JPH02189008A - Circularly polarized wave antenna system - Google Patents

Circularly polarized wave antenna system

Info

Publication number
JPH02189008A
JPH02189008A JP783089A JP783089A JPH02189008A JP H02189008 A JPH02189008 A JP H02189008A JP 783089 A JP783089 A JP 783089A JP 783089 A JP783089 A JP 783089A JP H02189008 A JPH02189008 A JP H02189008A
Authority
JP
Japan
Prior art keywords
flat plate
antenna
circularly polarized
power
antenna device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP783089A
Other languages
Japanese (ja)
Inventor
Hisamatsu Nakano
久松 中野
Takeshi Ishino
石野 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP783089A priority Critical patent/JPH02189008A/en
Priority to DE19893927141 priority patent/DE3927141C2/en
Priority to GB8918771A priority patent/GB2227369B/en
Priority to CA 608729 priority patent/CA1331055C/en
Priority to FR8911059A priority patent/FR2641904B1/en
Publication of JPH02189008A publication Critical patent/JPH02189008A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0012Radial guide fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/067Two dimensional planar arrays using endfire radiating aerial units transverse to the plane of the array

Abstract

PURPOSE:To attain small sized structure and high sensitivity by branching the power fed from the center of a 1st flat plate of a parallel metallic flat plate with a narrower interval than the wavelength of a radio wave through one small hole or over made to a 2nd flat plate and using the branched power so as to excite a circularly polarized wave element antenna. CONSTITUTION:The supply power supplied from a coaxial line 16 is coupled and absorbed with a feeding insertion section 21 of a helical antenna 20 sequentially as the power is propagated through the inner space of the parallel metallic flat plate comprising flat plates 10, 11 radially, reaches the outside of the flat plate 11 through a small hole 14 to excite the helical antenna 20. When the feeding power reaches the termination of the parallel metallic flat plate, i.e., an external ridge, the power is substantially zero. Even if any residual power exists, it is absorbed with a radio wave absorbing body 23 and then no reflecting power remains, which goes to the feeding direction. Thus, means such as au attenuator and a phase shifter are not required, the design is facilitated and the structure is simplified.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、円偏波を利用するレーダや衛星通信用等の円
偏波アンテナ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a circularly polarized antenna device for use in radar, satellite communication, etc., which utilizes circularly polarized waves.

(発明の概要) 本発明は、レーダや衛星通信用等の円偏波アンテナ装置
であって、電波の波長に比べて間隔の狭い平行金属平板
の一方の面に1個もしくは複数個の円偏波素子アンテナ
を設け、装置の奥行き寸法の低減を図り、小形で高感度
の装置を実現したものである。
(Summary of the Invention) The present invention is a circularly polarized antenna device for radar, satellite communication, etc., in which one or more circularly polarized antennas are arranged on one surface of parallel metal flat plates whose spacing is narrower than the wavelength of radio waves. A wave element antenna is provided to reduce the depth of the device, resulting in a compact and highly sensitive device.

(従来の技術) レーダアンテナ装置や衛星通信用アンテナ装置では、高
い感度(電力利得)が要求され、しかも設置場所に余裕
の無い場合には小形のものが望まれる。
(Prior Art) A radar antenna device or a satellite communication antenna device is required to have high sensitivity (power gain), and if there is limited space for installation, a small size is desired.

第10図乃至第12図は円偏波アンテナ装置の従来例を
それぞれ示すものである。ここで、第10図の第1従来
例は、電波が給電される方形導波管1の前面に複数個の
ヘリカルアンテナ2を導波管内部に結合するように配列
した導波管配列ヘリカルアンテナアレイである。また、
第11図の第2従米例は、第10図の導波管配列ヘリカ
ルアンテナアレイ3を多段式に配列した円偏波アンテナ
装置であり、各導波管配列ヘリカルアンテナアレイ3に
はそれぞれ減衰器4及び移相器5を介して電波を給電す
る構成となっている。第12図の第3従来例は、反射1
16の焦点に一次放射器7を配置したパラボラ形アンテ
ナ装置である。いずれの従来例も円偏波の電波を送信及
び受信できるものである。
10 to 12 respectively show conventional examples of circularly polarized antenna devices. Here, the first conventional example shown in FIG. 10 is a waveguide array helical antenna in which a plurality of helical antennas 2 are arranged in front of a rectangular waveguide 1 to which radio waves are fed so as to be coupled inside the waveguide. It is an array. Also,
The second example shown in FIG. 11 is a circularly polarized antenna device in which the waveguide helical antenna array 3 shown in FIG. 4 and a phase shifter 5 to feed radio waves. The third conventional example in FIG.
This is a parabolic antenna device in which a primary radiator 7 is placed at a focal point of 16. Both conventional examples can transmit and receive circularly polarized radio waves.

(発明が解決しようとする課題) ところで、第10図の第1従来例においては利得が少な
く、利得を上げるために第11図のように多段式に導波
管配列ヘリカルアンテナアレイ3を配列すると構造が大
形となり、給電が複雑となる欠点が生じる。また、第1
2図の第3従米例においては、−次放射器7が反射鏡6
より突出して占有空間を増加させる欠点がある。
(Problem to be Solved by the Invention) By the way, in the first conventional example shown in FIG. 10, the gain is small, and in order to increase the gain, if the waveguide array helical antenna array 3 is arranged in a multi-stage manner as shown in FIG. The disadvantage is that the structure is large and the power supply is complicated. Also, the first
In the third example shown in Figure 2, the -order radiator 7 is the reflector 6.
The drawback is that it takes up more space.

本発明の目的は、設計が簡易で、奥行きが小さく、補遺
が小形にして高感度の円偏波アンテナ装置を提供するこ
とにある。
An object of the present invention is to provide a highly sensitive circularly polarized antenna device that is simple in design, has a small depth, and has a small addendum.

(課題を解決するための手段) 上記目的を達成するためtこ、本発明は、電波の波長に
比べて間隔の狭い平行金属平板の第1の平板の中央より
給電された電力が、第2の平板にあけられた1個以上の
小さな穴を通して分岐され、この分岐電力が1個以上の
円偏波素子アンテナを励振する構成としている。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides that power supplied from the center of a first flat plate of parallel metal flat plates having a narrow interval compared to the wavelength of radio waves is The branched power is branched through one or more small holes drilled in a flat plate, and this branched power excites one or more circularly polarized wave element antennas.

(作用) 本発明の円偏波アンテナ装置においては、1個以上の小
さな穴を形成した平行金属平板が、当該穴に給電用挿入
部が挿通された円偏波素子アンテナに対して電波を分岐
する手段として働き、減衰器や移相器等の手段は不要で
あり、設計が容易で構造も簡単となる。また、平行金属
平板の厚みは小さく、素子アンテナの突出も小さくでき
、平面的な構造であるから、奥行き寸法が小さく、占有
空間を小さくできる。
(Function) In the circularly polarized antenna device of the present invention, the parallel metal plate in which one or more small holes are formed branches radio waves to the circularly polarized element antenna in which the feeding insertion part is inserted into the hole. It works as a means to do this, does not require means such as an attenuator or a phase shifter, and is easy to design and have a simple structure. Furthermore, the thickness of the parallel metal flat plate is small, the protrusion of the element antenna can be made small, and since the structure is planar, the depth dimension is small and the occupied space can be made small.

(実施例) 以下、本発明に係る円偏波アンテナ装置の実施例を図面
に従って説明する。
(Example) Hereinafter, an example of a circularly polarized antenna device according to the present invention will be described with reference to the drawings.

第1図及び第2図は本発明の第1実施例を示す。1 and 2 show a first embodiment of the invention.

これらの図において、10はfjSlの円形金属平板、
11は12の円形金属平板であり、これらにより送受(
a電波の波長に比べて間隔の狭い平行金属平板が構成さ
れる。そして、平板10.11の外周縁を短絡、密閉す
る如く円形金属リング12が取り付けられ、これらによ
り内部空間を有する偏平な円筒体が構成されることにな
る。
In these figures, 10 is a circular metal plate of fjSl,
11 is 12 circular metal plates, which transmit and receive (
A Parallel metal flat plates are constructed whose spacing is narrower than the wavelength of the radio waves. Then, a circular metal ring 12 is attached so as to short-circuit and seal the outer peripheral edge of the flat plate 10.11, thereby forming a flat cylindrical body having an internal space.

第1の円形金属平板10の中央には中央給電用穴13が
形成され、第2の円形金属平板11には多数の小さな穴
14が形成されている。また、第2の平板11の内面中
央には金属テーパー錐状整合素子15(横断面が円形で
、好ましくはテーパーが末広がりになっているもの)が
接続、固定されており、中央給電用穴13に端部が嵌め
られた給電用同軸線路16の芯[17の延長部分が晟金
属テーパー錐状整合索子15の頂点に接続されている。
A central power feeding hole 13 is formed in the center of the first circular flat metal plate 10, and a large number of small holes 14 are formed in the second circular flat metal plate 11. Further, a metal tapered conical matching element 15 (having a circular cross section and preferably a tapered end) is connected and fixed to the center of the inner surface of the second flat plate 11. The extended portion of the core 17 of the power feeding coaxial line 16 whose end is fitted is connected to the apex of the metal tapered conical matching cord 15.

同軸線路16の外側導体18はf51の平板Lot:接
続されている。
The outer conductor 18 of the coaxial line 16 is connected to a flat plate Lot: f51.

円偏波素子テンテナとしては第3図に示すヘリカルアン
テナ20が使用され、ヘリカル(螺旋形状)を構成する
導線の末端部に形成された直線状の給電用挿入部21を
、前記小さな穴14に嵌合した誘電体22に挿通するこ
とによって支持される。
A helical antenna 20 shown in FIG. 3 is used as the circularly polarized wave element tentenna, and a linear power feeding insertion part 21 formed at the end of the conductor forming the helical (spiral shape) is inserted into the small hole 14. It is supported by being inserted through the fitted dielectric 22.

前記円偏波発生用のヘリカルアンテナ20のアンテナ利
得や周波数帯は、ヘリカルピッチ角、ヘリカル円周、ヘ
リカル巻数を適宜選択して自由に設定することができる
。また、多数のヘリカルアンテナ20の平行金属平板に
対する配置は、例えば給電点に対して同心円上に配置す
る、換言すれば多数の小さな穴14を前記第2の円形金
属平板11の同心円上に形成することなどが考えられる
The antenna gain and frequency band of the circularly polarized wave generating helical antenna 20 can be freely set by appropriately selecting the helical pitch angle, helical circumference, and helical winding number. Further, the arrangement of the large number of helical antennas 20 on the parallel metal flat plate is, for example, arranged concentrically with respect to the feeding point, in other words, a large number of small holes 14 are formed on the concentric circle of the second circular metal flat plate 11. There are many things that can be considered.

なお、用途に応じてスパイラル状、基盤目状等の種々の
配置が採用できる。
Note that various arrangements such as a spiral shape, a base pattern, etc. can be adopted depending on the purpose.

なお、第2図のように、前記円形金属リング12の内側
にはリング状に残留電力吸収のための電波吸収体23が
配設されている。
As shown in FIG. 2, a radio wave absorber 23 for absorbing residual power is disposed in a ring shape inside the circular metal ring 12.

以上の第1実施例の構成におい−6同軸線路16より供
給された給電電力は、平板10.11の平行金属平版の
内部空間を半径方向に進行するにつれて逐次ヘリカルア
ンテナ20の給電用挿入部21に結合吸収され、小さな
穴14を通って平板11の外側に抜は出してヘリカルア
ンテナ20を励振する。そして、給電電力が平行金属平
板の終端、すなわち外縁部に到達したときは実質的に零
になる。もし残留電力が存在しても電波吸収体23で吸
収され、給電方向に向かう反射電力は無いようになって
いる。
In the configuration of the first embodiment described above, the feeding power supplied from the -6 coaxial line 16 is sequentially transmitted to the feeding insertion portion 20 of the helical antenna 20 as it travels in the radial direction through the inner space of the parallel metal flat plate of the flat plate 10.11. It is coupled and absorbed by the air, and is extracted to the outside of the flat plate 11 through the small hole 14 to excite the helical antenna 20. Then, when the supplied power reaches the end of the parallel metal flat plate, that is, the outer edge, it becomes substantially zero. Even if residual power exists, it is absorbed by the radio wave absorber 23, so that there is no reflected power toward the power feeding direction.

以上の第1実施例のvI戒によれば、平行=に属平板内
の給電電力をヘリカルアンテナ20の給電用挿入部21
を介して逐次放射電力に変換でき、しかもヘリカルアン
テナを平板11上に複数個配列したことにより放射ビー
ムを狭くできるのでアンテナ利得を上げることができる
。また、進行波形の電流を素子アンテナとしてのヘリカ
ルアンテナ20上に分布させて用いているので、周波数
帯域が広帯域である。さらに、給電に際して滅装器や移
相器は不要で構造が簡単である。
According to the vI precept of the first embodiment above, the feeding power in the flat plate belonging to the parallel =
Moreover, by arranging a plurality of helical antennas on the flat plate 11, the radiation beam can be narrowed, and the antenna gain can be increased. Further, since the traveling waveform current is distributed on the helical antenna 20 as an element antenna, the frequency band is wide. Furthermore, the structure is simple, with no need for a sterilizer or a phase shifter when supplying power.

なお、平行金属平板の径が充分大きく、外縁部に到達し
たときの残留電力を零にできるのであれば、電波吸収体
は省略可能である。
Note that the radio wave absorber can be omitted if the diameter of the parallel metal flat plate is sufficiently large and the residual power when reaching the outer edge can be made zero.

fjS4図は本発明の第2実施例であって、素子アンテ
ナとしてのヘリカルアンテナ20を平行金属平板に対し
て取り付は支持する構造を工夫している。この場合、第
2の円形金属平板11に形成された小さな穴14には7
ランジ付き誘電体22Aが嵌合固定され、該誘電体22
Aの中心にヘリカルアンテナ20の給電用挿入部21が
挿通、支持されている。なお、その他の構造は前述の第
1実施例と同様である。
Fig. fjS4 shows a second embodiment of the present invention, in which a helical antenna 20 as an element antenna is mounted and supported on a parallel metal plate. In this case, the small hole 14 formed in the second circular flat metal plate 11 has seven holes.
A dielectric body 22A with a flange is fitted and fixed, and the dielectric body 22A is fitted and fixed.
A feeding insertion portion 21 of the helical antenna 20 is inserted and supported at the center of A. Note that the other structures are the same as those of the first embodiment described above.

この第4図の第2実施例によれば、誘電体22Aの7ラ
ンジ25によって、ヘリカルアンテナ20のヘリカル部
分が平板11に接触してしまう事故の発生を防止でき、
また各ヘリカルアンテナ20のヘリカル部分が常に7ラ
ンノ25の厚みTだけ平板11より離間して取り付けら
れることになって、ヘリカルアンテナ20を多数取り付
ける場合でも取り付は条件を一定にできる利点がある。
According to the second embodiment shown in FIG. 4, the seven flange 25 of the dielectric 22A can prevent the helical portion of the helical antenna 20 from coming into contact with the flat plate 11.
Further, the helical portion of each helical antenna 20 is always mounted apart from the flat plate 11 by the thickness T of 7 runs 25, which has the advantage that even when a large number of helical antennas 20 are mounted, the mounting conditions can be kept constant.

第5図及びt56図は本発明のff13実施例であって
、素子アンテナとしてスパイラルアンテナ30を使用し
ている。このスパイラルアンテナ30は1本の導線をス
パイラル形状(平面の渦巻き状)に形成したものであり
、導線末端部に直線状の給電用挿入部31を一体的に形
成している。ここで、スパイラルアンテナ30の第2の
円形金属平板11に対しての取り付けは、平板11の小
さな穴14に代められた誘電体32に、給電用挿入部3
1を挿通することによって行うが、誘電体32の平板1
1より外側に突出する部分は金属円筒33で囲んで同軸
線路と同様の構造にしておく。これは、スパイラル(渦
巻きアンテナパターン)に到達する前に給電用挿入部3
1の途中より電波が放射されるのを防止するためである
5 and t56 show an FF13 embodiment of the present invention, in which a spiral antenna 30 is used as the element antenna. This spiral antenna 30 is formed by forming a single conducting wire into a spiral shape (a planar spiral shape), and a linear power feeding insertion portion 31 is integrally formed at the end of the conducting wire. Here, when attaching the spiral antenna 30 to the second circular flat metal plate 11, the feeding insertion part 3 is inserted into the dielectric body 32, which is replaced by the small hole 14 in the flat plate 11.
This is done by inserting the flat plate 1 of the dielectric 32.
The portion projecting outward from 1 is surrounded by a metal cylinder 33 to have a structure similar to that of a coaxial line. This means that the feeding insert 3
This is to prevent radio waves from being emitted from the middle of 1.

スパイラルアンテナ30のスパイラルの外周Cは、使用
周波数から計算される波長の1倍以上とし、2倍を越え
ない。また、スパイラルと平板11の表面までの距離H
は使用周波数から計算される波長の1/2倍以下とし、
通常1/4倍にとるのが放射ビーム成形の点で良い。
The spiral outer circumference C of the spiral antenna 30 is at least one time the wavelength calculated from the frequency used, and does not exceed twice the wavelength. Also, the distance H between the spiral and the surface of the flat plate 11
shall be 1/2 or less of the wavelength calculated from the frequency used,
Normally, it is good to set it to 1/4 times in terms of radiation beam shaping.

なお、素子アンテナの構成以外は前述の11実施例と同
様である。
Note that the structure of this embodiment is the same as that of the eleventh embodiment described above except for the configuration of the element antenna.

上記第3実施例の場合、素子アンテナがスパイラルアン
テナ30であるため、装置の奥行き寸法をさらに縮小し
て平面的なアンテナ装置を構成できる利点がある。また
、進行波形の電流を素子アンテナとしてのスパイラルア
ンテナ30上に分布させて用いているので、周波数帯域
が広帯域である。
In the case of the third embodiment, since the element antenna is the spiral antenna 30, there is an advantage that the depth dimension of the device can be further reduced to form a planar antenna device. Further, since the traveling waveform current is distributed on the spiral antenna 30 as an element antenna, the frequency band is wide.

第7図は本発明の第4実施例であって、素子アンテナと
してパッチ状アンテナ40を使用している。このパッチ
状アンテナ40は一肘の切欠講42を形成した円形金属
板41の切欠溝中心線から45°ずれた所で、かつ裏面
中心から半径の1/3@れtこ点に直線状導線の給電用
挿入部43を接続一体化したものである。ここで、パッ
チ状アンテナ40のtjIJ2の円形金属平板11への
取り付けは、第8図のように平板11の小さな穴14に
はめられた誘電体44に給電用挿入部43を挿通、支持
することによって行なわれる。但し、切欠溝付円形金属
板41と平板11の表面までの距離Hは使用周波数から
計算される波長の1/10倍以下とする。
FIG. 7 shows a fourth embodiment of the present invention, in which a patch antenna 40 is used as the element antenna. This patch-like antenna 40 is located at a place 45 degrees off from the center line of the notch groove of a circular metal plate 41 forming a one-elbow notch 42, and at a point 1/3 of the radius from the center of the back surface with a straight conductor wire. The power feeding insertion portion 43 is connected and integrated. Here, the patch antenna 40 is attached to the circular metal flat plate 11 of the tjIJ2 by inserting and supporting the feeding insertion part 43 through the dielectric 44 fitted into the small hole 14 of the flat plate 11 as shown in FIG. It is carried out by However, the distance H between the notched grooved circular metal plate 41 and the surface of the flat plate 11 is set to 1/10 times or less of the wavelength calculated from the frequency used.

なお、素子アンテナの構成以外は萌述の第1実施例と同
様である。
Note that the structure of this embodiment is the same as that of Moe's first embodiment except for the configuration of the element antenna.

上記第4実施例の場合、素子アンテナがパッチ状アンテ
ナ40であるため、素子アンテナ自体の構造が簡単にな
り、また装置の奥行き寸法を縮小して平面的なアンテナ
装置を構成できる。但し、周波数帯域は狭くなる。
In the case of the fourth embodiment, since the element antenna is a patch antenna 40, the structure of the element antenna itself is simplified, and the depth of the device can be reduced to form a planar antenna device. However, the frequency band becomes narrower.

@9図は本発明の第5実施例であって、素子アンテナと
して絶縁基板50の片面上に厚膜印刷技術、薄膜技術、
エツチング等の技術によりスパイラル又はパッチ状のア
ンテナ導体パターン51を形成したものを使用している
。アンテナ導体パターン51には基板50を貫通する直
線状導線の給電用挿入部52が接続一体化され、註給電
用挿入部52は平板11の小さな穴14に嵌められた誘
電体53に挿通、支持される。但し、誘電体53の平板
11より外側に突出する部分は金属円筒54で囲んで同
M線路と同様の構造にしておく。これは、スパイラル又
はバッチ状のアンテナ導体パターン51に到達面に給電
用挿入部52の途中より電波が放射されるのを防止する
ためである。
Figure @9 shows a fifth embodiment of the present invention, in which thick film printing technology, thin film technology,
A spiral or patch-shaped antenna conductor pattern 51 is formed using a technique such as etching. The antenna conductor pattern 51 is connected and integrated with a feeding insertion portion 52 of a straight conductor that penetrates the substrate 50. Note: The feeding insertion portion 52 is inserted into and supported by a dielectric 53 fitted into a small hole 14 in the flat plate 11. be done. However, the portion of the dielectric 53 that protrudes outward from the flat plate 11 is surrounded by a metal cylinder 54 to have the same structure as the M line. This is to prevent radio waves from being radiated from the middle of the feeding insertion section 52 to the surface reaching the spiral or batch-shaped antenna conductor pattern 51.

この第9図のf55実施例によれば、絶縁基板上にアン
テナ導体パターン51を形成すれば良く、素子アンテナ
の個数が多い場合にも同一絶縁基板上に必要な数のアン
テナ導体パターンを形成すれば良いから、量産性の向上
を図ることができる。
According to the f55 embodiment shown in FIG. 9, it is sufficient to form the antenna conductor pattern 51 on the insulating substrate, and even when there are many element antennas, the required number of antenna conductor patterns can be formed on the same insulating substrate. Since it is possible to improve mass productivity, it is possible to improve mass productivity.

(発明の効果) 以上説明したように、本発明の円偏波アンテナ装置は、
平行金属平板内の電力を円偏波素子アンテナの給電用挿
入部を介して逐次放射電力に変換でき、しかも素子アン
テナを平行金属平板の一面上に複数個配列することによ
り放射ビームを狭くできるのでアンテナ利得を上げるこ
とがで慇るという効果があり、また構造が簡単であるの
で、レーダ、衛星通信用アンテナに好適であると言える
(Effects of the Invention) As explained above, the circularly polarized antenna device of the present invention has the following features:
The power in the parallel metal flat plate can be sequentially converted into radiated power via the feeding insertion part of the circularly polarized element antenna, and the radiation beam can be narrowed by arranging multiple element antennas on one side of the parallel metal flat plate. Since it has the effect of increasing the antenna gain and has a simple structure, it can be said to be suitable for radar and satellite communication antennas.

【図面の簡単な説明】[Brief explanation of the drawing]

#IJ1図は本発明に係る円偏波アンテナ装置の第1実
施例を示す平面図、第2図はfjS1図のII−II断
面図、13図は第1実施例における素子アンテナの取り
付は構造部分を示す断面図、第4図は本発明の第2実施
例を示す断面図、tjSS図は本発明の第3実施例を示
す平面図、第6図は同断面図、第7図は本発明のl@4
実施例を示す平面図、!@8図は同断面図、第9図は本
発明の第5実施例を示す断面図、第10図は1従米例の
斜視図、第11図は第2従米例の斜視図、第12図はf
53従来例の側面図である。 10・・・第1の円形金属平板、11・・・第2の円形
金属平板、12・・・円形金属リング、13・・・中央
給電用穴、14・・・小さな穴、15・・・金属テーパ
ー錐状整合素子、16・・・同軸線路、20・・・ヘリ
カルアンテナ、21,31,43.52・・・給電用挿
入部、22.22A、32.44.53・・・誘電体、
23・・・電波吸収体、30・・・スパイラルアンテナ
、40・・・パッチ状アンテナ、50・・・絶縁基板、
51・・・アンテナ導体パターン。
#IJ1 is a plan view showing the first embodiment of the circularly polarized antenna device according to the present invention, FIG. 2 is a sectional view taken along line II-II of fjS1, and FIG. 4 is a sectional view showing a second embodiment of the present invention, tjSS is a plan view showing a third embodiment of the present invention, FIG. 6 is a sectional view of the same, and FIG. 7 is a sectional view showing a structural part. l@4 of the present invention
A plan view showing an example! @ Figure 8 is a sectional view of the same, Figure 9 is a sectional view showing the fifth embodiment of the present invention, Figure 10 is a perspective view of the first example, Figure 11 is a perspective view of the second example, and Figure 12. is f
53 is a side view of the conventional example. DESCRIPTION OF SYMBOLS 10... First circular metal flat plate, 11... Second circular metal flat plate, 12... Circular metal ring, 13... Center power feeding hole, 14... Small hole, 15... Metal tapered conical matching element, 16... Coaxial line, 20... Helical antenna, 21, 31, 43.52... Power feeding insertion part, 22.22A, 32.44.53... Dielectric material ,
23... Radio wave absorber, 30... Spiral antenna, 40... Patch-like antenna, 50... Insulating substrate,
51...Antenna conductor pattern.

Claims (6)

【特許請求の範囲】[Claims] (1)電波の波長に比べて間隔の狭い平行金属平板の第
1の平板の中央より給電された電力が、第2の平板にあ
けられた1個以上の小さな穴を通して分岐され、この分
岐電力が1個以上の円偏波素子アンテナを励振すること
を特徴とする円偏波アンテナ装置。
(1) Power fed from the center of the first parallel metal flat plate with a narrow interval compared to the wavelength of the radio wave is branched through one or more small holes drilled in the second flat plate, and this branched power is What is claimed is: 1. A circularly polarized wave antenna device, characterized in that a circularly polarized wave antenna device excites one or more circularly polarized wave element antennas.
(2)前記平行金属平板の第1の平板及び第2の平板の
外周縁を短絡する如く金属リングが設けられている請求
項1記載の円偏波アンテナ装置。
(2) The circularly polarized antenna device according to claim 1, wherein a metal ring is provided so as to short-circuit the outer peripheral edges of the first and second parallel metal plates.
(3)前記平行金属平板の内部空間の外周部に電波吸収
体が設けられている請求項1又は2記載の円偏波アンテ
ナ装置。
(3) The circularly polarized antenna device according to claim 1 or 2, wherein a radio wave absorber is provided on the outer periphery of the internal space of the parallel metal flat plate.
(4)前記平行金属平板の第2の平板の内面中央に金属
テーパー錐状整合素子を接続し、該金属テーパー錐状整
合素子に給電用線路の先端を接続した請求項1記載の円
偏波アンテナ装置。
(4) A circularly polarized wave according to claim 1, wherein a metal tapered conical matching element is connected to the center of the inner surface of the second flat plate of the parallel metal flat plates, and a tip of a power supply line is connected to the metal tapered conical matching element. antenna device.
(5)前記素子アンテナがヘリカルアンテナ、スパイラ
ルアンテナもしくはパッチ状アンテナである請求項1記
載の円偏波アンテナ装置。
(5) The circularly polarized antenna device according to claim 1, wherein the element antenna is a helical antenna, a spiral antenna, or a patch antenna.
(6)前記小さな穴には前記素子アンテナの給電用挿入
部を支える誘電体が設けられている請求項1記載の円偏
波アンテナ装置。
(6) The circularly polarized antenna device according to claim 1, wherein the small hole is provided with a dielectric material that supports a feeding insertion portion of the element antenna.
JP783089A 1989-01-18 1989-01-18 Circularly polarized wave antenna system Pending JPH02189008A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP783089A JPH02189008A (en) 1989-01-18 1989-01-18 Circularly polarized wave antenna system
DE19893927141 DE3927141C2 (en) 1989-01-18 1989-08-17 Circularly polarized antenna system
GB8918771A GB2227369B (en) 1989-01-18 1989-08-17 A circular polarization antenna system
CA 608729 CA1331055C (en) 1989-01-18 1989-08-18 Circular polarization antenna system
FR8911059A FR2641904B1 (en) 1989-01-18 1989-08-21 ANTENNA DEVICE FOR CIRCULAR POLARIZATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP783089A JPH02189008A (en) 1989-01-18 1989-01-18 Circularly polarized wave antenna system

Publications (1)

Publication Number Publication Date
JPH02189008A true JPH02189008A (en) 1990-07-25

Family

ID=11676514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP783089A Pending JPH02189008A (en) 1989-01-18 1989-01-18 Circularly polarized wave antenna system

Country Status (5)

Country Link
JP (1) JPH02189008A (en)
CA (1) CA1331055C (en)
DE (1) DE3927141C2 (en)
FR (1) FR2641904B1 (en)
GB (1) GB2227369B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438113U (en) * 1990-07-27 1992-03-31
JPH04154307A (en) * 1990-10-18 1992-05-27 Yagi Antenna Co Ltd Plane antenna
JPH04358406A (en) * 1991-06-05 1992-12-11 Yagi Antenna Co Ltd Plane antenna
JPH04360306A (en) * 1991-06-06 1992-12-14 Yagi Antenna Co Ltd Plane antenna
US5453755A (en) * 1992-01-23 1995-09-26 Kabushiki Kaisha Yokowo Circularly-polarized-wave flat antenna
US11128053B2 (en) 2017-05-19 2021-09-21 Mitsubishi Electric Corporation Array antenna device

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0147035B1 (en) * 1993-07-31 1998-08-17 배순훈 Improved helical wire array planar antenna
KR950004634A (en) * 1993-07-31 1995-02-18 배순훈 Improved Helical Wire Array Plane Antenna
FR2810163A1 (en) 2000-06-09 2001-12-14 Thomson Multimedia Sa IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS
US6768475B2 (en) * 2001-02-27 2004-07-27 Mitsubishi Denki Kabushiki Kaisha Antenna
NO20030347D0 (en) * 2003-01-23 2003-01-23 Radionor Comm As Antenna element and group antenna
DE10304420B3 (en) * 2003-02-04 2004-10-07 Kastriot Merlaku Electromagnetic coil/spiral receiver antenna consists of CD or DVD disk with spiral groove(s) in metal coating so deep that coating is electrically separated, feed point on one end of coil in disk
US7262729B1 (en) * 2006-06-19 2007-08-28 General Electric Company Radio detection and ranging intrusion detection system
CN102882012A (en) * 2012-09-14 2013-01-16 无锡创元电子科技有限公司 Wall-hung or horizontally-laid flat satellite television antenna
CN102868028B (en) * 2012-09-19 2014-08-20 无锡创元电子科技有限公司 Mechanical type phase control scanning array antennae and wave beam pointing control method thereof
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
FR3013905B1 (en) * 2013-11-28 2017-05-19 Thales Sa COMPACT ANTENNA STRUCTURE FOR SATELLITE TELECOMMUNICATIONS
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10581522B1 (en) 2018-12-06 2020-03-03 At&T Intellectual Property I, L.P. Free-space, twisted light optical communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1287656B (en) * 1969-01-23
JPS5787603A (en) * 1980-11-21 1982-06-01 Naohisa Goto Circular polarized wave plane array antenna
JPS60199201A (en) * 1984-03-24 1985-10-08 Arimura Giken Kk Circular waveguide line
JPS62194708A (en) * 1986-02-20 1987-08-27 Sharp Corp Feeding structure for helical antenna

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1234751A (en) * 1966-11-30 1971-06-09 Gen Electric Co Ltd Improvements in or relating to aerials
US3852761A (en) * 1973-04-23 1974-12-03 Rca Corp Lens fed antenna array system
FR2242784B1 (en) * 1973-08-31 1977-05-13 Thomson Csf
FR2456399A1 (en) * 1979-05-08 1980-12-05 Thomson Csf DISK-TYPE MICROWAVE NETWORK ANTENNA WITH ITS FEEDING DEVICE, AND APPLICATION TO ECARTOMETRY RADARS
US4647940A (en) * 1982-09-27 1987-03-03 Rogers Corporation Parallel plate waveguide antenna
GB8317938D0 (en) * 1983-07-01 1983-08-03 Emi Ltd Antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1287656B (en) * 1969-01-23
JPS5787603A (en) * 1980-11-21 1982-06-01 Naohisa Goto Circular polarized wave plane array antenna
JPS60199201A (en) * 1984-03-24 1985-10-08 Arimura Giken Kk Circular waveguide line
JPS62194708A (en) * 1986-02-20 1987-08-27 Sharp Corp Feeding structure for helical antenna

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438113U (en) * 1990-07-27 1992-03-31
JPH04154307A (en) * 1990-10-18 1992-05-27 Yagi Antenna Co Ltd Plane antenna
JPH04358406A (en) * 1991-06-05 1992-12-11 Yagi Antenna Co Ltd Plane antenna
JPH04360306A (en) * 1991-06-06 1992-12-14 Yagi Antenna Co Ltd Plane antenna
US5453755A (en) * 1992-01-23 1995-09-26 Kabushiki Kaisha Yokowo Circularly-polarized-wave flat antenna
US11128053B2 (en) 2017-05-19 2021-09-21 Mitsubishi Electric Corporation Array antenna device

Also Published As

Publication number Publication date
CA1331055C (en) 1994-07-26
GB8918771D0 (en) 1989-09-27
FR2641904A1 (en) 1990-07-20
GB2227369B (en) 1993-05-05
GB2227369A (en) 1990-07-25
DE3927141A1 (en) 1990-07-19
FR2641904B1 (en) 1992-11-20
DE3927141C2 (en) 1993-12-23

Similar Documents

Publication Publication Date Title
JPH02189008A (en) Circularly polarized wave antenna system
US5126750A (en) Magnetic hybrid-mode horn antenna
US5757323A (en) Antenna arrangements
US3568204A (en) Multimode antenna feed system having a plurality of tracking elements mounted symmetrically about the inner walls and at the aperture end of a scalar horn
US2993205A (en) Surface wave antenna array with radiators for coupling surface wave to free space wave
JPS63292705A (en) Antenna array with hexagonal horns
JP4428864B2 (en) Coaxial cavity antenna
JPH036106A (en) Multiple band grid focus plane array antenna
JPS63967B2 (en)
US4536767A (en) Microwave directional antenna employing surface wave mode
JP3501245B2 (en) Electromagnetic coupling type antenna
US4005433A (en) Small wavelength high efficiency antenna
US4347517A (en) Microstrip backfire antenna
US3055003A (en) Spiral antenna array with polarization adjustment
US2549143A (en) Microwave broadcast antenna
US4240080A (en) Short backfire antenna with sum and error patterns
US3795005A (en) Broad band spiral antenna
JPH10163737A (en) Primary radiator for antenna for satellite reception and converter for satellite reception
JPS634362B2 (en)
JPH088640A (en) Radial line patch antenna
KR0142567B1 (en) Stripline patch antenna with slot plate
US3122745A (en) Reflection antenna employing multiple director elements and multiple reflection of energy to effect increased gain
JPS60111503A (en) Array antenna device
JPH04216204A (en) Circularly polarized wave antenna system
GB2303491A (en) Antenna arrangement