JPH02190420A - Melting method for ultra-low carbon steel - Google Patents

Melting method for ultra-low carbon steel

Info

Publication number
JPH02190420A
JPH02190420A JP908789A JP908789A JPH02190420A JP H02190420 A JPH02190420 A JP H02190420A JP 908789 A JP908789 A JP 908789A JP 908789 A JP908789 A JP 908789A JP H02190420 A JPH02190420 A JP H02190420A
Authority
JP
Japan
Prior art keywords
molten steel
concentration
decarburization
steel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP908789A
Other languages
Japanese (ja)
Inventor
Kazumi Harashima
原島 和海
Akito Kiyose
明人 清瀬
Ryoshi Arima
有馬 良士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP908789A priority Critical patent/JPH02190420A/en
Publication of JPH02190420A publication Critical patent/JPH02190420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶鋼に含有されている炭素[C] を極微量
まで、例えば0.001 wt%以下まで除去し、極低
炭素鋼を溶製するための効率的且つ簡便で安価な脱炭方
法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention removes carbon [C] contained in molten steel to an extremely small amount, for example, 0.001 wt% or less, thereby making ultra-low carbon steel molten. The present invention relates to an efficient, simple and inexpensive decarburization method for manufacturing.

(従来の技術) 綱に含まれる炭素濃度は、自動車用薄鋼板、飲料缶用薄
鋼板等として使用する鋼板の場合には、加工性向上、時
効防止等のために極微量である事が必要である。
(Prior art) In the case of steel sheets used as thin steel sheets for automobiles, thin steel sheets for beverage cans, etc., the carbon concentration in steel must be extremely small to improve workability and prevent aging. It is.

一般に製鉄業においては、溶鋼の脱炭処理を、例えば第
3版鉄鋼便覧■製銑・製鋼671〜685頁に示されて
いるような各種の減圧脱炭設備を用いて実施している。
Generally, in the steel industry, decarburization of molten steel is carried out using various vacuum decarburization equipment as shown in, for example, 3rd Edition Iron and Steel Handbook ■ Pig Making/Steel Making, pages 671-685.

この場合には、溶鋼中に含有させた酸素[01、あるい
は鉄鉱石Fe、0. 、酸素ガス0□などの酸化源を用
いて、以下の反応によって溶鋼に含有される炭素1G]
 を除去している。
In this case, oxygen [01] contained in the molten steel, or iron ore Fe, 0. 1G of carbon contained in molten steel by the following reaction using an oxidation source such as , oxygen gas 0□]
is being removed.

[CI  +  [0]= Co  、、。。[CI + [0] = Co,,. .

y[CI  + FexOy  =  V  CO(*
*sl  +  xFe  ”’(1)[CI  + 
1/201 =CO(was>(発明が解決しようとす
る課題) しかし溶鋼の炭素濃度が0.015 wt%以下になる
と脱炭速度が低下し始め、加えて[C]濃度が0.00
5 wt%程度から更に脱炭速度が低下し、さらに脱炭
を続けるには脱炭処理時間を延長しなければならない。
y [CI + FexOy = V CO (*
*sl + xFe ”' (1) [CI +
1/201 = CO (was > (Problem to be solved by the invention)) However, when the carbon concentration of molten steel becomes 0.015 wt% or less, the decarburization rate begins to decrease, and in addition, the [C] concentration becomes 0.00 wt% or less.
The decarburization rate further decreases from about 5 wt%, and in order to continue decarburization, the decarburization treatment time must be extended.

しかもこのような場合には、溶鋼の温度が低下する。Moreover, in such a case, the temperature of the molten steel decreases.

このために、次工程では溶鋼を再加熱するか、もしくは
転炉あるいは電気炉から出鋼する脱炭処理すべき溶鋼の
温度を脱炭処理時間に対応する温度低下を補償するため
に、高温度にすることで対処している。これは省エネル
ギーに逆行するものであり、効率的ではない。
For this purpose, in the next step, the molten steel is reheated, or the temperature of the molten steel to be decarburized when tapped from a converter or electric furnace is raised to a high temperature to compensate for the temperature drop corresponding to the decarburization time. I am dealing with this by doing this. This goes against energy conservation and is not efficient.

しかも出鋼温度が高温になると転炉あるいは電気炉の耐
火物が溶損され、耐火物原単位が大きくなり、脱炭処理
のための費用が高くなるとともに脱炭処理に使用される
反応容器の耐火物原単位も大きくなり、非効率的である
とともに不経済的であり、安定して極低炭素鋼を溶製す
ることは極めて困難である。
Moreover, when the tapping temperature becomes high, the refractories in the converter or electric furnace are eroded, the unit consumption of refractories increases, the cost for decarburization increases, and the cost of the reaction vessel used for decarburization increases. The unit consumption of refractories also increases, which is both inefficient and uneconomical, and it is extremely difficult to stably produce ultra-low carbon steel.

