JPH10163737A - Primary radiator for antenna for satellite reception and converter for satellite reception - Google Patents

Primary radiator for antenna for satellite reception and converter for satellite reception

Info

Publication number
JPH10163737A
JPH10163737A JP32297496A JP32297496A JPH10163737A JP H10163737 A JPH10163737 A JP H10163737A JP 32297496 A JP32297496 A JP 32297496A JP 32297496 A JP32297496 A JP 32297496A JP H10163737 A JPH10163737 A JP H10163737A
Authority
JP
Japan
Prior art keywords
primary radiator
choke
openings
circular waveguides
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32297496A
Other languages
Japanese (ja)
Other versions
JP3321589B2 (en
Inventor
Koji Sakauchi
功治 坂内
Shuji Hagiwara
修二 萩原
Hiroaki Imaizumi
博晶 今泉
Hirobumi Higuchi
博文 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yagi Antenna Co Ltd
Original Assignee
Yagi Antenna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18149737&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10163737(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Yagi Antenna Co Ltd filed Critical Yagi Antenna Co Ltd
Priority to JP32297496A priority Critical patent/JP3321589B2/en
Priority to US08/961,767 priority patent/US6121939A/en
Priority to DE69735652T priority patent/DE69735652T2/en
Priority to EP97119366A priority patent/EP0843381A3/en
Priority to ES03007312T priority patent/ES2260533T3/en
Priority to EP03007312A priority patent/EP1329987B1/en
Priority to ES03007313T priority patent/ES2261810T3/en
Priority to DE69735682T priority patent/DE69735682T2/en
Priority to EP03007313A priority patent/EP1329988B1/en
Priority to KR1019970060103A priority patent/KR100611422B1/en
Priority to IDP973677A priority patent/ID18955A/en
Priority to CNB031086292A priority patent/CN1269318C/en
Priority to TW086117080A priority patent/TW393800B/en
Priority to CNB031086306A priority patent/CN1269319C/en
Priority to CN97126073A priority patent/CN1127778C/en
Publication of JPH10163737A publication Critical patent/JPH10163737A/en
Priority to US09/498,752 priority patent/US6388633B1/en
Priority to US10/102,779 priority patent/US6864850B2/en
Publication of JP3321589B2 publication Critical patent/JP3321589B2/en
Application granted granted Critical
Priority to HK05100530A priority patent/HK1068469A1/en
Priority to HK05100529A priority patent/HK1068468A1/en
Priority to KR1020060024849A priority patent/KR20060086891A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a primary radiator for efficiently receiving radio waves from a satellite while being miniaturized and reducing gain reduction concerning a small diameter multibeam antenna for narrow separation. SOLUTION: Around the outer periphery of circular waveguides 1a and 1b parallelly provided at a prescribed interval, a 1st choke 2a having the depth of almost 1/4 wavelength is formed and further around that outer periphery, a 2nd choke 2b is formed so that a primary radiator 3 can be constituted. A substrate 4 is arranged on the bottom of circular waveguides 1a and 1b, and a feeding point 5 is provided so as to be positioned at the center of the base of circular waveguides 1a and 1b by printing wiring formed on this substrate 4. Moreover, a terminal part 6 is formed on the base part of primary radiator 3. By forming the chokes 2a and 2b around the circular waveguides 1a and 1b, the opening face terminal parts of circular waveguides 1a and 1b become theoretically infinite impedances, the backward current rather than the opening face terminal part can be suppressed and the backward radiation of primary radiator 3 can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、衛星受信用アンテ
ナの一次放射器及び衛星受信用コンバータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a primary radiator of a satellite receiving antenna and a satellite receiving converter.

【0002】[0002]

【従来の技術】比較的狭い間隔で位置している2個以上
の複数衛星を1枚の反射鏡で受信する狭離隔用小口径マ
ルチビームアンテナでは、各衛星に対応する一次放射器
の間隔が狭く、通常のフレアホーンを使用した配列で
は、各フレアホーンが接触し、構造的に一次放射器が構
成できないという問題がある。例えば12GHz帯の4
°離隔2衛星を受信する45cmφのデュアルビームア
ンテナシステムの一次放射器を構成する場合、そのホー
ン間隔は約25mmとなる。このアンテナの一次放射器
を図14に示すように通常のフレアホーンで構成する
と、その開口径は約30mmとなり、構造的に構成でき
ない。このアンテナシステムを実現させるためには、一
次放射器の開口径を25mm以下となるように設定する
ことが必要となるが、EIAJ(日本電子機械工業会規
格)のWCI−120の円形導波管を使用すると、導波
管内径が17.475mmであるため、実質上ホーンの
フレア角は製品製作を考慮すると、0°近くになる。す
なわち、図15に示すような円形導波管切断開口のホー
ンとなる。
2. Description of the Related Art In a small-aperture multi-beam antenna for receiving a plurality of satellites located at relatively small intervals with a single reflecting mirror, the primary radiators corresponding to the respective satellites are spaced apart from each other. In a narrow arrangement using a normal flare horn, there is a problem that each flare horn comes into contact and a primary radiator cannot be constructed structurally. For example, 4 of 12GHz band
If a primary radiator of a 45 cmφ dual beam antenna system that receives two satellites separated by two degrees is used, the horn interval is about 25 mm. If the primary radiator of this antenna is constituted by a normal flare horn as shown in FIG. 14, the aperture diameter is about 30 mm, and cannot be structurally constituted. In order to realize this antenna system, it is necessary to set the aperture diameter of the primary radiator to be 25 mm or less. However, the circular waveguide of the EIAJ (Japan Electronic Machinery Manufacturers Association) WCI-120 is required. Is used, the inner diameter of the waveguide is 17.475 mm, so that the flare angle of the horn is substantially close to 0 ° in consideration of product production. That is, the horn has a circular waveguide cutting opening as shown in FIG.

