en) Printed wiring board
JPH09312457A (en) Circuit board with capacitor element
JPH0570294B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091016

Year of fee payment: 11