本発明は極低炭素溶鋼溶製のための、効率的且つ簡便な
極低炭素鋼の溶製方法を提供する事を目的とする。
An object of the present invention is to provide an efficient and simple method for producing ultra-low carbon molten steel.

(課題を解決するための手段) 本発明はこの目的を達成するために、減圧下で脱炭すべ
き溶鋼の炭素濃度[%C1がQ、015wt%以下の領
域において、粒径が0.1〜20鴫の範囲の石灰石ある
いはドロマイトを単独または混合して前記溶鋼に供給し
つつ、溶鋼の脱炭処理することを特徴とする。さらに[
%C1が0.005 tvt%以下の領域にれる範囲に
保持することを特徴とする極低炭素鋼の溶製方法である
(Means for Solving the Problems) In order to achieve this object, the present invention has the following objectives: In the region where the carbon concentration [%C1] of molten steel to be decarburized under reduced pressure is Q, 015wt% or less, the grain size is 0.1% or less. The method is characterized in that the molten steel is decarburized while supplying limestone or dolomite in the range of 20 to 20 g, either singly or as a mixture, to the molten steel. moreover[
This is a method for producing ultra-low carbon steel characterized by maintaining %C1 in a range of 0.005 tvt% or less.

((1+72  ・−1%[S])/1801 (1−
0,25)≦wt%[01≦((1+72  ・−t%
(S〕)/180) (1+0.25)・・・・・・(
2) 本発明の技術的思想の根源は、前記(1)式に従って溶
鋼を脱炭処理するにあたり、■ 溶鋼内部からのCOガ
ス気泡発生に必要な気泡発生核を付与すると同時に、■
 添加した物質自身が溶鋼に接触して加熱され、CO□
ガスを発生して下記(3)式に示す反応でEC]  と
反応して脱炭を促進させ、さらに、■ COあるいはC
O□ガスと溶鋼との接触界面積(気・液算面積)を増大
させ、下記(4〕式で示される気・液界面での脱炭反応
を促進させる点にある。
((1+72 ・-1% [S])/1801 (1-
0,25)≦wt% [01≦((1+72 ・-t%
(S])/180) (1+0.25)・・・・・・(
2) The origin of the technical idea of the present invention is that when molten steel is decarburized according to the above formula (1), (1) the bubble generation nuclei necessary for the generation of CO gas bubbles from inside the molten steel are provided, and (2)
The added substance itself contacts the molten steel and is heated, producing CO□
Generates gas and reacts with EC in the reaction shown in equation (3) below to promote decarburization, and furthermore, CO or C
The purpose of this method is to increase the contact interface area (gas-liquid calculated area) between O□ gas and molten steel and promote the decarburization reaction at the gas-liquid interface expressed by the following equation (4).

COz + [CI = 2CO(9□、    ・・
・・・・・・・・・・・・・(3)[ols、、fac
e :気体と接触している溶鉄表耐01本発明者らは、
低炭素濃度の領域においては溶鋼内部からのCOガス気
泡生成による脱炭反応が極端に阻害され、脱炭反応が主
に(4)式で示される溶鋼と気体とが接触する表面での
反応が支配的になることを突止めた。さらに(1)式で
示される溶鋼内部での脱炭反応の促進には、COガス生
成のための核が必要である。
COz + [CI = 2CO(9□, ・・
・・・・・・・・・・・・・・・(3) [ols,,fac
e: Resistance of molten iron surface in contact with gas 01 The inventors have
In the region of low carbon concentration, the decarburization reaction due to the generation of CO gas bubbles from inside the molten steel is extremely inhibited, and the decarburization reaction mainly occurs at the surface where the molten steel and gas come into contact, as shown by equation (4). I figured out that it was becoming dominant. Furthermore, a nucleus for producing CO gas is required to promote the decarburization reaction inside the molten steel expressed by equation (1).

さらに低炭素濃度の領域での脱炭反応は気・液界面での
反応が主体となり、脱炭反応は界面活性元素である[S
] と[011度は、(2)式の関係を満足するときに
促進する事を解明し、極低炭素鋼の溶製方法として、既
に特開昭61−82239号公報に開示した。本発明に
よれば、気泡の発生により脱炭反応サイトを大きくする
と同時にIS] 濃度に応じた[0]濃度を脱酸剤を添
加して調整し、脱炭反応の阻害因子を小さくすることで
脱炭速度が大きくできる。
Furthermore, the decarburization reaction in the region of low carbon concentration is mainly a reaction at the gas-liquid interface, and the decarburization reaction is caused by the surface-active element [S
] and [011 degrees are promoted when the relationship of equation (2) is satisfied, and this has already been disclosed in Japanese Patent Application Laid-Open No. 82239/1983 as a method for producing ultra-low carbon steel. According to the present invention, the decarburization reaction site is enlarged by the generation of air bubbles, and at the same time, the [0] concentration is adjusted according to the IS] concentration by adding a deoxidizing agent to reduce the inhibitory factor of the decarburization reaction. Decarburization speed can be increased.