【0003】図14(a)は、従来のフレアホーン型一
次放射器の正面図、図14(b)は同図(a)のA−
A′断面図である。また、図15(a)は、従来の円形
導波管型一次放射器の正面図、図15(b)は同図
(a)のA−A′断面図である。
FIG. 14A is a front view of a conventional flare horn type primary radiator, and FIG.
It is A 'sectional drawing. FIG. 15A is a front view of a conventional circular waveguide type primary radiator, and FIG. 15B is a cross-sectional view taken along the line AA ′ of FIG.

【0004】図14において、31はフレア付き導波管
で、基板32上に設けられる。この基板32に形成され
るプリント配線により、円形導波管31の底面中央に位
置するように給電点33が設けられる。
In FIG. 14, reference numeral 31 denotes a flare-guided waveguide provided on a substrate 32. A feed point 33 is provided by the printed wiring formed on the substrate 32 so as to be located at the center of the bottom surface of the circular waveguide 31.

【0005】また、図15に示す円形導波管型一次放射
器は、上記フレア付き導波管31に代えて円形導波管3
5を使用したもので、その他の構成は、図14のフレア
ホーン型一次放射器と同様に構成される。
A circular waveguide type primary radiator shown in FIG. 15 has a circular waveguide 3 instead of the flared waveguide 31.
The other configuration is the same as that of the flare horn type primary radiator in FIG.

【0006】上記円形導波管型一次放射器の指向性を特
性を図16に示す。反射鏡がオフセットの場合、一次放
射器の照射角は約40°である。図16の指向性は、反
射鏡照射の漏れ電力が大きく、また、反射鏡照射範囲内
で電界の凹凸も大きいため、アンテナ利得は低下する。
FIG. 16 shows the directivity characteristics of the circular waveguide type primary radiator. When the reflector is offset, the illumination angle of the primary radiator is about 40 °. In the directivity shown in FIG. 16, since the leakage power of the irradiation of the reflector is large and the unevenness of the electric field is large within the irradiation range of the reflector, the antenna gain is reduced.

【0007】上記従来の問題を解決する手段として、ホ
ーン開口径を小さくする方法や、同軸系の給電にて線状
アンテナを使用する方法、あるいは円形導波管給電型ポ
リロッドアンテナなど進行波型アンテナを一次放射器と
する方法などが考えられる。
As means for solving the above-mentioned conventional problems, a method of reducing the horn aperture diameter, a method of using a linear antenna for coaxial feed, or a traveling wave type such as a circular waveguide feed type polyrod antenna is used. A method of using the antenna as a primary radiator is conceivable.

【0008】[0008]

【発明が解決しようとする課題】しかし、上記従来の方
法で一次放射器を構成した場合、給電点からの電流は、
ホーン開口端部や線状アンテナの地板端部から後方へ流
れ込み、一次放射器指向性は反射鏡に照射する以外の放
射が大きく、その結果、アンテナ利得の低下を招くこと
になる。
However, when the primary radiator is constructed by the above-mentioned conventional method, the current from the feeding point becomes
The radiator flows backward from the end of the horn opening or the end of the base plate of the linear antenna, and the primary radiator directivity has a large amount of radiation other than the irradiation to the reflecting mirror. As a result, the antenna gain is reduced.

【0009】本発明は上記の課題を解決するためになさ
れたもので、狭離隔用小口径マルチビームアンテナにお
いて、利得低下の少ない一次放射器及び一次放射器一体
形衛星受信用コンバータを提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a primary radiator and a primary radiator-integrated satellite receiving converter with a small gain reduction in a small-diameter multi-beam antenna for narrow separation. With the goal.

【0010】[0010]

【課題を解決するための手段】本発明に係る衛星受信用
アンテナの一次放射器は、所定間隔を保って並設される
2個以上の一次放射器開口部と、これら複数の開口部の
外周に共通に少なくとも1個以上設けられる約1/4波
長の深さを有するチョークとを具備したことを特徴とす
る。
According to the present invention, a primary radiator of a satellite receiving antenna according to the present invention comprises two or more primary radiator openings which are juxtaposed at predetermined intervals, and an outer periphery of the plurality of openings. And a choke having a depth of about 1/4 wavelength, which is provided at least one or more in common with the above.

