JPH0218934A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0218934A
JPH0218934A JP63169407A JP16940788A JPH0218934A JP H0218934 A JPH0218934 A JP H0218934A JP 63169407 A JP63169407 A JP 63169407A JP 16940788 A JP16940788 A JP 16940788A JP H0218934 A JPH0218934 A JP H0218934A
Authority
JP
Japan
Prior art keywords
oxide film
insulating film
film
semiconductor substrate
nitrided oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63169407A
Other languages
Japanese (ja)
Other versions
JPH0728039B2 (en
Inventor
Takashi Hori
隆 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16940788A priority Critical patent/JPH0728039B2/en
Priority to KR1019880009628A priority patent/KR920007450B1/en
Publication of JPH0218934A publication Critical patent/JPH0218934A/en
Priority to US08/251,642 priority patent/US5403786A/en
Priority to US08/358,142 priority patent/US5521127A/en
Publication of JPH0728039B2 publication Critical patent/JPH0728039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To make it possible to form an insulating film with high quality at a fine electric field effect type MOS by rapidly heating a thermal oxide film formed on a semiconductor substrate and nitriding it so as to form an nitride oxide film, and then heat-treating it again in the inert gas atmosphere by rapid heating. CONSTITUTION:A thermal oxide film 2 is formed on a semiconductor substrate 1, and then it is rapidly heated by radiation heating using a short-time heating furnace in the ammonium atmosphere so as to form a nitride oxide film 3. Thereafter, it is heated for a short time using the short-time heating furnace in the nitrogen atmosphere so as to form a reheated nitride oxide film 4. Accordingly, the reheated nitride oxide film which is low in hydrogen content and small in captured charge density can be formed in a short time, and the redistribution of impurity formed in the semiconductor substrate can be restrained. Hereby, an insulating film capable of application to the gate insulating film of stable submicron MOS, etc., can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、微細な電界効果型(以下、MOS型と略す)
半導体装置における高品質の絶縁膜の形成方法に関する
ものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is directed to a fine field effect type (hereinafter abbreviated as MOS type)
The present invention relates to a method for forming a high quality insulating film in a semiconductor device.

従来の技術 従来、半導体基板上に形成された熱酸化膜及び窒化酸化
膜がMO8型半導体装置のゲート酸化膜及びEEPRO
M半導体装置のトンネル酸化膜として用いられていた。
Conventional technology Conventionally, thermal oxide films and nitrided oxide films formed on semiconductor substrates are used as gate oxide films and EEPROs of MO8 type semiconductor devices.
It was used as a tunnel oxide film for M semiconductor devices.

発明が解決しようとする課題 微細なMO8型半導体装置において、ホットキャリアに
より誘起されるフラットバンド電圧シフト及び界面準位
密度の増゛加による電気的特性の劣化が大きな問題であ
る。また、E E P ROM半導体装置においても、
絶縁膜に電子または正こうを注入する書換え動作にとも
なう、フラットバンド電圧シフト及び界面準位密度の増
加量が大きいことが問題である。従来の熱酸化膜は、特
に、絶縁膜にホットキャリアを注入することにより誘起
される界面準位密度の増加量が大きいことが問題であっ
た。この界面準位密度の増加量を抑えるなどの目的から
、熱酸化膜の代わりに窒化酸化膜を用いることも一部の
研究者の間では検討されてはいるが、現時点では充分実
用に耐えうるちのではない。
Problems to be Solved by the Invention In fine MO8 type semiconductor devices, deterioration of electrical characteristics due to a flat band voltage shift induced by hot carriers and an increase in interface state density is a major problem. Also, in E E P ROM semiconductor devices,
The problem is that the flat band voltage shift and the interface state density increase significantly due to the rewriting operation of injecting electrons or regular particles into the insulating film. Conventional thermal oxide films have a particular problem in that the interface state density increases significantly, which is induced by injecting hot carriers into the insulating film. Some researchers are considering using a nitrided oxide film instead of a thermal oxide film in order to suppress the increase in the interface state density, but at this point it is not suitable for practical use. Not Chino.

そこで、本発明は、かかる問題点に鑑みてなされたもの
で、このホットキャリアの注入によるフラットバンド電
圧シフト及び界面準位密度の増加の本質的な原因を探究
し、新しいアプローチにより、より安定でサブミクロン
MO8のゲート絶縁膜等に応用可能な絶縁膜の製造方法
を提供することを目的としている。
Therefore, the present invention was made in view of these problems, and explores the essential cause of the flat band voltage shift and increase in interface state density due to the injection of hot carriers, and uses a new approach to achieve a more stable state. The purpose of this invention is to provide a method for manufacturing an insulating film that can be applied to submicron MO8 gate insulating films and the like.