本発明において、溶鋼に吹き込むかまたは吹き付ける物
質は極めて重要である。即ち溶鋼に接触したときに、■
 ガスを発生すること、■ 容易に熔融せずにCOガス
の発生核となり得ること、■溶鋼に炭素として溶は込ま
ないことが必要である。上記3つの特性を有する物質と
して石灰石あるいはドロマイトが最適である。
In the present invention, the substance that is blown or sprayed into the molten steel is of great importance. In other words, when it comes into contact with molten steel, ■
It is necessary to generate gas; (1) it does not melt easily and can become a nucleus for generating CO gas; and (2) it must not melt into molten steel as carbon. Limestone or dolomite is most suitable as a material having the above three properties.

以下石灰石あるいはドロマイトとその混合物を炭酸化合
物と記す。上記炭酸化合物は、溶鋼処理温度では(5)
式、(6)式に示す反応により固体酸化物とCO2ガス
に分解する。
Hereinafter, limestone or dolomite and a mixture thereof will be referred to as a carbonate compound. The above carbonate compound is (5) at the molten steel processing temperature.
It decomposes into solid oxide and CO2 gas by the reaction shown in equation (6).

CaC0= = CaO+ Cot       ・旧
・・・旧” (5)CaCO+ ・MgC01= Ca
O+ MgO+ 2COz −= ”・= (6)即ち
CaOとMgOは高融点の酸化物であり、溶鋼の処理温
度では熔融せず、COガス気気泡生成色して有効である
。またCO□ガスを発生して気・液界面を増加させ、且
つ溶鋼に炭素を供給しない。もちろん化学的に合成した
CaC0,やCaCO3・MgCO3でもその効果は同
じである。
CaC0= = CaO+ Cot ・Old...old” (5) CaCO+ ・MgC01= Ca
O+ MgO+ 2COz −= ”・= (6) That is, CaO and MgO are oxides with high melting points and do not melt at the processing temperature of molten steel, and are effective because they produce CO gas bubbles. This increases the gas-liquid interface and does not supply carbon to the molten steel.Of course, chemically synthesized CaCO and CaCO3/MgCO3 have the same effect.

溶鋼内に発生させるCOOガスあるいはCO2ガスの発
生核を分散させるためと、気・液界面積増加効果を大き
くするためには、用いる炭酸化合物の粒径は極めて重要
なポイントである。
The particle size of the carbonate compound used is an extremely important point in order to disperse the generation nuclei of COO gas or CO2 gas generated in molten steel and to increase the effect of increasing the gas-liquid interface area.

即ちあまりにも炭酸化合物の粒径が大きいと、発生する
CO□ガスの大きさが大きくなり、用いる物質の単位重
量当りの気・液界面積増加効果が小さくなることにより
、脱炭速度増加効果も小さ(なり不経済である。したが
って用いる炭酸化合物の粒径の上限は20m11とする
In other words, if the particle size of the carbonate compound is too large, the size of the generated CO□ gas will increase, and the effect of increasing the gas-liquid interface area per unit weight of the substance used will be small, which will also reduce the effect of increasing the decarburization rate. It is small (and uneconomical). Therefore, the upper limit of the particle size of the carbonate compound used is 20 m11.

一方決酸化合物の粒径が小さすぎると、吹きぬけあるい
は飛散して溶鋼と反応する効率が低下し、脱炭速度増加
効果が低下する。したがって炭酸化合物の粒径の下限値
は0.1 tmとする。
On the other hand, if the particle size of the sulfuric acid compound is too small, the efficiency with which it blows through or scatters and reacts with molten steel decreases, and the effect of increasing the decarburization rate decreases. Therefore, the lower limit of the particle size of the carbonate compound is set to 0.1 tm.

本発明における炭酸化合物の溶鋼への供給方法は、上吹
ランスを用いて搬送ガス(Ar等の不活性ガス)ととも
に炭酸化合物を溶鋼表面上部から溶鋼に吹付ける方法、
あるいは浸漬ランスを用いて搬送ガス(Ar等の不活性
ガス)とともに炭酸化合物を溶鋼内部に浸漬したランス
から吹込む方法、あるいは電磁フィーダーを用いて炭酸
化合物を溶鋼上に落下させて添加する方法のいずれを用
いても溶鋼の脱炭速度に差がなく良好である。
The method of supplying the carbonate compound to the molten steel in the present invention includes a method of spraying the carbonate compound onto the molten steel from above the surface of the molten steel together with a carrier gas (inert gas such as Ar) using a top blowing lance;
Alternatively, the carbonate compound can be injected into the molten steel together with a carrier gas (inert gas such as Ar) using an immersed lance, or the carbonate compound can be added by dropping it onto the molten steel using an electromagnetic feeder. No matter which method is used, there is no difference in the decarburization rate of molten steel, which is good.

本発明において、炭酸化合物を用いて溶鋼を脱炭するに
あたり、脱炭すべき溶鋼の炭素重量濃度[%C1が0.
005讐t%以下の領域において、[011度を該溶鋼
に含有される[S] 濃度に応じて、前述の(2)式で
示される範囲に保持することより脱炭速度が向上する。
In the present invention, when decarburizing molten steel using a carbonate compound, the carbon weight concentration [%C1] of the molten steel to be decarburized is 0.
In the range of 005% or less, the decarburization rate is improved by maintaining [011 degrees] within the range shown by the above formula (2) depending on the [S] concentration contained in the molten steel.

脱炭処理すべき溶鋼の酸素濃度が低すぎる場合において
は、酸化鉄粉、鉄鉱石粉等を溶鋼に添加あるいは溶鋼に
吹き付けたり、またはインジェクションするのが有効で
ある。この場合炭酸化合物と混合して溶鋼に添加、ある
いは溶鋼に吹き付けあるいはインジェクションしてもよ
い。さらに酸素ガスを用いて溶鋼の酸素濃度を増加させ
る事もできる。一方酸素濃度が高すぎる場合には、脱酸
剤1例えばアルミニュウム等と炭酸化合物と混合しであ
るいは別々に溶鋼に添加してもよい。
When the oxygen concentration of the molten steel to be decarburized is too low, it is effective to add, spray, or inject iron oxide powder, iron ore powder, etc. to the molten steel. In this case, it may be mixed with a carbonate compound and added to the molten steel, or it may be sprayed or injected into the molten steel. Furthermore, oxygen gas can be used to increase the oxygen concentration in molten steel. On the other hand, if the oxygen concentration is too high, the deoxidizing agent 1, for example, aluminum or the like and a carbonate compound may be mixed together or separately added to the molten steel.

さらに本発明を実施するにあたり溶鋼表面に不活性ガス
を吹付けると、溶鋼の気相との界面近傍のCOOガス移
動速度を大きくすることができ、脱炭速度が向上する。
Furthermore, when an inert gas is sprayed onto the surface of the molten steel in carrying out the present invention, the COO gas movement speed near the interface between the molten steel and the gas phase can be increased, and the decarburization speed can be improved.

本発明の方法は、現在の真空精錬設備、例えばDH,R
H,VOD、VAD等の設備で溶鋼を脱炭する場合にも
適用できる。
The method of the present invention can be applied to current vacuum refining equipment such as DH,R
It can also be applied when decarburizing molten steel using H, VOD, VAD, etc. equipment.

(実施例) 以下本発明について、実施例に基づく図面により説明す
る。
(Examples) The present invention will be described below with reference to drawings based on examples.

実施例】。Example】.

温度が工600°C1重量が100 kgで、脱炭処理
前[CI濃度がおよそ0.015 wt%である溶鋼の
脱炭処理を、真空度が2〜10 ma Hgのもとで低
周波真空誘導溶解炉を用い、石灰石とドロマイトの単独
、および石灰石とドロマイトの混合物(混合重量比:1
)を、ランスを用いて靜ガスを搬送ガスとして吹き付け
て実施した時の[C]濃度の経時変化を第1図に示す。
The temperature was 600°C, the weight was 100 kg, and the decarburization treatment of molten steel with a CI concentration of approximately 0.015 wt% was carried out under a low frequency vacuum at a vacuum degree of 2 to 10 ma Hg. Using an induction melting furnace, limestone and dolomite alone and a mixture of limestone and dolomite (mixed weight ratio: 1
) is carried out using a lance and spraying a quiet gas as a carrier gas, and the change in [C] concentration over time is shown in Fig. 1.

上記炭酸化合物の粒径は0.5〜3I!lInの範囲で
あり、吹き付は量は20〜65(g/m1n)の範囲で
ある。比較例は、鉄鉱石(粒径:0.5〜3鵬)を20
(g/win)吹き付けた時の結果である。比較例は4
0m1nO脱炭処理でも[C]濃度は0.0015wt
%程度であるのに対して、本発明例の方法によれば、お
よそ20m1n脱炭処理で[C] 濃度が0.001 
wt%以下まで脱炭でき、極低炭素溶鋼が溶製できる。
The particle size of the carbonic acid compound is 0.5-3I! The spraying amount is in the range of 20 to 65 (g/ml). In the comparative example, iron ore (particle size: 0.5 to 3) was
(g/win) These are the results when sprayed. Comparative example is 4
Even with 0mlnO decarburization treatment, [C] concentration is 0.0015wt
%, whereas according to the method of the present invention, the [C] concentration is 0.001 in approximately 20 ml decarburization treatment.
It can be decarburized to less than wt%, and ultra-low carbon molten steel can be produced.

実施例2゜ 温度が1600°C1重量が100 kgで、脱炭処理
前[C] 濃度がおよそ0.015 wt%である溶鋼
の脱炭処理を、真空度が0.5〜2mn+Hgのもとて
低周波真空誘導溶解炉を用い、石灰石とドロマイトの単
独、および石灰石とドロマイトの混合物(混合重量比:
1)を、フィーダーを用いて溶鋼に添加して実施した。
Example 2 Molten steel was decarburized at a temperature of 1600°C, a weight of 100 kg, and a [C] concentration of approximately 0.015 wt% before decarburization under a vacuum degree of 0.5 to 2 mn+Hg. Using a low-frequency vacuum induction melting furnace, limestone and dolomite alone and a mixture of limestone and dolomite (mixed weight ratio:
1) was carried out by adding it to molten steel using a feeder.

二〇脱炭処理前後の[C]濃度を第1表に示す、上記炭
酸化合物の粒径は2〜5flIIlの範囲であり、添加
量は20〜65(g/win)の範囲である。比較例は
、鉄鉱石(粒径:2〜5 ws )を32.3〜65(
g/win)の速度で吹き付けた時の結果である。比較
例は20m i nO脱炭処理で[C1濃度は0.00
4 wt%程度であるのに対して、本発明例の方法によ
れば、20m1n脱炭処理で[C]濃度が0.001 
ivt%以下まで脱炭でき、極低炭素溶鋼が溶製できる
20 The [C] concentrations before and after the decarburization treatment are shown in Table 1. The particle size of the carbonic acid compound is in the range of 2 to 5 flIIl, and the amount added is in the range of 20 to 65 (g/win). In the comparative example, iron ore (particle size: 2 to 5 ws) was
This is the result when spraying at a speed of (g/win). The comparative example is a 20 m in O decarburization treatment [C1 concentration is 0.00
4 wt%, whereas according to the method of the present invention, the [C] concentration was reduced to 0.001 in 20ml decarburization treatment.
It can decarburize to below ivt% and produce ultra-low carbon molten steel.

第1表 実施例3゜ 温度が1600°C1重量が100 kgで、脱炭処理
前[C]濃度がおよそ0.015 wt%である溶鋼の
脱炭処理を真空度が0.5〜2mmHgのもとて低周波
真空誘導溶解炉を用い、石灰石とドロマイトの単独、お
よび石灰石とドロマイトの混合物(混合重量比:1)を
、ランスを用いて溶鋼に吹き込みを実施した。この脱炭
処理前後の[C] 濃度を第2表に示す。
Table 1 Example 3 The temperature was 1600°C, the weight was 100 kg, and the [C] concentration before decarburization was approximately 0.015 wt%. Using a low-frequency vacuum induction melting furnace, limestone and dolomite alone and a mixture of limestone and dolomite (mixing weight ratio: 1) were injected into molten steel using a lance. The [C] concentrations before and after this decarburization treatment are shown in Table 2.

上記炭酸化合物の粒径は0.3〜1.5 mmの範囲で
あり、吹き込み量は32〜60mm(g/rain)の
範囲である。
The particle size of the carbonic acid compound is in the range of 0.3 to 1.5 mm, and the amount of blowing is in the range of 32 to 60 mm (g/rain).

比較例は鉄鉱石(粒径:0.3〜1.5on)を33〜
60軸/win)吹き付けた時の結果である。比較例は
20m1nO脱炭処理で[CI濃度は0.0030i1
t%程度であるのに対して、本発明例の方法によれば、
20m1p脱炭処理で[C]濃度が0.001 wt%
以下まで脱炭でき、極低炭素溶鋼が溶製できる。
In the comparative example, iron ore (particle size: 0.3 to 1.5 on) was
This is the result when spraying (60 axes/win). The comparative example is a 20mlnO decarburization treatment [CI concentration is 0.0030i1
In contrast, according to the method of the present invention,
[C] concentration is 0.001 wt% with 20mlp decarburization treatment
It is possible to decarburize to the following levels and produce ultra-low carbon molten steel.

第2表 実施例4゜ 温度が1600℃1重量が100 kgで、脱炭処理前
EC] 濃度がおよそ0.015 wt%で、[S] 
濃度が0.015 wt%である溶鋼の脱炭処理を、真
空度が0.5〜2mmHgのもとて低周波真空誘導溶解
炉を用い、石灰石とドロマイトの単独、および石灰石と
ドロマイトの混合物(混合重量比:1)を、フィダーを
用いて溶鋼に添加し、固体電解質を用いた酸素センサー
で溶鋼の酸素濃度を測定し、Alを添加しつつ酸素濃度
を0.013 wt%に制御した。この脱炭処理前後の
[C]濃度を第3表に示す。上記炭酸化合物の粒径は0
.3〜1.5値の範囲であり、添加量は32〜60(g
/m1n)の範囲である。比較例は鉄鉱石(粒径: 0
.3〜1.5 mal)を33〜60(g/m1n)添
加した時の結果である。比較例は20m1nO脱炭処理
で[C] 濃度は0.0030wt%程度であるのに対
して、本発明例の方法によれば、20m1nO脱炭処理
で[C]濃度が0.001 wt%まで脱炭でき、極低
炭素溶鋼が溶製できる。
Table 2 Example 4 Temperature was 1600°C 1 weight was 100 kg, EC before decarburization] Concentration was approximately 0.015 wt%, [S]
Molten steel with a concentration of 0.015 wt% was decarburized using a low-frequency vacuum induction melting furnace with a degree of vacuum of 0.5 to 2 mmHg, and limestone and dolomite alone and a mixture of limestone and dolomite ( The mixture weight ratio: 1) was added to molten steel using a feeder, the oxygen concentration of the molten steel was measured with an oxygen sensor using a solid electrolyte, and the oxygen concentration was controlled at 0.013 wt% while adding Al. Table 3 shows the [C] concentrations before and after this decarburization treatment. The particle size of the above carbonate compound is 0
.. The value ranges from 3 to 1.5, and the amount added is 32 to 60 (g
/m1n). The comparative example is iron ore (particle size: 0
.. These are the results when 33 to 60 (g/mln) of 3 to 1.5 mal) were added. In the comparative example, the [C] concentration was approximately 0.0030 wt% with 20 ml nO decarburization treatment, whereas according to the method of the present invention, the [C] concentration was up to 0.001 wt% with 20 ml nO decarburization treatment. It can be decarburized and extremely low carbon molten steel can be produced.

第3表 実施例5゜ 温度が1600“C1重量が100 kgで、脱炭処理
前[C]濃度がおよそ0.015 i1t%で、[S]
濃度が0.015wt%である溶鋼の脱炭処理を、真空
度が0.5〜2mm1gのもとで低周波真空誘導溶解炉
を用い、石灰石とドロマイトの単独、および石灰石とド
ロマイトの混合物(混合重量比:1)をフィダーを用い
て溶鋼に添加し、固体電解質を用いた酸素センサーで溶
鋼の酸素濃度を測定し、TiあるいはAlとTiの混合
物を添加しつつ酸素濃度を0.013 nt%に制御し
た。脱炭処理前後の[C]濃度を第4表に示す。上記炭
酸化合物の粒径は0.3〜1.5 ynの範囲であり、
添加量は32〜60(glolin)の範囲である。比
較例は鉄鉱石(粒径:0.3〜1.5mn+)を33〜
60(g/m1n)添加した時の結果である。比較例は
20m1nO脱炭処理で[C] 濃度は0.0030w
t%程度であるのに対して、本発明例の方法によれば、
20m1nの脱炭処理で[CI濃度が0.001 wt
%以下まで脱炭でき、極低炭素溶鋼が溶製できる。
Table 3 Example 5 The temperature was 1600, the C1 weight was 100 kg, the [C] concentration before decarburization was approximately 0.015 i1t%, and the [S]
Molten steel with a concentration of 0.015 wt% was decarburized using a low-frequency vacuum induction melting furnace under a degree of vacuum of 0.5 to 2 mm/g. Weight ratio: 1) was added to molten steel using a feeder, the oxygen concentration of the molten steel was measured with an oxygen sensor using a solid electrolyte, and the oxygen concentration was reduced to 0.013 nt% while adding Ti or a mixture of Al and Ti. was controlled. Table 4 shows the [C] concentrations before and after decarburization. The particle size of the carbonate compound is in the range of 0.3 to 1.5 yn,
The amount added is in the range of 32 to 60 (glolin). In the comparative example, iron ore (particle size: 0.3 to 1.5 mm+) was
These are the results when 60 (g/mln) was added. The comparative example is a 20mlnO decarburization treatment and the [C] concentration is 0.0030w
In contrast, according to the method of the present invention,
With decarburization treatment of 20 ml, [CI concentration was 0.001 wt]
% or less, making it possible to produce ultra-low carbon molten steel.

第4表 実施例6゜ 雰囲気圧力1叩Hgで温度が1600’C1重量が10
0廟である溶鋼の脱炭処理を低周波真空誘導炉で実施し
、脱炭反応の容量係数kc(min−’)を測定した。
Table 4 Example 6゜Atmospheric pressure 1 stroke Hg, temperature 1600'C1 weight 10
Decarburization treatment of molten steel was carried out in a low frequency vacuum induction furnace, and the capacity coefficient kc (min-') of the decarburization reaction was measured.

フィダーを用いて溶鋼上部から添加した炭酸化合物の大
きさは、0.01〜50mmの範囲の石灰石、ドロマイ
トおよび石灰石とドロマイトの混合物(石灰石/ドロマ
イトの混合重量比二0.5〜1.5)である。
The size of the carbonate compound added from the top of the molten steel using a feeder is limestone, dolomite, and a mixture of limestone and dolomite (mixed weight ratio of limestone/dolomite of 20.5 to 1.5) in the range of 0.01 to 50 mm. It is.

脱炭処理前の[C] 1度は約0.010 wt%であ
る。添加した炭酸化合物が0.01〜0.05mm粒径
の時に得られた脱炭反応の容量係数kc!t1fi・(
lIin−’)を基準にし、kc/kc″ts++・と
炭酸化合物の粒径との関係を第2図に示す。ただし炭酸
化合物の添加速度は、40〜65(g/win)の範囲
である。kc / kc * t a −の値は、炭酸
化合物の大きさが0.1〜20mmの範囲の粒径のとき
に大きな値になる。この傾向は、炭酸化合物の種類とそ
の混合重量比による相違は認められない。
One degree of [C] before decarburization is approximately 0.010 wt%. The capacity coefficient kc of the decarburization reaction obtained when the added carbonate compound has a particle size of 0.01 to 0.05 mm! t1fi・(
Figure 2 shows the relationship between kc/kc''ts++・ and the particle size of the carbonate compound, based on lIin-'). However, the addition rate of the carbonate compound is in the range of 40 to 65 (g/win). The value of kc/kc*ta- becomes large when the carbonate compound has a particle size in the range of 0.1 to 20 mm.This tendency depends on the type of carbonate compound and its mixing weight ratio. No differences observed.

(発明の効果) 本発明の方法により、溶鋼の[C]濃度が0.001w
t%以下の極低炭素濃度まで脱炭することが容易に可能
となり、極低炭素鋼の製造が容易になった。
(Effect of the invention) By the method of the invention, the [C] concentration of molten steel is 0.001w.
It has become possible to easily decarburize to an ultra-low carbon concentration of t% or less, making it easier to manufacture ultra-low carbon steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は[C] 1度の経時変化を示す図面、第2図は
kc/kc””・と炭酸化合物の粒径との関係を示す図
面である。 代理人 弁理士 秋 沢 政 光 他1名 第1図 処理B弁間(mirl) 自 発手続補 正 書 平成元年1 2月1 日 才2図 !。 事件の表示 特願平1 87号 住 所 東京都千代田区大手町2丁目6番3号 名 称 新日本製鐵株式会社 4゜ 代 理 人 居 所 東京都中央区日本橋兜町12番1号 大洋ビル 〒103 電話 00/ 002 005θ1 父 炭酸化合物痴径 (mm) 6゜ 補正の対象 明細書 (発明の詳細な説明) 7゜ 補正の内容 明細書第9頁7〜8行の [混合しであるい はJ の語を削除する。
FIG. 1 is a diagram showing the change over time of [C] 1 degree, and FIG. 2 is a diagram showing the relationship between kc/kc""· and the particle size of the carbonate compound. Agent: Patent Attorney Masamitsu Aki Sawa and 1 other Figure 1 Processing B Benma (mirl) Voluntary procedure amendment document February 1, 1989 Daysai Figure 2! . Display of the case Special application No. 1 87 Address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name Nippon Steel Corporation 4゜ Agent address Taiyo Building, 12-1 Nihonbashi Kabuto-cho, Chuo-ku, Tokyo 103 Phone number 00/ 002 005θ1 Diameter of parent carbonate compound (mm) 6゜Specification to be amended (detailed description of the invention) 7゜Contents of amendment Page 9, lines 7-8 of [mixed or J] delete.

Claims (2)

【特許請求の範囲】[Claims] (1)減圧下で溶鋼の脱炭処理を実施するにあたり、脱
炭すべき溶鋼の炭素濃度[%C]が0.015wt%以
下の領域において、粒径が0.1〜20mmの範囲の石
灰石あるいはドロマイトを単独または混合して前記溶鋼
に供給しつつ、溶鋼の脱炭処理することを特徴とする極
低炭素鋼の溶製方法。
(1) When decarburizing molten steel under reduced pressure, limestone with a particle size in the range of 0.1 to 20 mm is used in the region where the carbon concentration [%C] of the molten steel to be decarburized is 0.015 wt% or less. Alternatively, a method for producing ultra-low carbon steel, which comprises decarburizing the molten steel while supplying dolomite alone or in combination to the molten steel.
(2)減圧下で溶鋼の脱炭処理を実施するにあたり、脱
炭すべき溶鋼の炭素濃度[%C]が0.015wt%以
下の領域において、粒径が0.1〜20mmの範囲の石
灰石あるいはドロマイトを単独または混合して前記溶鋼
に供給しつつ溶鋼の脱炭処理するとともに、前記溶鋼の
炭素濃度[%C]が0.005wt%以下の領域におい
て、溶鋼の酸素濃度[%O]を溶鋼に含有される硫黄濃
度wt%[S]に応じて下記の関係式で制限される範囲
に保持することを特徴とする極低炭素鋼の溶製方法。 {(1+72[%S])/180}(1−0.25)≦
[%O]≦{(1+72[%S])/180}(1+0
.25)
(2) When decarburizing molten steel under reduced pressure, limestone with a particle size in the range of 0.1 to 20 mm is used in the region where the carbon concentration [%C] of the molten steel to be decarburized is 0.015 wt% or less. Alternatively, while decarburizing the molten steel while supplying dolomite alone or in a mixture, the oxygen concentration [%O] of the molten steel is reduced in a region where the carbon concentration [%C] of the molten steel is 0.005 wt% or less. A method for producing ultra-low carbon steel, characterized by maintaining the sulfur concentration wt% [S] contained in molten steel within a range limited by the following relational expression. {(1+72[%S])/180}(1-0.25)≦
[%O]≦{(1+72[%S])/180}(1+0
.. 25)
JP908789A 1989-01-18 1989-01-18 Melting method for ultra-low carbon steel Pending JPH02190420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP908789A JPH02190420A (en) 1989-01-18 1989-01-18 Melting method for ultra-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP908789A JPH02190420A (en) 1989-01-18 1989-01-18 Melting method for ultra-low carbon steel

Publications (1)

Publication Number Publication Date
JPH02190420A true JPH02190420A (en) 1990-07-26

Family

ID=11710836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP908789A Pending JPH02190420A (en) 1989-01-18 1989-01-18 Melting method for ultra-low carbon steel

Country Status (1)

Country Link
JP (1) JPH02190420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009828B1 (en) * 2008-08-28 2011-01-19 현대제철 주식회사 Refining method of ultra low carbon steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009828B1 (en) * 2008-08-28 2011-01-19 현대제철 주식회사 Refining method of ultra low carbon steel

Similar Documents

Publication Publication Date Title
JPH02190420A (en) Melting method for ultra-low carbon steel
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JP3000864B2 (en) Vacuum desulfurization refining method of molten steel
WO2022259805A1 (en) Molten steel denitrification method and steel production method
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
KR100328061B1 (en) A method of manufacturing extra low carbon steel melts under atmosphere environment
JP2778335B2 (en) Decarburization refining method for high Mn steel
JPH0696740B2 (en) Ultra low carbon steel melting method
JPH08134528A (en) Ultra low carbon steel manufacturing method
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
JPS5952203B2 (en) Manufacturing method of ultra-low carbon steel
WO2022259806A1 (en) Molten steel denitrification method and steel production method
JPH0978120A (en) Method for preventing absorption of nitrogen into molten steel for an extra-low nitrogen chrome-containing steel
JP2773525B2 (en) Melting method for grain-oriented electrical steel sheets
JP2864961B2 (en) Decarburization refining method for high Mn steel
JP3127733B2 (en) Manufacturing method of ultra clean ultra low carbon steel
JPS62240712A (en) Production of extra-low carbon steel
JPH09287017A (en) High-purity steel melting method
JPS63206421A (en) Melting method for ultra-low nitrogen steel
JPH024938A (en) Manufacture of medium-carbon and low-carbon ferromanganese
JP2678779B2 (en) Manufacturing method of ultra-low nitrogen and ultra-low carbon molten steel
JP2001303119A (en) Method for dephosphorizing molten iron
KR20030042748A (en) A heating agent for molten steel in BOF and the BOF refining method using it
JPH0978119A (en) Method for denitrification of molten metal and flux for denitrification
JPH06306445A (en) Decarburization and desulfurization method for molten steel