【0011】上記の構成とすることにより、開口面端部
は理論的に無限大のインピーダンスとなり、開口面端部
より後方への電流を抑制することができ、一次放射器後
方への放射を防止して複数の衛星からの電波を効率良く
受信することが可能となる。
With the above configuration, the impedance at the end of the opening surface becomes theoretically infinite, so that the current flowing backward from the end of the opening surface can be suppressed, and the radiation toward the rear of the primary radiator can be prevented. Thus, it is possible to efficiently receive radio waves from a plurality of satellites.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。 (第1実施形態)図1(a)は本発明の第1実施形態に
係る衛星受信用小口径マルチビームアンテナの一次放射
器の正面図、図1(b)は同図(a)のA−A′断面図
である。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 (a) is a front view of a primary radiator of a small-diameter multi-beam antenna for satellite reception according to a first embodiment of the present invention, and FIG. 1 (b) is A in FIG. 1 (a). It is -A 'sectional drawing.

【0013】図1(a),(b)において、1a,1b
は所定長さの円形導波管で、数mmの間隔を保って一体
に設けられる。この円形導波管1a,1bにより一次放
射器開口部が形成される。そして、上記円形導波管1
a,1bの外周に約1/4波長程度の深さの溝からなる
第1のチョーク2aを形成し、更にその外周に第1のチ
ョーク2aと同様の第2のチョーク2bを形成してい
る。上記円形導波管1a,1b及びチョーク2a,2b
により一次放射器3が形成される。また、上記円形導波
管1a,1bの底部に基板4が配置される。この基板4
に形成されるプリント配線により、円形導波管1a,1
bの底面中央に位置するように給電点5が設けられる。
更に、一次放射器3の底面部に終端部6が形成される。
上記一次放射器3及び終端部6は、例えばアルミニウム
等を用いて構成される。
In FIGS. 1 (a) and 1 (b), 1a, 1b
Is a circular waveguide of a predetermined length, which is provided integrally with an interval of several mm. A primary radiator opening is formed by the circular waveguides 1a and 1b. Then, the circular waveguide 1
A first choke 2a composed of a groove having a depth of about 1/4 wavelength is formed on the outer periphery of a and 1b, and a second choke 2b similar to the first choke 2a is formed on the outer periphery thereof. . The circular waveguides 1a and 1b and the chokes 2a and 2b
Forms the primary radiator 3. A substrate 4 is disposed at the bottom of the circular waveguides 1a and 1b. This substrate 4
Of the circular waveguides 1a, 1
The feeding point 5 is provided so as to be located at the center of the bottom surface of b.
Further, a terminal portion 6 is formed on the bottom surface of the primary radiator 3.
The primary radiator 3 and the terminator 6 are made of, for example, aluminum or the like.

【0014】上記一次放射器3は、例えば12GHz帯
の4°離隔2衛星からの電波を受信する45cmデュア
ルビームアンテナシステムの一次放射器として用いる場
合、円形導波管1a,1bの内径が17.475mm、
その中心間隔が約25mmに設定される。
When the primary radiator 3 is used as a primary radiator of a 45 cm dual beam antenna system for receiving radio waves from, for example, two satellites at 4 ° apart in the 12 GHz band, the inner diameters of the circular waveguides 1 a and 1 b are 17. 475mm,
The center interval is set to about 25 mm.

【0015】上記のように円形導波管1a,1bの周囲
にチョーク2a,2bを形成することにより、円形導波
管1a,1bの開口面端部は理論的に無限大のインピー
ダンスとなり、開口面端部より後方への電流を抑制する
ことができ、一次放射器3の後方への放射を防ぐことが
できる。この結果、反射鏡から漏洩する電力が少なくな
り、通常のフレアホーンを使用した場合とほぼ同等のア
ンテナ利得を得ることができる。
By forming the chokes 2a and 2b around the circular waveguides 1a and 1b as described above, the ends of the opening surfaces of the circular waveguides 1a and 1b have a theoretically infinite impedance, and the It is possible to suppress a current flowing backward from the end of the surface, and to prevent radiation backward from the primary radiator 3. As a result, the power leaking from the reflector is reduced, and an antenna gain substantially equal to that when a normal flare horn is used can be obtained.

【0016】図2は、上記一次放射器指向性を示したも
のである。図16に示した従来の指向性と比較し、漏れ
電力や、反射鏡照射範囲内で電界の凹凸も改善されてい
る。この場合のアンテナ利得は、フレアホーンを使用し
た場合とほぼ同等となる。
FIG. 2 shows the primary radiator directivity. Compared with the conventional directivity shown in FIG. 16, the leakage power and the unevenness of the electric field within the reflecting mirror irradiation range are also improved. The antenna gain in this case is almost the same as when a flare horn is used.

【0017】なお、上記円形導波管1a,1bに隣接す
る第1のチョーク2aは、図3に示すように円形導波管
1a,1bとの境界壁をインピーダンスマッチングのた
めに第2のチョーク2b側の壁より低く形成する場合も
ある。
As shown in FIG. 3, the first choke 2a adjacent to the circular waveguides 1a, 1b is used to form a second choke for impedance matching with the circular waveguides 1a, 1b. It may be formed lower than the wall on the 2b side.

【0018】また、上記実施形態において、円形導波管
1a,1bの代わりにフレア角の小さいホーン使用して
も、同様の効果を得ることができる。 (第2実施形態)次に本発明の第2実施形態について説
明する。
In the above embodiment, the same effect can be obtained by using a horn having a small flare angle instead of the circular waveguides 1a and 1b. (Second Embodiment) Next, a second embodiment of the present invention will be described.

【0019】図4は、本発明の第2実施形態に係る一次
放射器3の正面図である。この第2実施形態は、上記第
1実施形態に係る一次放射器3において、第2のチョー
ク2bを取り去った例を示したものである。この第2実
施形態による一次放射器3では、第1実施形態における
図2の指向性までの改善は見られないが、アンテナ効率
で60%前後までは改善される。
FIG. 4 is a front view of a primary radiator 3 according to a second embodiment of the present invention. The second embodiment is an example in which the second choke 2b is removed from the primary radiator 3 according to the first embodiment. In the primary radiator 3 according to the second embodiment, the improvement in the directivity of FIG. 2 in the first embodiment is not seen, but the antenna efficiency is improved up to around 60%.

【0020】(第3実施形態)図5、図6、図7は、本
発明の第3実施形態に係る一次放射器3の正面図であ
る。この第3実施形態に係る一次放射器3は、図2の指
向性で左右非対称となるのを防ぐために、チョーク2
(2a,2b,…)の形状を各円形導波管中心の円線上
で構成し、円の交わった部分を取り去った形状としたも
のである。
(Third Embodiment) FIGS. 5, 6, and 7 are front views of a primary radiator 3 according to a third embodiment of the present invention. The primary radiator 3 according to the third embodiment includes a choke 2 in order to prevent the directivity shown in FIG.
The shape of (2a, 2b,...) Is formed on the circular line at the center of each circular waveguide, and the shape where the circles intersect is removed.

【0021】図5は第1のチョーク2aのみを設けた場
合の例、図6は第1及び第2のチョーク2a,2bを設
けた場合の例、図7は第1、第2及び第3のチョーク2
a,2b,2cを設けた場合の例を示したものである。
なお、図6に示した例では、外側に設けた第2のチョー
ク2bを第1実施形態の場合と同様の形状としたが、第
1のチョーク2aと同様に円形導波管中心の円線上で形
成してもよい。
FIG. 5 shows an example in which only the first choke 2a is provided, FIG. 6 shows an example in which the first and second chokes 2a and 2b are provided, and FIG. 7 shows first, second and third examples. Chalk 2
This shows an example in which a, 2b, and 2c are provided.
In the example shown in FIG. 6, the second choke 2b provided on the outside has the same shape as that of the first embodiment. However, like the first choke 2a, the second choke 2b is on the circular line at the center of the circular waveguide. May be formed.

【0022】(第4実施形態)図8、図9、図10は、
本発明の第4実施形態に係る一次放射器3の正面図であ
る。この第3実施形態は、3衛星用の一次放射器3の構
成例について示したものである。
(Fourth Embodiment) FIGS. 8, 9 and 10 show
It is a front view of primary radiator 3 concerning a 4th embodiment of the present invention. This third embodiment shows an example of the configuration of the primary radiator 3 for three satellites.

【0023】図8は、円形導波管1a,1b,1cの外
側に1つのチョーク2aを設けた場合の例を示したもの
である。図9は、円形導波管1a,1b,1cの外側に
1つのチョーク2aを設け、且つ、円形導波管1a,1
b,1cを衛星間の仰角差の相違から、「への字状」に
配列した場合の例を示したものである。例えば2つの円
形導波管1a,1bの配列の延長線上から開口部を各衛
星の仰角に合わせて「への字状」に配列する。
FIG. 8 shows an example in which one choke 2a is provided outside the circular waveguides 1a, 1b, 1c. FIG. 9 shows that one choke 2a is provided outside the circular waveguides 1a, 1b, 1c, and the circular waveguides 1a, 1b, 1c are provided.
This shows an example in which b and 1c are arranged in a “U-shape” due to the difference in elevation angle difference between satellites. For example, the openings are arranged in a “H” shape from the extension of the arrangement of the two circular waveguides 1 a and 1 b according to the elevation angle of each satellite.

【0024】図10は、円形導波管1a,1b,1cの
外側に2つのチョーク2a,2bを設け、且つ、円形導
波管1a,1b,1cを衛星間の仰角差に合わせて「へ
の字状」に配列した場合の例を示したものである。
FIG. 10 shows that two chokes 2a, 2b are provided outside the circular waveguides 1a, 1b, 1c, and the circular waveguides 1a, 1b, 1c are adjusted to the height difference between the satellites. FIG. 7 shows an example of a case where the elements are arranged in a “shape”.

【0025】(第5実施形態)図11(a)は本発明の
第5実施形態に係る一次放射器の正面図、図11(b)
は同図(a)のA−A′断面図である。
(Fifth Embodiment) FIG. 11A is a front view of a primary radiator according to a fifth embodiment of the present invention, and FIG.
FIG. 2 is a sectional view taken along line AA ′ of FIG.

【0026】この第5実施形態は、ビームを収束させる
ために円形導波管1a,1b内に誘電体10を装荷した
場合の例を示したものである。また、この例では、1つ
のチョーク2aを設けた場合について示してある。
The fifth embodiment shows an example in which a dielectric 10 is loaded in circular waveguides 1a and 1b in order to converge a beam. In this example, a case where one choke 2a is provided is shown.

【0027】(第6実施形態)図12(a)は本発明の
第6実施形態に係る一次放射器の正面図、図12(b)
は同時(a)のA−A′断面図である。
(Sixth Embodiment) FIG. 12A is a front view of a primary radiator according to a sixth embodiment of the present invention, and FIG.
FIG. 3 is a sectional view taken along the line AA ′ of FIG.

【0028】この第6実施形態は、地板11に例えばダ
イポール、ヘリカル、折れ線型アンテナ等の線状アンテ
ナ12を装着した場合の例を示したものである。すなわ
ち、アルミニウム等を用いて形成した地板11に、複数
例えば2つの円形状開口部13a,13bを数mmの間
隔を保って設け、この開口部13a,13bの中心部に
それぞれ線状アンテナ12を設ける。この線状アンテナ
12への給電は、地板11に設けた給電点5より行な
う。また、地板11には、上記開口部13a,13bの
外周にほぼ1/4波長の深さを有するチョーク2aを形
成する。
The sixth embodiment shows an example in which a linear antenna 12 such as a dipole, helical, polygonal antenna, or the like is mounted on a ground plane 11. That is, a plurality of, for example, two circular openings 13a, 13b are provided at intervals of several mm in a base plate 11 formed of aluminum or the like, and the linear antennas 12 are respectively provided at the center portions of the openings 13a, 13b. Provide. The power supply to the linear antenna 12 is performed from the power supply point 5 provided on the ground plane 11. In the base plate 11, a choke 2a having a depth of about 1/4 wavelength is formed on the outer periphery of the openings 13a and 13b.

【0029】この第6実施形態に示すように線状アンテ
ナ12を設けた場合においても、前記各実施形態と同様
の効果を得ることができる。なお、上記第6実施形態で
は、1つのチョーク2を設けた場合について示したが、
前記各実施形態と同様に複数のチョークを形成しても良
いことは勿論である。
Even when the linear antenna 12 is provided as shown in the sixth embodiment, the same effects as those of the above embodiments can be obtained. In the sixth embodiment, the case where one choke 2 is provided is shown.
Needless to say, a plurality of chokes may be formed as in the above embodiments.

【0030】(第7実施形態)図13(a)、(b)
は、本発明に係る一次放射器3を用いて衛星受信用コン
バータ20を構成した場合の例を示したものである。図
13(a)はこの第7実施形態に係る衛星受信用コンバ
ータ20の正面図、図13(b)は同側面図である。
(Seventh Embodiment) FIGS. 13A and 13B
Shows an example of a case where a satellite receiving converter 20 is configured using the primary radiator 3 according to the present invention. FIG. 13A is a front view of a satellite receiving converter 20 according to the seventh embodiment, and FIG. 13B is a side view of the same.

【0031】図13(a),(b)において、21はコ
ンバータ本体を内蔵したケースで、アーム22を介して
反射鏡(図示せず)に取付けられる。このアーム22に
よるコンバータ支持部には、角度調整機構23が設けら
れ、長孔24とネジ25によりコンバータ20の取付け
角度が調整できるようになっている。そして、上記コン
バータケース21の一面、つまり、上記反射鏡に対向す
る面には、前記各実施形態で示した一次放射器3が取付
けられる。
13A and 13B, reference numeral 21 denotes a case having a built-in converter main body, which is attached to a reflecting mirror (not shown) via an arm 22. An angle adjusting mechanism 23 is provided at a converter support portion by the arm 22, and the mounting angle of the converter 20 can be adjusted by a long hole 24 and a screw 25. The primary radiator 3 shown in each of the above embodiments is attached to one surface of the converter case 21, that is, the surface facing the reflecting mirror.

【0032】上記のように一次放射器3と一体化した衛
星受信用コンバータ20を構成することにより、1つの
コンバータ20で複数の衛星からの電波を受信でき、且
つ、小型化を図ることができる。
By constructing the satellite receiving converter 20 integrated with the primary radiator 3 as described above, one converter 20 can receive radio waves from a plurality of satellites and can reduce the size. .