課題を解決するための手段 本発明は、半導体基板上に形成された熱酸化膜を、窒化
性ガス雰囲気中で放射加熱による急速加熱を用いて窒化
処理し窒化酸化膜を形成した後、不活性雰囲気中で放射
加熱による急速加熱を用いて再熱処理することを特徴と
する半導体装置の製造方法である。
Means for Solving the Problems The present invention provides a method for nitriding a thermal oxide film formed on a semiconductor substrate using rapid heating using radiation heating in a nitriding gas atmosphere to form a nitrided oxide film, and then inactivating the thermal oxide film. This is a method for manufacturing a semiconductor device characterized by performing reheat treatment using rapid heating using radiation heating in an atmosphere.

作   用 本発明は上記した短詩加熱炉を用いて、水素含有量の低
い、捕獲電荷密度の少ない再加熱室窒化酸化膜を短詩に
形成できる。また、半導体基板中に形成した不純物の再
分布を抑制することができる。
Function The present invention can form a reheating chamber nitrided oxide film having a low hydrogen content and a low trapped charge density by using the above-mentioned tank heating furnace. Further, redistribution of impurities formed in the semiconductor substrate can be suppressed.

実施例 第1図に本発明の一実施例にかかる半導体装置の製造方
法を示す。半導体基板1上に熱酸化膜2を形成する。そ
の後、短詩加熱炉用いてアンモニア雰囲気中で短詩加熱
炉を用いて放射加熱により急速加熱することで、窒化酸
化膜3を形成する。
Embodiment FIG. 1 shows a method for manufacturing a semiconductor device according to an embodiment of the present invention. A thermal oxide film 2 is formed on a semiconductor substrate 1. Thereafter, the nitrided oxide film 3 is formed by rapid heating by radiation heating using a short poem heating furnace in an ammonia atmosphere.

その後、窒素雰囲気中で短詩加熱炉を用いて短詩加熱す
ることで、再加熱窒化酸化膜4を形成する。
Thereafter, the reheated nitrided oxide film 4 is formed by heating the film in a nitrogen atmosphere using a tank heating furnace.

まず、一般に、窒化処理をおこなった窒化酸化膜、及び
その後窒素雰囲気中で短詩加熱を行った再酸化窒化酸化
膜の絶縁膜系における、ホットキャリアの注入によるフ
ラットバンド電圧シフト及び界面準位密度の増加の本質
的な原因を探究した結果について述べる。実験に用いた
絶縁膜の厚さは、約8nmである。
First, in general, in an insulating film system of a nitrided oxide film that has undergone nitriding treatment and a reoxynitrided oxide film that has been subsequently heated in a nitrogen atmosphere, the flat band voltage shift and interface state density due to injection of hot carriers have decreased. We will describe the results of our investigation into the essential causes of the increase. The thickness of the insulating film used in the experiment was approximately 8 nm.

第2図にA uger分光法により評価した窒化酸化膜
中の窒素プロファイルを、950℃、1050℃、及び
1150℃の各温度で120秒の窒化処理した窒化酸化
膜について示す。窒化酸化膜では、表面付近および絶縁
II!/半導体基板界面付近に窒化酸化層が形成されて
おり、その窒素濃度は窒化温度が高くなるにつれて増加
する。このような半導体基板界面付近に形成された窒化
酸化層は、絶縁膜に電子を注入した時に誘起される界面
準位の低減に効果があると考えられる。
FIG. 2 shows nitrogen profiles in nitrided oxide films evaluated by Auger spectroscopy for nitrided oxide films subjected to nitriding treatment at temperatures of 950° C., 1050° C., and 1150° C. for 120 seconds. In nitrided oxide film, near the surface and insulation II! A nitrided oxide layer is formed near the semiconductor substrate interface, and its nitrogen concentration increases as the nitriding temperature increases. It is thought that such a nitride oxide layer formed near the semiconductor substrate interface is effective in reducing the interface state induced when electrons are injected into the insulating film.

第3図にA uger分光法により評価した絶縁膜中の
窒素および酸素プロファイルを、950℃で60秒の短
時間窒化処理した窒化酸化膜(No) 、及びその窒化
酸化膜を種々の再酸化温度で60秒の短時間再酸化処理
した再酸化膜について示す。窒化酸化膜(NO)では、
表面付近および絶縁膜/半導体基板界面付近に5at%
程度の窒化酸化層が形成されている。再酸化温度が高く
なるにつれて、表面付近の窒素の量は減少するのに対し
て、絶縁膜/半導体基板界面付近の窒素プロファイルは
殆ど変化せず、再酸化処理に行っても絶縁膜/半導体基
板界面付近の窒素は安定であることがわかる。一方、酸
素プロファイルから、特に1150℃の再酸化処理によ
り、絶縁膜/半導体基板界面付近に新たな酸化層が形成
され、絶縁膜/半導体基板界面が半導体基板上へ移動し
ていることがわかる。
Figure 3 shows the nitrogen and oxygen profiles in the insulating film evaluated by Auger spectroscopy for a nitrided oxide film (No) that was nitrided for a short time at 950°C for 60 seconds, and for that nitrided oxide film at various reoxidation temperatures. This shows a reoxidized film that was subjected to a short reoxidation treatment for 60 seconds. In nitrided oxide film (NO),
5at% near the surface and near the insulating film/semiconductor substrate interface
A nitrided oxide layer of about 100% is formed. As the reoxidation temperature increases, the amount of nitrogen near the surface decreases, whereas the nitrogen profile near the insulating film/semiconductor substrate interface hardly changes, and even after reoxidation treatment, the amount of nitrogen near the surface decreases. It can be seen that nitrogen near the interface is stable. On the other hand, it can be seen from the oxygen profile that a new oxide layer is formed near the insulating film/semiconductor substrate interface, and the insulating film/semiconductor substrate interface is moved onto the semiconductor substrate, particularly due to the reoxidation treatment at 1150°C.

一方、第4図にSIMSにより評価した窒化酸化膜中の
水素プロファイルを、950℃及び1150℃の各温度
で60秒の窒化処理した窒化酸化膜、及び熱酸化膜につ
いて示す。窒化温度が高くなるにつれて、その窒化酸化
膜中の水素濃度は著しく増加することがわかる。このよ
うに、窒化処理によって絶縁膜中に多量の水素が入り込
み、これにより電子の捕獲電荷密度が増大するという問
題が生ずる。
On the other hand, FIG. 4 shows hydrogen profiles in nitrided oxide films evaluated by SIMS for nitrided oxide films and thermal oxide films subjected to nitriding treatment at temperatures of 950° C. and 1150° C. for 60 seconds. It can be seen that as the nitriding temperature increases, the hydrogen concentration in the nitrided oxide film increases significantly. As described above, a problem arises in that a large amount of hydrogen enters the insulating film due to the nitriding process, which increases the electron trapping charge density.

第5図にSIMSにより評価した絶縁膜中の水素プロフ
ァイルを、950℃で60秒の窒化処理した窒化酸化膜
(No) 、及びそのNoを、950℃、1050℃、
及び1150℃の各温度で60秒の再酸化処理した再酸
化膜について示す。再酸化処理が進むにつれて、絶縁膜
中の水素濃度は著しく減少し、やがて熱酸化膜と同程度
あるいはそれ以下にまで低くなることがわかる。このよ
うに、再酸化処理は絶縁膜中の水素濃度の低減に非常な
効果がある。
Figure 5 shows the hydrogen profile in the insulating film evaluated by SIMS for a nitrided oxide film (No) that was nitrided at 950°C for 60 seconds, and its No. at 950°C, 1050°C,
The reoxidized film was subjected to reoxidation treatment for 60 seconds at each temperature of 1150° C. and 1150° C. It can be seen that as the reoxidation process progresses, the hydrogen concentration in the insulating film decreases significantly, and eventually becomes as low as or lower than that of the thermally oxidized film. In this way, reoxidation treatment is very effective in reducing the hydrogen concentration in the insulating film.

次に、ホットキャリアの注入によるフラットバンド電圧
シフト及び界面準位密度の増加を調べるため、絶縁膜に
10−A/cdのトンネル電流を印加する定電流ストレ
ス法を用いた。この定電流ステレス法による評価とは、
一定の時間、定電流ストレスを絶縁膜に印加して誘起さ
れた界面準位密度の増加量及びフラットバンド電圧シフ
トをMOSキャパシタのC−■特性から評価するもので
ある。
Next, in order to investigate the flat band voltage shift and increase in interface state density due to injection of hot carriers, a constant current stress method was used in which a tunnel current of 10 −A/cd was applied to the insulating film. Evaluation using this constant current Stereth method is as follows:
The amount of increase in the interface state density and the flat band voltage shift induced by applying constant current stress to the insulating film for a certain period of time are evaluated from the C-■ characteristics of the MOS capacitor.

第6図に種々の酸化膜、窒化酸化膜及び再酸化膜におけ
る0、1クーロン/dの電子を絶縁膜に注入した時のフ
ラットバンド電圧シフトをSIMSにより評価した絶縁
膜中の水素含有量に対してプロットした。酸化膜の場合
、著しい界面準位発生のため、負方向のフラットバンド
電圧シフトがみられる。また、窒化酸化膜中の水素含有
量はかなり大きく、その為、それにより増加した電子の
捕獲電荷密度により、正方向のフラットバンド電圧シフ
トは大きい。一方、再酸化が進むに伴い、フラットバン
ド電圧シフトは小さくなることがわかる。言い換えれば
、窒化処理中に多量に取り込まれた水素は再酸化処理を
するにつれ減少し、これに比例してフラットバンド電圧
シフトは小さ(なり、さらに、第2図に示される窒化酸
化膜/半導体基板界面付近に窒化酸化層が形成されてい
ることによる界面準位発生の抑制効果が加わり、熱酸化
膜に較べて再酸化膜の界面準位密度の増加量及びフラッ
トバンド電圧シフトが低減すると考えられる。このよう
に窒化酸化膜を再酸化することは、窒化酸化膜に導入さ
れた水素を除去し、界面準位密度の増加量及びフラット
バンド電圧シフトを低減するのに、非常な効果があるこ
とがわかる。
Figure 6 shows the flat band voltage shift in various oxide films, nitrided oxide films, and re-oxidized films when 0.1 coulomb/d electrons are injected into the insulating film, and the hydrogen content in the insulating film evaluated by SIMS. Plotted against. In the case of oxide films, a flat band voltage shift in the negative direction is observed due to the significant generation of interface states. In addition, the hydrogen content in the nitrided oxide film is quite large, and therefore the flat band voltage shift in the positive direction is large due to the increased trapping charge density of electrons. On the other hand, it can be seen that as reoxidation progresses, the flat band voltage shift becomes smaller. In other words, the large amount of hydrogen taken in during the nitriding process is reduced as the reoxidation process is performed, and the flat band voltage shift is proportionally small (becomes a nitrided oxide film/semiconductor as shown in Figure 2). The formation of a nitrided oxide layer near the substrate interface has the added effect of suppressing the generation of interface states, which is thought to reduce the amount of increase in interface state density and flat band voltage shift of the re-oxidized film compared to the thermal oxidized film. Reoxidizing the nitrided oxide film in this way is very effective in removing hydrogen introduced into the nitriding oxide film and reducing the amount of increase in interface state density and flat band voltage shift. I understand that.

第7図に種々の酸化膜、窒化酸化膜及び再酸化膜におけ
る0、1クーロン/ cdの電子を絶縁膜に注入した時
の界面準位密度の増加量をSIMSにより評価した絶縁
膜中の水素含有量に対してプロットした。酸化膜の場合
、著しい界面準位発生がみられる。また、窒化酸化膜中
の水素含有量はかなり大きく、その為、界面準位密度の
増加量は大きい。一方、再酸化が進むに伴い、界面準位
密度の増加量は小さくなることがわかる。言い換えれば
、窒化処理中に多量に取り込まれた水素は再酸化処理を
するにつれ減少し、これに比例して界面準位密度の増加
量は小さくなる。このように、絶縁膜中の水素の存在が
界面準位発生に顕著に影響することがわかり、窒化酸化
膜を再酸化することは、窒化酸化膜に導入された水素を
除去し、界面準位密度の増加量を低減するのに、非常な
効果があることがわかる。さらに、界面準位密度の増加
量と水素含有量の相関関係が、窒化条件、即ち絶縁膜/
半導体界面付近の窒素濃度に太き(依存していることが
わかる。絶縁膜/半導体界面付近の窒素濃度は、950
℃および1150℃で60秒の窒化処理した窒化膜につ
いて、それぞれ5at%および11.5at%である。
Figure 7 shows the amount of increase in interface state density in various oxide films, nitrided oxide films, and re-oxidized films when 0.1 coulomb/cd electrons are injected into the insulating film, evaluated by SIMS. Plotted against content. In the case of oxide films, significant interfacial state generation is observed. Further, the hydrogen content in the nitrided oxide film is quite large, so the increase in interface state density is large. On the other hand, it can be seen that as the reoxidation progresses, the amount of increase in the interface state density becomes smaller. In other words, a large amount of hydrogen taken in during the nitriding process is reduced as the reoxidation process is performed, and the amount of increase in the interface state density becomes smaller in proportion to this. In this way, it has been found that the presence of hydrogen in the insulating film significantly affects the generation of interface states, and reoxidizing the nitrided oxide film removes the hydrogen introduced into the nitrided oxide film and increases the interface state level. It can be seen that this is very effective in reducing the amount of increase in density. Furthermore, the correlation between the increase in interface state density and the hydrogen content is determined by the nitriding conditions, that is, the insulating film/
It can be seen that there is a strong dependence on the nitrogen concentration near the semiconductor interface.The nitrogen concentration near the insulating film/semiconductor interface is 950
5 at % and 11.5 at % for nitride films subjected to nitriding treatment at 1150° C. and 1150° C. for 60 seconds, respectively.

即ち、絶縁膜/半導体界面付近の窒素濃度が高いほど、
界面準位発生をより抑制する効果があることがわかる。
That is, the higher the nitrogen concentration near the insulating film/semiconductor interface, the more
It can be seen that this has the effect of further suppressing the generation of interface states.

このように、界面準位発生には、絶縁膜中の水素の存在
による助長効果と絶縁膜/半導体界面の窒化酸化層によ
る抑制効果の二つが効いていることがわかる。
Thus, it can be seen that the generation of interface states has two effects: the promoting effect due to the presence of hydrogen in the insulating film and the suppressing effect due to the nitrided oxide layer at the insulating film/semiconductor interface.

以上をまとめると、より界面準位密度の増加量及びフラ
ットバンド電圧シフトの小さい良好な絶縁膜を得るため
には、可能な限り、絶縁膜/半導体界面付近の窒素濃度
が高く、かつ水素含有量が少ない二つの条件をかねそな
えた絶縁膜を形成すれば良いことがわかる。
To summarize the above, in order to obtain a good insulating film with a smaller increase in interface state density and a smaller flat band voltage shift, it is necessary to have a high nitrogen concentration near the insulating film/semiconductor interface and a low hydrogen content as much as possible. It can be seen that it is sufficient to form an insulating film that satisfies the two conditions that the

しかしながら、一般の酸化雰囲気中での再酸化処理は、
第3図からもわかるように、それによって絶縁膜/半導
体界面付近の窒素濃度も減少する為、せっか(窒化処理
で導入した窒素の、界面準位発生の抑制効果を最大限に
利用できない欠点があった。
However, reoxidation treatment in a general oxidizing atmosphere
As can be seen from Figure 3, this also reduces the nitrogen concentration near the insulating film/semiconductor interface. there were.

本発明は、かかる点を鑑みてなされたものであり、上記
欠点を解決するため、半導体基板上に形成された熱酸化
膜を窒化性雰囲気中で窒化処理し窒化酸化膜を形成し、
続いて不活性雰囲気中で再熱処理することを特徴とする
The present invention has been made in view of the above points, and in order to solve the above drawbacks, a thermal oxide film formed on a semiconductor substrate is nitrided in a nitriding atmosphere to form a nitrided oxide film,
It is characterized in that it is then subjected to reheat treatment in an inert atmosphere.

第8図にA uger分光法により評価した絶縁膜中の
窒素および珪素プロファイルを、950℃で60秒の短
詩窒化処理した窒化酸化膜(No) 、及びその窒化酸
化膜を窒素中1150℃、60秒の短時間再熱処理した
再加熱窒化酸化膜について示す。第3図に示した再酸化
窒化酸化膜の絶縁膜/半導体基板界面付近の窒素濃度が
窒化酸化膜(No)に比べかなり減少しているのに対し
、再加熱窒化酸化膜の場合は窒素濃度の減少が殆どみら
れないことがわかる。また、再酸化処理に伴ってみられ
た絶縁膜厚の増加も、再加熱窒化酸化膜の場合は殆どみ
られないことがわかる。一方、不活性雰囲気中での再熱
処理によっても再酸化処理と同等またはそれ以」二に絶
縁膜中の水素濃度が著しく減少することが、SIMSに
よる評価かられかった。
Figure 8 shows the nitrogen and silicon profiles in the insulating film evaluated by Auger spectroscopy. This figure shows a reheated nitrided oxide film that was reheated for a short time of seconds. While the nitrogen concentration near the insulating film/semiconductor substrate interface of the reheated nitrided oxide film shown in Figure 3 is considerably reduced compared to the nitrided oxide film (No), the nitrogen concentration in the reheated nitrided oxide film is It can be seen that there is almost no decrease in . Furthermore, it can be seen that the increase in insulating film thickness that was observed with the reoxidation treatment is almost not observed in the case of the reheated nitrided oxide film. On the other hand, SIMS evaluation has shown that reheating in an inert atmosphere significantly reduces the hydrogen concentration in the insulating film as much as or even more than reoxidation.

本発明は、これらのことを利用したもので、半導体基板
上に形成された熱酸化膜を窒化雰囲気中で窒化処理し窒
化酸化膜を形成した後、続いて不活性雰囲気中で再熱処
理することによって、再酸化処理の場合と比較して絶縁
膜/半導体界面の窒素濃度の減少及び絶縁膜厚の増加が
殆どみられずかつ絶縁膜中の水素濃度が同等またはそれ
以上に低減された絶縁膜を形成する。以上の処理により
得られた絶縁膜は、絶縁膜/半導体界面付近の窒素濃度
が高く、かつ水素含有量が少ない二つの条件をかねそな
えており、より界面準位密度の増加量及びフラットバン
ド電圧シフトの小さい良好な特性が期待できる。
The present invention takes advantage of these facts, and after nitriding a thermal oxide film formed on a semiconductor substrate in a nitriding atmosphere to form a nitrided oxide film, it is then subjected to reheat treatment in an inert atmosphere. , an insulating film in which the nitrogen concentration at the insulating film/semiconductor interface hardly decreases or the insulating film thickness increases compared to the case of reoxidation treatment, and the hydrogen concentration in the insulating film is reduced to the same level or more. form. The insulating film obtained by the above treatment has two conditions: high nitrogen concentration near the insulating film/semiconductor interface and low hydrogen content, and has a higher increase in interface state density and flat band voltage. Good characteristics with small shifts can be expected.

このように、本発明にかかる不活性雰囲気中で再熱処理
によって、絶縁膜/半導体界面付近の窒素濃度がより高
くかつ水素含有量がより少ない条件がみたされ、より低
い捕獲電荷密度を有する絶縁膜が得られる。また、絶縁
膜が増加しない為、極めて薄い絶縁膜がより安定に形成
できる。
As described above, the reheat treatment in an inert atmosphere according to the present invention satisfies the conditions for a higher nitrogen concentration and lower hydrogen content near the insulating film/semiconductor interface, resulting in an insulating film having a lower trapped charge density. is obtained. Furthermore, since the insulating film does not increase, an extremely thin insulating film can be formed more stably.

発明の効果 以上述べてきたように、本発明によれば、きわめて簡単
な製造方法によって、低い捕獲電荷密度有する絶縁膜が
得られ、微細なMO8型半導体装置において、ホットキ
ャリアにより誘起される電気的特性の劣化が著しく抑制
され、また、EEPROM半導体装置においても、書換
え可能回数が著しく改善されるなど、実用的にきわめて
有用である。
Effects of the Invention As described above, according to the present invention, an insulating film having a low trapped charge density can be obtained by an extremely simple manufacturing method, and electrical conductivity induced by hot carriers can be obtained in a fine MO8 type semiconductor device. The deterioration of characteristics is significantly suppressed, and the number of rewrites possible in EEPROM semiconductor devices is also significantly improved, which is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかる半導体装置の製造方
法の工程概略図、第2図は、A uger分光法により
評価した窒化酸化膜中の窒素の分布図、第3図は、Au
ger分光法により評価した窒化酸化膜及び再酸化窒化
酸化膜中の窒素および酸素の分布図、第4図、SIMS
により評価した酸化膜および窒化酸化膜中の水素の分布
図、第5図は、SIMSにより評価した窒化酸化膜及び
再酸化窒化酸化膜中の水素の分布図、第6図は、種々の
窒化酸化膜及び再酸化窒化酸化膜における0、1クーロ
ン/dの電子絶縁膜に注入した時のフラットバンド電圧
シフトをSIMSにより評価した絶縁膜中の水素含有量
に対してプロットした特性図、第7図は、種々の窒化酸
化膜及び再酸化窒化酸化膜における0、1クーロン/C
−の電子を絶縁膜に注入した時の界面準位密度の増加量
をSIMSにより評価した絶縁膜中の水素含有量に対し
てプロットした特性図、第8図は、Auger分光法に
より評価した窒化酸化膜及び再加熱窒化酸化膜中の窒素
および珪素の分布図である。 1・・・・・・半導体基板、2・・・・・・熱酸化膜、
3・・・・・・窒化酸化膜、4・・・・・・再加熱窒化
酸化膜。 代理人の氏名 弁理士 粟野重孝 はか1名第 図 第 図 ヌノずツタソング時■ ズノで・、タジング14間 第 図 ヌノ\°・2タソング眸閉 (贋ととしり 第 図 Rτ ζ力 第 区 ぺ 素 漫 (x )θ2′cr−’) 第 図 永 素 〕農 濯 HJ (C植−3)
FIG. 1 is a process schematic diagram of a method for manufacturing a semiconductor device according to an embodiment of the present invention, FIG. 2 is a distribution diagram of nitrogen in a nitrided oxide film evaluated by Auger spectroscopy, and FIG.
Distribution diagram of nitrogen and oxygen in the nitrided oxide film and the reoxidized nitrided oxide film evaluated by ger spectroscopy, Figure 4, SIMS
Figure 5 is a distribution diagram of hydrogen in oxide films and nitrided oxide films evaluated by SIMS. Figure 6 is a diagram of hydrogen distribution in nitrided oxide films and re-oxidized nitrided oxide films evaluated by SIMS. Figure 7 is a characteristic diagram in which the flat band voltage shift when 0.1 coulomb/d is injected into the electronic insulating film in the film and reoxynitrided oxide film is plotted against the hydrogen content in the insulating film evaluated by SIMS. is 0,1 coulomb/C in various nitrided oxide films and reoxidized nitrided oxide films.
Figure 8 is a characteristic diagram plotting the amount of increase in interface state density when − electrons are injected into the insulating film against the hydrogen content in the insulating film evaluated by SIMS. FIG. 3 is a distribution diagram of nitrogen and silicon in an oxide film and a reheated nitrided oxide film. 1... Semiconductor substrate, 2... Thermal oxide film,
3...Nitrided oxide film, 4...Reheated nitrided oxide film. Name of agent: Patent attorney Shigetaka Awano Haka 1 person 1 person Figure 1 Ward Pesumman (x) θ2'cr-') Figure Eiso] Agricultural laundry HJ (C plant-3)

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成された熱酸化膜を窒化性ガス雰囲気
中で放射加熱による急速加熱により窒化処理し窒化酸化
膜を形成した後、不活性ガス雰囲気中で放射加熱による
急速加熱により再熱処理することを特徴とする半導体装
置の製造方法。
After nitriding a thermal oxide film formed on a semiconductor substrate by rapid heating using radiation heating in a nitriding gas atmosphere to form a nitrided oxide film, reheating is performed by rapid heating using radiation heating in an inert gas atmosphere. A method for manufacturing a semiconductor device, characterized by:
JP16940788A 1987-07-31 1988-07-07 Method for manufacturing semiconductor device Expired - Fee Related JPH0728039B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16940788A JPH0728039B2 (en) 1988-07-07 1988-07-07 Method for manufacturing semiconductor device
KR1019880009628A KR920007450B1 (en) 1987-07-31 1988-07-29 Semiconductor device and there manufacturing method
US08/251,642 US5403786A (en) 1987-07-31 1994-05-31 Semiconductor device and method for fabricating the same
US08/358,142 US5521127A (en) 1987-07-31 1994-12-16 Re-oxidized nitrided oxides and re-annealed nitrided oxides prepared by rapid thermal processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16940788A JPH0728039B2 (en) 1988-07-07 1988-07-07 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0218934A true JPH0218934A (en) 1990-01-23
JPH0728039B2 JPH0728039B2 (en) 1995-03-29

Family

ID=15886028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16940788A Expired - Fee Related JPH0728039B2 (en) 1987-07-31 1988-07-07 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0728039B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246334A (en) * 1989-03-20 1990-10-02 Nippondenso Co Ltd Manufacture of semiconductor device
US5397720A (en) * 1994-01-07 1995-03-14 The Regents Of The University Of Texas System Method of making MOS transistor having improved oxynitride dielectric
US5470771A (en) * 1989-04-28 1995-11-28 Nippondenso Co., Ltd. Method of manufacturing a floating gate memory device
US5972800A (en) * 1995-05-10 1999-10-26 Nec Corporation Method for fabricating a semiconductor device with multi-level structured insulator
JP2002009282A (en) * 2000-04-19 2002-01-11 Seiko Instruments Inc Method of manufacturing semiconductor device
US6373093B2 (en) 1989-04-28 2002-04-16 Nippondenso Corporation Semiconductor memory device and method of manufacturing the same
US6559518B1 (en) 1998-10-01 2003-05-06 Matsushita Electric Industrial Co., Ltd. MOS heterostructure, semiconductor device with the structure, and method for fabricating the semiconductor device
US6737362B1 (en) * 2003-02-28 2004-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing a thin gate dielectric layer for integrated circuit fabrication
US6780720B2 (en) 2002-07-01 2004-08-24 International Business Machines Corporation Method for fabricating a nitrided silicon-oxide gate dielectric
JP2006319352A (en) * 2000-03-22 2006-11-24 Matsushita Electric Ind Co Ltd Non-volatile semiconductor memory device and its manufacturing method
US7192887B2 (en) 2003-01-31 2007-03-20 Nec Electronics Corporation Semiconductor device with nitrogen in oxide film on semiconductor substrate and method of manufacturing the same
JP2007142450A (en) * 2000-03-22 2007-06-07 Matsushita Electric Ind Co Ltd Manufacturing method of nonvolatile semiconductor storage
JP4895803B2 (en) * 2003-02-04 2012-03-14 アプライド マテリアルズ インコーポレイテッド Dielectric film and gate stack forming method, and dielectric film processing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246334A (en) * 1989-03-20 1990-10-02 Nippondenso Co Ltd Manufacture of semiconductor device
US6365458B1 (en) 1989-04-28 2002-04-02 Nippondenso Co., Ltd. Semiconductor memory device and method of manufacturing the same
US5470771A (en) * 1989-04-28 1995-11-28 Nippondenso Co., Ltd. Method of manufacturing a floating gate memory device
US6525400B2 (en) 1989-04-28 2003-02-25 Denso Corporation Semiconductor memory device and method of manufacturing the same
US6373093B2 (en) 1989-04-28 2002-04-16 Nippondenso Corporation Semiconductor memory device and method of manufacturing the same
US5397720A (en) * 1994-01-07 1995-03-14 The Regents Of The University Of Texas System Method of making MOS transistor having improved oxynitride dielectric
US5541436A (en) * 1994-01-07 1996-07-30 The Regents Of The University Of Texas System MOS transistor having improved oxynitride dielectric
US5972800A (en) * 1995-05-10 1999-10-26 Nec Corporation Method for fabricating a semiconductor device with multi-level structured insulator
US6037651A (en) * 1995-05-10 2000-03-14 Nec Corporation Semiconductor device with multi-level structured insulator and fabrication method thereof
US6559518B1 (en) 1998-10-01 2003-05-06 Matsushita Electric Industrial Co., Ltd. MOS heterostructure, semiconductor device with the structure, and method for fabricating the semiconductor device
JP2006319352A (en) * 2000-03-22 2006-11-24 Matsushita Electric Ind Co Ltd Non-volatile semiconductor memory device and its manufacturing method
JP2007142450A (en) * 2000-03-22 2007-06-07 Matsushita Electric Ind Co Ltd Manufacturing method of nonvolatile semiconductor storage
JP2002009282A (en) * 2000-04-19 2002-01-11 Seiko Instruments Inc Method of manufacturing semiconductor device
US6780720B2 (en) 2002-07-01 2004-08-24 International Business Machines Corporation Method for fabricating a nitrided silicon-oxide gate dielectric
US7192887B2 (en) 2003-01-31 2007-03-20 Nec Electronics Corporation Semiconductor device with nitrogen in oxide film on semiconductor substrate and method of manufacturing the same
JP4895803B2 (en) * 2003-02-04 2012-03-14 アプライド マテリアルズ インコーポレイテッド Dielectric film and gate stack forming method, and dielectric film processing method
US6737362B1 (en) * 2003-02-28 2004-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Method for manufacturing a thin gate dielectric layer for integrated circuit fabrication

Also Published As

Publication number Publication date
JPH0728039B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
Carter et al. Passivation and interface state density of SiO 2/HfO 2-based/polycrystalline-Si gate stacks
KR100350815B1 (en) Dielectric Formation Method
JP5072837B2 (en) Improved manufacturing method for annealing a plasma-nitrided gate dielectric in two steps after nitridation
KR920007450B1 (en) Semiconductor device and there manufacturing method
US7569502B2 (en) Method of forming a silicon oxynitride layer
JPH0218934A (en) Manufacture of semiconductor device
US5656516A (en) Method for forming silicon oxide layer
Hori et al. Excellent charge-trapping properties of ultrathin reoxidized nitrided oxides prepared by rapid thermal processing
JP3593340B2 (en) Manufacturing method of integrated circuit device
Perera et al. Effects of post annealing on removal of defect states in silicon oxynitride films grown by oxidation of silicon substrates nitrided in inductively coupled nitrogen plasma
Hori et al. Ultra-thin re-oxidized nitrided-oxides prepared by rapid thermal processing
JP3805825B2 (en) Formation method of insulating film
Wong et al. Instabilities of metal‐oxide‐semiconductor transistor with high‐temperature annealing of its gate oxide in ammonia
Ahn et al. Radiation hardened metal‐oxide‐semiconductor devices with gate dielectrics grown by rapid thermal processing in O2 with diluted NF3
Schlesier et al. Processing effects on steam oxide hardness
Fukuda et al. Effect of oxynitridation on charge trapping properties of ultrathin silicon dioxide films
JPH0770535B2 (en) Method for manufacturing semiconductor device
Wu et al. Improvement in radiation hardness of reoxidized nitrided oxide (RNO) in the absence of post-oxidation anneal
KR100292054B1 (en) Method for forming gate oxide
JPH0728037B2 (en) Method for manufacturing semiconductor device
JPH03280471A (en) Manufacture of semiconductor device
Ikeda et al. Oxynitridation of silicon with nitrogen plasma for flash memory applications characterized by high frequency capacitance–voltage measurements
JPH01146332A (en) Manufacture of semiconductor device
Ting et al. Fluorinated thin SiO2 grown by rapid thermal processing
Lin et al. Effect of BF2 implantation on ultrathin gate oxide reliability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees