JPH02186563A - Electrolyte tile for fuel cell and manufacture thereof - Google Patents

Electrolyte tile for fuel cell and manufacture thereof

Info

Publication number
JPH02186563A
JPH02186563A JP1004839A JP483989A JPH02186563A JP H02186563 A JPH02186563 A JP H02186563A JP 1004839 A JP1004839 A JP 1004839A JP 483989 A JP483989 A JP 483989A JP H02186563 A JPH02186563 A JP H02186563A
Authority
JP
Japan
Prior art keywords
electrolyte
pores
tile
electrolyte tile
pore size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1004839A
Other languages
Japanese (ja)
Inventor
Mitsuo Fukutomi
三雄 福富
Hideo Uemoto
上本 英男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP1004839A priority Critical patent/JPH02186563A/en
Publication of JPH02186563A publication Critical patent/JPH02186563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To reduce pores having a pore size of 1mum or more and to obtain steady power generating performance by specifying static modulus, bulk density, and pore size and porosity and by forming an electrolyte tile by a paste process. CONSTITUTION:An electrolyte tile in which static modulus is 5 GPa or less, bulk density is 1.75 g/cm<3> or more, and pores having a pore size of 1mum or more is 0.01cm<2>/g or less is manufactured by a paste process. The paste type electrolyte tile formed by a doctor blade process is pressed at a pressure of 50-150kg/cm<2>. By this process, pores having a pore size of 1mum or more are almost eliminated. When the tile is assembled in a cell and power generation is conducted, transfer of oxygen and hydrogen through pores is prevented, retention of carbonate is increased, and deterioration in power generating performance is prevented.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は溶融炭酸塩型の燃料電池用電解質タイルに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to electrolyte tiles for molten carbonate fuel cells.

従来の技術 近年、エネルギー資源の多様化を図るため、石炭や天然
ガスを一次燃料とする高効率でクリーンな発電システム
が望まれている。第2世代の燃料電池とも称される溶融
炭酸塩型燃料電池を用いた発電プラントは、この要求を
満たずものとして、その実用化が期待されている。
BACKGROUND OF THE INVENTION In recent years, in order to diversify energy resources, there has been a desire for highly efficient and clean power generation systems that use coal or natural gas as primary fuel. Power plants using molten carbonate fuel cells, also called second generation fuel cells, do not meet this requirement and are expected to be put into practical use.

この種の燃料電池は、溶融状態にある炭酸塩を電解質と
して用い、その中の炭酸イオンの移動を利用して約65
0 ’Cの高温で電池反応を行わせるものである。
This type of fuel cell uses carbonate in a molten state as an electrolyte, and uses the movement of carbonate ions in it to
The battery reaction is carried out at a high temperature of 0'C.

従来、溶融炭酸塩型燃料電池用の電解質タイルは、種々
の方法で製造されてきた。最近注目を集めているのがド
クターブレード法による電解質タイルの製造である。こ
の製造方法は、従来のホットプレス法に比べ量産性に優
れまた、ドクターブレード法によって製造\ された電解質タイルは柔軟(静弾性率5 G I)a以
下)であり積層の際に割れが発生せず有用である。
Traditionally, electrolyte tiles for molten carbonate fuel cells have been manufactured in a variety of ways. Recently, the production of electrolyte tiles using the doctor blade method has been attracting attention. This manufacturing method is superior in mass production compared to the conventional hot pressing method, and the electrolyte tiles manufactured by the doctor blade method are flexible (static modulus of elasticity 5 GI)a or less) and cracks occur during lamination. It is useful without having to do it.

発明が解決しようとする問題点 しかしながら、従来のドクターブレード法によって製造
された電解質タイルには、多数の気孔が含まれる欠点が
ある。例えは、1μm以」−の気孔が0.05cm3/
gも存在した。
Problems to be Solved by the Invention However, electrolyte tiles manufactured by the conventional doctor blade method have the disadvantage of containing a large number of pores. For example, pores of 1 μm or larger are 0.05 cm3/
g was also present.

そのように多数の気孔が存在すると、用途によっては、
所望の特性が得られないことになる。例えば、電解質タ
イルを発電に使用した場合カソード側の酸素とアノード
側の燃料ガスである水素がこれらの孔を通ってたがいに
反対側の電極に移動していって、そこで反応してしまう
。このため、発電特性が低下する。最悪の場合、暴発の
危険性すらあった。
Depending on the application, the presence of such a large number of pores may
The desired characteristics will not be obtained. For example, when electrolyte tiles are used to generate electricity, oxygen at the cathode and hydrogen, a fuel gas at the anode, migrate through these pores to opposite electrodes, where they react. Therefore, power generation characteristics deteriorate. In the worst case scenario, there was even a risk of an explosion.

また、電解質タイルに含まれている気孔の直径が電極に
含まれている気孔の直径(平均気孔径(4〜12μm)
)よりも大きいものも存在するため、表面張力の影響で
炭酸塩がタイルの気孔の中に入っていかずに電極側の気
孔に移動してしまい、発電特性が低下する。
In addition, the diameter of the pores contained in the electrolyte tile is the diameter of the pores contained in the electrode (average pore diameter (4 to 12 μm)).
), carbonates do not enter the pores of the tile and move to the pores on the electrode side due to the effect of surface tension, reducing power generation characteristics.

さらに、発電時間が長くなるにつれ、カサ密度が低く1
μm以」二の気孔が存在するため炭酸塩を保持すること
ができず炭酸塩が電解質タイルから漏出したり、電極側
に移動してしまい電気化学反応の行われている相界面を
覆い、発電特性が低下してしまう問題があった。
Furthermore, as the power generation time increases, the bulk density decreases.
Because of the presence of pores smaller than 2 μm in size, carbonate cannot be retained, and carbonate leaks out of the electrolyte tile or moves to the electrode, covering the phase interface where electrochemical reactions are taking place, and generating power. There was a problem that the characteristics deteriorated.

このような種々の理由により、従来の電解質タイルは安
定した発電特性が得られなかった。
For these various reasons, conventional electrolyte tiles have not been able to provide stable power generation characteristics.

発明の目的 この発明は1μm以上の気孔を少なくして安定した発電
特性を得ることのできる燃料電池用電解質タイル及びそ
の製造方法を提供することを目的としている。
OBJECTS OF THE INVENTION The object of the present invention is to provide an electrolyte tile for fuel cells that can obtain stable power generation characteristics by reducing pores of 1 μm or more, and a method for manufacturing the same.

発明の要旨 この発明の要旨とするところは請求項1に記載された燃
料電池用電解質タイルと請求項2に記載された燃料電池
用電解質タイルの製造方法にある。
SUMMARY OF THE INVENTION The gist of the present invention resides in an electrolyte tile for fuel cells according to claim 1 and a method for manufacturing an electrolyte tile for fuel cells according to claim 2.

問題点を解決するための手段 この発明による溶融炭酸塩型の燃料電池用電解質タイル
はドクターブレード法によって製造し、ペースト形とす
る。静弾性率は5GPa以下である。カサ密度は1.7
5g/cm3以上で、気孔径1μm以」二の気孔が0゜
01cm3/g以下である。
Means for Solving the Problems The molten carbonate electrolyte tile for fuel cells according to the present invention is manufactured by a doctor blade method and is in paste form. The static elastic modulus is 5 GPa or less. Bulk density is 1.7
5 g/cm3 or more, and pores with a pore diameter of 1 μm or more are 0°01 cm3/g or less.

このような電解質タイルは、例えば、従来のドクターブ
レード法によって製造された溶融炭酸塩型燃料電池用の
ペースト形電解質タイルを50〜150 K g / 
c m 2の圧力でプレスすることによって得ることが
できる。もちるん、所定の圧力を加える手段はプレス装
置に限らず、その他の加圧手段(例えばロール等)を使
用することもできる。
Such electrolyte tiles can be used, for example, in paste form electrolyte tiles for molten carbonate fuel cells manufactured by the conventional doctor blading process at 50 to 150 K g/
It can be obtained by pressing at a pressure of cm 2 . Of course, the means for applying a predetermined pressure is not limited to the press device, and other pressurizing means (for example, rolls, etc.) can also be used.

発明の作用効果 この発明によれば、電解質タイルに1μm以」二の気孔
がほとんど存在しないため電解質タイルを電池に組込ん
で発電を行った場合、従来のように酸素、水素が気孔中
を移動することがなく、また、炭酸塩の保持能力に優れ
ているため、その結果、発電特性の低下かみられなくな
った。例えば、1000時間の使用後であっても、発電
特性が低下せず、電流密度15cmA/cm2において
セル電圧が0.83Vとなり、非常に良好な値を得るこ
とができた。
Effects of the Invention According to this invention, since there are almost no pores larger than 1 μm in the electrolyte tile, when the electrolyte tile is incorporated into a battery to generate electricity, oxygen and hydrogen do not move through the pores as in the conventional case. In addition, the carbonate retention capacity is excellent, and as a result, no deterioration in power generation characteristics was observed. For example, even after 1000 hours of use, the power generation characteristics did not deteriorate, and the cell voltage was 0.83 V at a current density of 15 cmA/cm2, which was a very good value.

、実施例 リチウムアルミネート粉末40重量%と炭酸塩60重量
%を調合し、混合粉末とし、この混合粉末100部に対
し、バインダーとしてポリビニルブチラール15部と、
可塑剤としてフタル酸ジ−n−ブチル10部を添加して
、混合物を作った。この混合物を使ってドクターブレー
ド法によってペースト形電解質タイルを作った。さらに
、そのようなペースト形タイルを30cmm角の大きさ
に切断した。その切断片を30cmm角の金型に入れ、
プレス装置によってプレスした。そのようにプレスされ
た電解質タイルのカサ密度と水銀ポロシメータによる気
孔率を測定した。表1はそれらの測定結果を示している
, Example 40% by weight of lithium aluminate powder and 60% by weight of carbonate were prepared to form a mixed powder, and for 100 parts of this mixed powder, 15 parts of polyvinyl butyral as a binder,
A mixture was made by adding 10 parts of di-n-butyl phthalate as a plasticizer. A paste-type electrolyte tile was made using this mixture by the doctor blade method. Furthermore, such a paste-type tile was cut into a size of 30 cm square. Put the cut piece into a 30cm square mold,
It was pressed using a press device. The bulk density and porosity of the electrolyte tiles thus pressed were measured using a mercury porosimeter. Table 1 shows the measurement results.

表1からも明らかなように、プレス圧力が50Kg/c
m2以上であると、カサ密度があがるとともに、1μm
以」二の気孔が大幅に減少した。しかしながら、プレス
圧力が200Kg/cm2を超えると、電解質タイルが
金型からはみ出て厚みが不均一になり変形してしまう。
As is clear from Table 1, the press pressure is 50Kg/c
If it is more than m2, the bulk density increases and the
The second pores were significantly reduced. However, if the pressing pressure exceeds 200 kg/cm2, the electrolyte tile will protrude from the mold, resulting in uneven thickness and deformation.

本発明による電解質タイルと従来のドクターブレード法
によって製造された電解質タイルについて発電特性を比
較するために、次のような実験を行った。すなわち、従
来のドクターブレード法で得られた電解質タイルと、そ
れをさらに150Kg/cm2の圧力でプレスした電解
質タイルをそれぞれ15cmm角の大きさに切断して、
それらの切断片の発電試験を行った。表2はそれらの試
験結果を示している。
In order to compare the power generation characteristics of the electrolyte tile according to the present invention and the electrolyte tile manufactured by the conventional doctor blade method, the following experiment was conducted. That is, an electrolyte tile obtained by the conventional doctor blade method and an electrolyte tile pressed at a pressure of 150 kg/cm2 were each cut into 15 cm square pieces.
Power generation tests were conducted on these cut pieces. Table 2 shows the test results.

表2から明らかなように、従来のドクターブレード法に
よって製造された電解質タイルの場合には発電時間が長
くなるにつれて発電特性が低下した。これに対し、プレ
スを行って1μm以」二の気孔を実質的に消失させた本
発明の電解質タイルの場合には、発電を開始して100
0時間を経過しても依然として発電特性の低下が認めら
れなかった。
As is clear from Table 2, in the case of the electrolyte tiles manufactured by the conventional doctor blade method, the power generation characteristics deteriorated as the power generation time became longer. On the other hand, in the case of the electrolyte tile of the present invention in which the pores of 1 μm or larger were substantially eliminated by pressing, the
Even after 0 hours passed, no deterioration in power generation characteristics was still observed.

なお、従来のドクターブレード法によって製造された電
解質タイル(プレスを行わないもの)は、静弾性率が2
GPaで、カサ密度が1.48g/cm3で、気孔率1
μm以上の気孔が0.052cm3/gで、ペースト形
であった。
Furthermore, electrolyte tiles manufactured by the conventional doctor blade method (without pressing) have a static elastic modulus of 2.
GPa, bulk density 1.48g/cm3, porosity 1
The number of pores larger than μm was 0.052 cm3/g, and it was in a paste form.

表1Table 1

Claims (1)

【特許請求の範囲】 1、溶融炭酸塩型燃料電池用電解質タイル において、静弾性率が5GPa以下で、カサ密度が1.
75g/cm^3以上で、気孔径1μm以上の気孔が0
.01cm^3/g以下で、かつペースト形であること
を特徴とする燃料電池用電解質タイル。 2、ドクターブレード法によって製造され た溶融炭酸塩型燃料電池用ペースト形電解質材料を50
〜150Kg/cm^2の圧力で加圧することを特徴と
する燃料電池用電解質タイルの製造方法。
[Claims] 1. An electrolyte tile for a molten carbonate fuel cell having a static elastic modulus of 5 GPa or less and a bulk density of 1.
75g/cm^3 or more, 0 pores with a pore diameter of 1μm or more
.. An electrolyte tile for a fuel cell, characterized in that it has a particle size of 0.01 cm^3/g or less and is in a paste form. 2. 50% of the paste-type electrolyte material for molten carbonate fuel cells manufactured by the doctor blade method
A method for producing an electrolyte tile for a fuel cell, characterized in that it is pressurized at a pressure of ~150 Kg/cm^2.
JP1004839A 1989-01-13 1989-01-13 Electrolyte tile for fuel cell and manufacture thereof Pending JPH02186563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1004839A JPH02186563A (en) 1989-01-13 1989-01-13 Electrolyte tile for fuel cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1004839A JPH02186563A (en) 1989-01-13 1989-01-13 Electrolyte tile for fuel cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02186563A true JPH02186563A (en) 1990-07-20

Family

ID=11594859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1004839A Pending JPH02186563A (en) 1989-01-13 1989-01-13 Electrolyte tile for fuel cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02186563A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509424A2 (en) * 1991-04-16 1992-10-21 Institute of Gas Technology Composite active electrolyte-matrix and laminated component tapes for molten carbonate fuel cells
CN1089191C (en) * 1997-05-17 2002-08-14 中国科学院大连化学物理研究所 Preparation of diaphragm for molten carbonate fuel battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0509424A2 (en) * 1991-04-16 1992-10-21 Institute of Gas Technology Composite active electrolyte-matrix and laminated component tapes for molten carbonate fuel cells
EP0509424A3 (en) * 1991-04-16 1994-03-09 Inst Gas Technology
CN1089191C (en) * 1997-05-17 2002-08-14 中国科学院大连化学物理研究所 Preparation of diaphragm for molten carbonate fuel battery

Similar Documents

Publication Publication Date Title
CN109921097A (en) A kind of preparation method of all-solid-state battery and thus obtained all-solid-state battery
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
CA1070380A (en) Conductive diluent for pressed nickel electrodes
CN110010895A (en) Carbon fiber loaded magnesium oxide particle crosslinking nano chip arrays composite material and preparation method and application
CN109088031A (en) Ceramic coating membrane slurry, Ceramic Composite diaphragm and its preparation method and application
CN112234162A (en) Thermal battery nickel dichloride positive electrode film material and preparation method thereof
JP2014120471A (en) Electrode paste for solid oxide fuel cell, solid oxide fuel cell using the same, and fabricating method thereof
CN102651477A (en) Nickel-based composite anode material of solid oxide fuel cell and application thereof
Kim et al. Using aluminum and Li2CO3 particles to reinforce the α-LiAlO2 matrix for molten carbonate fuel cells
JPH02186563A (en) Electrolyte tile for fuel cell and manufacture thereof
KR20180044166A (en) Method for preparing all-solid-state secondary battery having improved interfacial properties and all-solid-state secondary battery prepared thereby
JPS58129775A (en) Fuel battery
JP2012104308A (en) Method of producing dense material of electrolyte for solid oxide fuel cell
JPH0636783A (en) Fuel electrode current collector for flat type solid electrolyte fuel cell
CN103959525A (en) Fuel electrode which also serves as supporting body of solid oxide fuel cell, and fuel electrode-supported solid oxide fuel cell
CN103682406B (en) Utilize the Solid Oxide Fuel Cell of natural gas
CN104538645A (en) Preparation method of active coal coke powder for solid oxide fuel cells
US3372061A (en) Fuel cell including porous palladiumsilver alloy electrode
CN115020908B (en) Thermal battery ceramic diaphragm and preparation method thereof
JPH0222505B2 (en)
JP6447866B2 (en) Control valve type lead storage battery manufacturing method
JP5404966B2 (en) Method for producing electrolyte-impregnated air electrode
KR20100086689A (en) Nickel-metal hydride secondary battery comprising cathode, anode or separator surface-modified with gel electrolyte for coating
CN115513517A (en) Metal halide solid electrolyte with core-shell structure and preparation method and application thereof
US5401460A (en) Method for sintering fuel cell electrodes using a carrier