【0033】[0033]

【発明の効果】以上詳記したように本発明によれば、2
個以上のフレア角の小さいホーン又は円形導波管の一体
構造とし、その周囲に約1/4波長のチョークを1つも
しくは複数設けるようにしたので、開口面端部は理論的
に無限大のインピーダンスとなり、開口面端部より後方
への電流を抑制することができ、一次放射器後方への放
射を防ぐことができ、複数の衛星からの電波を効率良く
受信することができる。
As described above in detail, according to the present invention, 2
A single horn or circular waveguide with at least one flare angle and one or more chokes of about 1/4 wavelength are provided around it, so that the end of the aperture face is theoretically infinite. The impedance becomes an impedance, so that the current flowing backward from the end of the aperture can be suppressed, the radiation behind the primary radiator can be prevented, and radio waves from a plurality of satellites can be received efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の第1実施形態に係る衛星受信
用アンテナの一次放射器の正面図、(b)は同図(a)
のA−A′断面図。
FIG. 1A is a front view of a primary radiator of a satellite receiving antenna according to a first embodiment of the present invention, and FIG.
AA 'sectional drawing of.

【図2】同実施形態における一次放射器の指向性を示す
図。
FIG. 2 is a diagram showing directivity of a primary radiator in the embodiment.

【図3】同実施形態における一次放射器の応用例を示す
正面図。
FIG. 3 is an exemplary front view showing an application example of the primary radiator according to the embodiment;

【図4】本発明の第2実施形態における衛星受信用アン
テナの一次放射器の正面図。
FIG. 4 is a front view of a primary radiator of a satellite receiving antenna according to a second embodiment of the present invention.

【図5】本発明の第3実施形態における衛星受信用アン
テナの一次放射器の正面図。
FIG. 5 is a front view of a primary radiator of a satellite receiving antenna according to a third embodiment of the present invention.

【図6】同実施形態における一次放射器の応用例を示す
正面図。
FIG. 6 is an exemplary front view showing an application example of the primary radiator according to the embodiment;

【図7】同実施形態における一次放射器の他の応用例を
示す正面図。
FIG. 7 is an exemplary front view showing another application example of the primary radiator according to the embodiment;

【図8】本発明の第4実施形態における衛星受信用アン
テナの一次放射器の正面図。
FIG. 8 is a front view of a primary radiator of a satellite receiving antenna according to a fourth embodiment of the present invention.

【図9】同実施形態における一次放射器の応用例を示す
正面図。
FIG. 9 is an exemplary front view showing an application example of the primary radiator according to the embodiment;

【図10】同実施形態における一次放射器の他の応用例
を示す正面図。
FIG. 10 is an exemplary front view showing another application example of the primary radiator according to the embodiment;

【図11】(a)は本発明の第5実施形態における衛星
受信用アンテナの一次放射器の正面図、(b)は同図
(a)のA−A′断面図。
11A is a front view of a primary radiator of a satellite receiving antenna according to a fifth embodiment of the present invention, and FIG. 11B is a sectional view taken along the line AA ′ of FIG.

【図12】(a)は本発明の第6実施形態における衛星
受信用アンテナの一次放射器の正面図、(b)は同図
(a)のA−A′断面図。
12A is a front view of a primary radiator of a satellite receiving antenna according to a sixth embodiment of the present invention, and FIG. 12B is a cross-sectional view taken along the line AA ′ of FIG.

【図13】(a)は本発明の第7実施形態に係る衛星受
信用コンバータの構成を示す正面図、(b)は同側面
図。
13A is a front view showing a configuration of a satellite reception converter according to a seventh embodiment of the present invention, and FIG. 13B is a side view showing the same.

【図14】(a)は従来のフレアホーン型一次放射器の
正面図、(b)は同図(a)のA−A′断面図。
14 (a) is a front view of a conventional flare horn type primary radiator, and FIG. 14 (b) is a sectional view taken along the line AA 'of FIG. 14 (a).

【図15】(a)は従来の円形導波管型一次放射器の正
面図、(b)は同図(a)のA−A′断面図。
15 (a) is a front view of a conventional circular waveguide type primary radiator, and FIG. 15 (b) is a sectional view taken along the line AA ′ of FIG. 15 (a).

【図16】従来の一次放射器の指向性を示す図。FIG. 16 is a diagram showing directivity of a conventional primary radiator.

【符号の説明】[Explanation of symbols]

1a,1b 円形導波管 2a,2b チョーク 3 一次放射器 4 基板 5 給電点 6 終端部 10 誘電体 11 地板 12 線状アンテナ 13 円形状開口部 20 コンバータ 21 コンバータケース 22 アーム 23 角度調整機構 24 長孔 25 ネジ 1a, 1b Circular waveguide 2a, 2b Choke 3 Primary radiator 4 Substrate 5 Feed point 6 Termination 10 Dielectric 11 Ground plate 12 Linear antenna 13 Circular opening 20 Converter 21 Converter case 22 Arm 23 Angle adjusting mechanism 24 Long Hole 25 screw

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樋口 博文 埼玉県大宮市蓮沼1406番地 八木アンテナ 株式会社大宮工場内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hirofumi Higuchi 1406 Hasunuma, Omiya City, Saitama Prefecture Yagi Antenna Inside Omiya Plant Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 所定間隔を保って並設される2個以上の
一次放射器開口部と、これら複数の開口部の外周に共通
に少なくとも1個以上設けられる約1/4波長の深さを
有するチョークとを具備したことを特徴とする衛星受信
用アンテナの一次放射器。
1. A method according to claim 1, wherein two or more primary radiator openings are juxtaposed at predetermined intervals, and at least one or more primary radiator openings are provided in common on the outer periphery of the plurality of openings. A primary radiator for a satellite receiving antenna, comprising:
【請求項2】 所定間隔を保って並設される2個以上の
一次放射器開口部と、これらの各開口部内に設けられる
ビーム収束用の誘電体と、前記複数の開口部の外周に共
通に少なくとも1個以上設けられる約1/4波長の深さ
を有するチョークとを具備したことを特徴とする衛星受
信用アンテナの一次放射器。
2. The two or more primary radiator openings arranged side by side at a predetermined interval, a beam converging dielectric provided in each of these openings, and a common outer periphery of the plurality of openings. And at least one choke having a depth of about 1/4 wavelength.
【請求項3】 所定間隔を保って並設される3個以上の
一次放射器開口部と、これら複数の開口部の外周に共通
に少なくとも1個以上設けられる約1/4波長の深さを
有するチョークとを具備し、前記複数の一次放射器開口
部を衛星の仰角に合わせて配列したことを特徴とする衛
星受信用アンテナの一次放射器。
3. The three or more primary radiator openings which are juxtaposed at predetermined intervals, and the depth of about 4 wavelength provided at least one or more in common on the outer periphery of the plurality of openings. Wherein the plurality of primary radiator openings are arranged in accordance with the elevation angle of the satellite.
【請求項4】 地板と、この地板に並設される2個以上
の線状アンテナと、これらの複数の線状アンテナの外周
に共通に少なくとも1個以上設けられる約1/4波長の
深さを有するチョークとを具備したことを特徴とする衛
星受信用アンテナの一次放射器。
4. A base plate, two or more linear antennas juxtaposed on the base plate, and a depth of about 1/4 wavelength provided at least one common at the outer periphery of the plurality of linear antennas. A primary radiator for a satellite receiving antenna, comprising: a choke having:
【請求項5】 請求項1ないし4の何れか記載の一次放
射器とコンバータ本体とを一体的に設けて構成したこと
を特徴とする衛星受信用コンバータ。
5. A converter for satellite reception, comprising a primary radiator according to claim 1 and a converter body provided integrally.
JP32297496A 1996-11-15 1996-12-03 Primary radiator for satellite receiving antenna and converter for satellite receiving Expired - Fee Related JP3321589B2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP32297496A JP3321589B2 (en) 1996-12-03 1996-12-03 Primary radiator for satellite receiving antenna and converter for satellite receiving
US08/961,767 US6121939A (en) 1996-11-15 1997-10-31 Multibeam antenna
DE69735652T DE69735652T2 (en) 1996-11-15 1997-11-05 Microwave converter for multi-beam antennas
EP97119366A EP0843381A3 (en) 1996-11-15 1997-11-05 Multibeam antenna
ES03007312T ES2260533T3 (en) 1996-11-15 1997-11-05 MICROWAVE CONVERTER FOR MULTIHAZ ANTENNA.
EP03007312A EP1329987B1 (en) 1996-11-15 1997-11-05 Micro wave converter for multibeam antenna
ES03007313T ES2261810T3 (en) 1996-11-15 1997-11-05 PRIMARY RADIATOR FOR A MULTIHAZ ANTENNA.
DE69735682T DE69735682T2 (en) 1996-11-15 1997-11-05 Primary radiator for multi-beam antenna
EP03007313A EP1329988B1 (en) 1996-11-15 1997-11-05 A primary radiator for a multibeam antenna
IDP973677A ID18955A (en) 1996-11-15 1997-11-14 LOTS OF FILES
KR1019970060103A KR100611422B1 (en) 1996-11-15 1997-11-14 Multi beam antenna, primary radiator and converter therefor
CNB031086292A CN1269318C (en) 1996-11-15 1997-11-15 Disposable radiator for multiwave beam antenna
TW086117080A TW393800B (en) 1996-11-15 1997-11-15 Multibeam antenna, primary radiator of an antenna for receiving micro waves from satellites and converter for receiving micro waves from satellites
CNB031086306A CN1269319C (en) 1996-11-15 1997-11-15 Frequency transformer for receiving microwave from satellite
CN97126073A CN1127778C (en) 1996-11-15 1997-11-15 Multibeam antenna
US09/498,752 US6388633B1 (en) 1996-11-15 2000-02-07 Multibeam antenna
US10/102,779 US6864850B2 (en) 1996-11-15 2002-03-22 Multibeam antenna
HK05100529A HK1068468A1 (en) 1996-11-15 2005-01-20 A converter for receiving microwaves from satellites
HK05100530A HK1068469A1 (en) 1996-11-15 2005-01-20 A primary radiator for a multibeam antenna
KR1020060024849A KR20060086891A (en) 1996-11-15 2006-03-17 Multi beam antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32297496A JP3321589B2 (en) 1996-12-03 1996-12-03 Primary radiator for satellite receiving antenna and converter for satellite receiving

Publications (2)

Publication Number Publication Date
JPH10163737A true JPH10163737A (en) 1998-06-19
JP3321589B2 JP3321589B2 (en) 2002-09-03

Family

ID=18149737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32297496A Expired - Fee Related JP3321589B2 (en) 1996-11-15 1996-12-03 Primary radiator for satellite receiving antenna and converter for satellite receiving

Country Status (1)

Country Link
JP (1) JP3321589B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278034A (en) * 1999-01-18 2000-10-06 Nippon Antenna Co Ltd Horn adaptor
US6313808B1 (en) 1999-05-20 2001-11-06 Alps Electric Co., Ltd. Freedhorn capable of receiving radio waves from plurality of neighboring satellites
US6437753B2 (en) 2000-02-03 2002-08-20 Alps Electric Co., Ltd. Primary radiator suitable for size reduction and preventing deterioration of cross polarization characteristic
KR100356653B1 (en) * 1998-01-22 2002-10-18 마츠시타 덴끼 산교 가부시키가이샤 Multi-primary radiator, down converter and multi-beam antenna
US6580400B2 (en) 2000-03-31 2003-06-17 Alps Electric Co., Ltd. Primary radiator having improved receiving efficiency by reducing side lobes
US6801789B1 (en) 1999-02-01 2004-10-05 Sharp Kabushiki Kaisha Multiple-beam antenna
WO2007119289A1 (en) 2006-03-16 2007-10-25 Mitsubishi Electric Corporation Antenna assembly and method for manufacturing the same
WO2014073445A1 (en) * 2012-11-06 2014-05-15 シャープ株式会社 Primary radiator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356653B1 (en) * 1998-01-22 2002-10-18 마츠시타 덴끼 산교 가부시키가이샤 Multi-primary radiator, down converter and multi-beam antenna
JP2000278034A (en) * 1999-01-18 2000-10-06 Nippon Antenna Co Ltd Horn adaptor
US6801789B1 (en) 1999-02-01 2004-10-05 Sharp Kabushiki Kaisha Multiple-beam antenna
US6313808B1 (en) 1999-05-20 2001-11-06 Alps Electric Co., Ltd. Freedhorn capable of receiving radio waves from plurality of neighboring satellites
US6437753B2 (en) 2000-02-03 2002-08-20 Alps Electric Co., Ltd. Primary radiator suitable for size reduction and preventing deterioration of cross polarization characteristic
US6580400B2 (en) 2000-03-31 2003-06-17 Alps Electric Co., Ltd. Primary radiator having improved receiving efficiency by reducing side lobes
WO2007119289A1 (en) 2006-03-16 2007-10-25 Mitsubishi Electric Corporation Antenna assembly and method for manufacturing the same
US7928923B2 (en) 2006-03-16 2011-04-19 Mitsubishi Electric Corporation Antenna assembly and method for manufacturing the same
WO2014073445A1 (en) * 2012-11-06 2014-05-15 シャープ株式会社 Primary radiator
JPWO2014073445A1 (en) * 2012-11-06 2016-09-08 シャープ株式会社 Primary radiator

Also Published As

Publication number Publication date
JP3321589B2 (en) 2002-09-03

Similar Documents

Publication Publication Date Title
KR100611422B1 (en) Multi beam antenna, primary radiator and converter therefor
US7812778B2 (en) Antenna apparatus
US6646618B2 (en) Low-profile slot antenna for vehicular communications and methods of making and designing same
US7554505B2 (en) Integrated waveguide antenna array
US7151505B2 (en) Quadrifilar helix antenna
US6844862B1 (en) Wide angle paraconic reflector antenna
US6037912A (en) Low profile bi-directional antenna
JP2003101331A (en) Interactive satellite terminal antenna system
JPH10150319A (en) Dipole antenna with reflecting plate
EP3806240A1 (en) Antenna
JPH10308624A (en) Helical antenna
JP3321589B2 (en) Primary radiator for satellite receiving antenna and converter for satellite receiving
RU2211509C2 (en) Multifrequency antenna and radiator
US6052099A (en) Multibeam antenna
CN112886226A (en) Broadband low-profile back-reflection circularly polarized antenna and back-reflection method thereof
JP3804878B2 (en) Dual-polarized antenna
EP0982802B1 (en) Dipole feed arrangement for a reflector antenna
CN112768886B (en) Omnidirectional dual polarized antenna and wireless device
JPH0522016A (en) Low side lobe reflection mirror antenna and horn antenna
JP2009060158A (en) Short backfire antenna
Chang et al. Commercial Ka and Ku bands reflector antennas
JP3856297B2 (en) Circularly polarized antenna
JPH07297625A (en) Microstrip antenna
CN219643109U (en) Antenna
CN107706515A (en) A kind of low section ultra wide band directional radiation antenna

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090628

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100628

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100628

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110628

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120628

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120628

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees