JPS58129775A - Fuel battery - Google Patents

Fuel battery

Info

Publication number
JPS58129775A
JPS58129775A JP57011514A JP1151482A JPS58129775A JP S58129775 A JPS58129775 A JP S58129775A JP 57011514 A JP57011514 A JP 57011514A JP 1151482 A JP1151482 A JP 1151482A JP S58129775 A JPS58129775 A JP S58129775A
Authority
JP
Japan
Prior art keywords
electrolyte
fuel cell
cell according
electrolyte body
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57011514A
Other languages
Japanese (ja)
Inventor
Masahito Takeuchi
将人 竹内
Hideo Okada
秀夫 岡田
Shigeru Okabe
岡部 重
Hiroshi Hida
飛田 紘
Munehiko Tonami
戸波 宗彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57011514A priority Critical patent/JPS58129775A/en
Publication of JPS58129775A publication Critical patent/JPS58129775A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain an electrolytic body higher in its ability to support an electrolyte and excellent in its mechanical strength by providing an electrolyte supporting layer, on at least one face of the electrolytic body, differing in its pore properties. CONSTITUTION:A multilayer electrolytic body obtained by providing an electrolyte supporting layer comprising nonconducting impalpable powder differing in its pore properties on the at least one face, preferably on the both faces of an electrolytic body constructed by supporting an electrolyte on a long fiber structural body having a self supporting property or a porous sintered body, and supporting an electrolyte on said electrolyte supporting layer. For the particle diameter of the nonconducting impalpable powder used for said electrolytic body, particles fine to the utmost, less than at least 1mum, are preferred in order to raise the electrolyte supporting property thereof. Further, for the electrolyte supporting layer formed by said palpable powder either will do between a paste type electrolyte structure and a matrix type electrolytic body structure. Moreover, it is also proper to form the electrolyte layer in a state where the electrolyte is previously mixed with the nonconducting palpable powder, or to form the same by allowing the former to soak into the latter.

Description

【発明の詳細な説明】 本発明は燃料電池に係り、特に電解質を保持してなる改
良した電解質体音そなえた燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to fuel cells, and more particularly to a fuel cell having an improved electrolyte structure containing an electrolyte.

電解質体には多孔質セラミックス焼結体に電解質を保持
してなる電解質体(以下、マトリックス型電解質体とい
う)及び非導電性粒子と電解質との混合体である電解質
体(以下、ペースト型電解質体という)の両方式がある
The electrolyte body includes an electrolyte body that holds an electrolyte in a porous ceramic sintered body (hereinafter referred to as a matrix type electrolyte body) and an electrolyte body that is a mixture of non-conductive particles and electrolyte (hereinafter referred to as a paste type electrolyte body). There are both formulas.

従来技術の電解質体は下記の点で十分に満足し得るもの
とは言えない。
The electrolyte body of the prior art cannot be said to be fully satisfactory in the following points.

1)製造過程における亀裂の発生 2)運転中の熱サイクルによる亀裂の発生3)運転中の
熱的変形(%にペースト型電解質体) 4)電解質の保持能力が低い 本発明は、上記従来技術の欠点を解決するためになされ
たもので、目的は電解質保持能力が高く、かつ機械的強
度の優れた電解質体を用いる燃料電池を提供することに
ある。
1) Occurrence of cracks during the manufacturing process 2) Occurrence of cracks due to thermal cycles during operation 3) Thermal deformation during operation (% paste-type electrolyte body) 4) Low electrolyte retention capacity The present invention is different from the above-mentioned conventional technology. The purpose of this invention is to provide a fuel cell that uses an electrolyte body that has high electrolyte holding capacity and excellent mechanical strength.

本発明の要点は燃料電池用電解質体として多重N電解質
保持体に電解質を保持してなる電解質体を用いることで
ある。
The main point of the present invention is to use an electrolyte body formed by holding an electrolyte in a multi-N electrolyte holding body as an electrolyte body for a fuel cell.

すなわち、アノード及びカソードとその両電極間に配設
され、も電解質全保持してなる電解質体よりなり、燃料
及び酸化剤をそれぞれアノード側に配設される燃料室及
びカソード側に配設される酸化剤室に供給することによ
り電気化学的に発電せる燃料電池において、該電解質体
の少くとも一方の面に細孔特性の異なる電解質保持層金
膜けてなり、それに電解質を保持しているものであろう
燃料電池の出力全効率よく得るためには、電解質体は極
力内部抵抗の小さいイオン伝導体でなければならない。
That is, the electrolyte body is arranged between an anode and a cathode and both electrodes and holds all the electrolyte, and the fuel and oxidizer are arranged in a fuel chamber arranged on the anode side and on the cathode side, respectively. A fuel cell capable of electrochemically generating electricity by supplying an oxidizing agent to an oxidizer chamber, which has an electrolyte holding layer of gold film with different pore characteristics on at least one surface of the electrolyte body, and holds an electrolyte therein. In order to efficiently obtain the full output of the fuel cell, the electrolyte must be an ionic conductor with as low internal resistance as possible.

そのためには電解質が電極細孔内に流れ込まないように
、電解質体は細密な細孔を有し、毛細管現象によって電
解質を十分に保持する能力を有し、かつ薄板状で機械的
強度に富んだ電解質体であることが望まれる。
To this end, the electrolyte body must have fine pores to prevent the electrolyte from flowing into the electrode pores, have the ability to sufficiently retain the electrolyte through capillary action, and be thin and mechanically strong. It is desired that it is an electrolyte body.

このよう々機能を備える電解質体として、本発明者らは
次のような電解質体を提供するものである。
As an electrolyte body having such functions, the present inventors provide the following electrolyte body.

その1つは自己支持性を有する長繊維構造体若しくは多
孔質焼結体に電解質全保持してなる電解質体の少くとも
一方の面に、好ましくはその両方の面に細孔特性の異な
る非導電性微粉末からなる電解質保持層を設けてなり、
それに電解質を保持してなる多重M電解質体である。こ
の電解質体に用いる非導電性微粉末の粒径としては電解
質保持力を高めるために極力細がい粒子であるのがよく
、少くとも1ミクロン以下であるのが望ましい。
One of them is a non-conductive electrolyte body with different pore characteristics on at least one surface, preferably both surfaces, of an electrolyte body that is made by holding the entire electrolyte in a self-supporting long fiber structure or a porous sintered body. An electrolyte retention layer made of fine powder is provided.
It is a multi-M electrolyte body that holds an electrolyte in it. The particle size of the non-conductive fine powder used in this electrolyte body is preferably as fine as possible in order to enhance electrolyte retention, and is preferably at least 1 micron or less.

寸だ、その微粉末で形成される電解質保持1−はペース
ト型車解質体構造でもマトリックス型車解質体構造でも
よい。筐だ、電解質はあらかじめ非導電性微粉末と混合
した状態でその層全形成するもよく、あとから浸み込ま
せる方法でもよい。
The electrolyte retainer 1- formed from the fine powder may have either a paste-type vehicle disintegrate structure or a matrix-type vehicle disintegrate structure. As for the case, the entire layer can be formed by mixing the electrolyte with non-conductive fine powder in advance, or it can be soaked in afterwards.

なお、上記の自己支持性長繊維構造体とは長繊維が自己
支持性を有する状態に75)らみ合って構成されている
構造体全指し、ベーパー状、フェルト状、マット状、織
布状などの形態で用いることができる。
The above-mentioned self-supporting long fiber structure refers to any structure in which long fibers are intertwined with each other in a self-supporting state, vapor-like, felt-like, mat-like, woven fabric-like. It can be used in the form of

この多重層電解質体を用いることにより、次のような効
果が期待できる。
By using this multilayer electrolyte body, the following effects can be expected.

1)平滑性がよくなる。1) Improved smoothness.

2)電解質体と他の電池構成部材(例えばガスセパレー
タ)との接触部のガス気密性がよくなる。
2) The gas-tightness of the contact area between the electrolyte body and other battery components (eg, gas separator) is improved.

3)電解質全多く保持できる。3) A large amount of electrolytes can be retained.

4)電解質保持能力が高くなる。4) Increased electrolyte retention ability.

5)機械的強度が大で、ヒートサイクルに対する耐久性
が高くなる。
5) High mechanical strength and high durability against heat cycles.

非導電性微粉末として特に限定されるものではないが、
マグネシア、ジルコニア、リチウムアルミネート、リチ
ウムチタネートなどが特に好ましい。
Non-conductive fine powder is not particularly limited, but
Especially preferred are magnesia, zirconia, lithium aluminate, lithium titanate, and the like.

本発明による他の市、M質体はペースト型電解質体の少
くとも一方の面に、好寸しくにその両方の面に補強材金
膜けてなるものである。
Another M material body according to the present invention is a paste-type electrolyte body having a reinforcing gold film on at least one surface, preferably on both surfaces.

補強材としては金属製若しくはセラミックス製の自己支
持性を有する長繊維構造体、二次元あるいは三次元の網
状構造体若しくはノ・ニカム構造体などが含まれる。金
網や穿孔金属板を延伸して作ったエキスパンディトメタ
ルなどもこの範ちゅうに入る。
The reinforcing material includes a self-supporting long fiber structure made of metal or ceramic, a two-dimensional or three-dimensional network structure, a non-nicam structure, and the like. Expanded metal made by stretching wire mesh or perforated metal plates also falls into this category.

この多重層電解質体音用いることにより、機械的強度が
大で、ヒートサイクルに対する耐性が高くなる。
By using this multilayer electrolyte body, mechanical strength is high and resistance to heat cycles is high.

更に他の電解質体はマトリックス型電解質体の少くとも
一方の面に、好ましくはその両方の面に補強拐を設けて
なるものである。
Still other electrolyte bodies are matrix type electrolyte bodies provided with reinforcing layers on at least one surface, preferably on both surfaces.

補強材としては前記のものが適用できるが、特に金属製
若しくけセラミックス裂の自己支持性を有する長繊維構
造体や金網、エキスパンディトメタルなどが好捷しい。
As the reinforcing material, the above-mentioned materials can be used, but particularly preferred are long fiber structures made of metal or ceramics having self-supporting properties, wire mesh, expanded metal, and the like.

この多重層電解質体音用いることにより、機械的強度が
大で、ヒートサイクルに対する耐久性が高くなる。
By using this multilayer electrolyte body, mechanical strength is large and durability against heat cycles is increased.

また、本発明によれば表層電解質保持層の電解質が存在
し得る部分の平均細孔径が内部のそれにくらべて小さい
ことを特徴とする電解質体が得られる。
Further, according to the present invention, an electrolyte body is obtained in which the average pore diameter of the portion of the surface electrolyte holding layer where the electrolyte can exist is smaller than that of the interior.

該電解質体の内部に形成てれる電解質体はペースト型若
しくはマトリックス型であり、また自己支持性を有する
長繊維構造体を補強芯材とするとなお一層好呼しい電解
質体となる。すなわち、長繊維構造体の内部に非導電性
微粉末の粒径の異なるものを多段に導入、充填し、表層
に存在する粒子が内部に存在する粒子にくらべてより微
細であるようにした電解質体である。
The electrolyte body formed inside the electrolyte body is of a paste type or matrix type, and the electrolyte body is even more preferable if a self-supporting long fiber structure is used as a reinforcing core material. In other words, it is an electrolyte in which non-conductive fine powder with different particle sizes is introduced and filled into the inside of a long fiber structure in multiple stages, so that the particles existing on the surface layer are finer than those inside. It is the body.

この多重層電解質体を用いることにより、次のような効
果が期待できる。
By using this multilayer electrolyte body, the following effects can be expected.

1)平滑性がよくなる。1) Improved smoothness.

2)電解質体と他の電池構成部材との接触部のガス気密
性がよくなる。
2) The gas-tightness of the contact area between the electrolyte body and other battery components is improved.

3)電解質を多く保持できる。3) Can hold a large amount of electrolytes.

4)電解質保持能力が高くなる。4) Increased electrolyte retention ability.

5)機械的強度が大で、ヒートサイクルに対する耐久性
が高くなる。
5) High mechanical strength and high durability against heat cycles.

本発明の電解質体を用いる燃料電池としては特に限定さ
れるものではないが、以下の具体的実施例は溶融炭酸塩
型燃料電池を例としてさらに具体的に説明する。
Although the fuel cell using the electrolyte body of the present invention is not particularly limited, the following specific examples will be more specifically explained using a molten carbonate fuel cell as an example.

実施例1 フェルト状のアルミナ長繊維構造体(100ran×1
00咽、厚さ3 tan 、繊維径1〜5ミクロン。
Example 1 Felt-like alumina long fiber structure (100ran×1
00 mm, thickness 3 tan, fiber diameter 1-5 microns.

繊維長0.3〜3朝)全全圧10トンでプレス成形した
のち、水酸化リチウムとともに480Cで10時間処理
して得たりチウムアルミネート長繊維構造体4.8gに
炭酸リチウムと炭酸カリウムの混合物(62:38.モ
ル比)を5200で加熱溶融した状態で含浸、冷却して
長繊維構造体を電(9) 解質保持体とする電解質保持層た。次に、上記混合組成
の電解質を50wt%含有する平均粒径0.8ミクロン
のりチウムアルミネート粉末との混合体それぞれ5gを
上記電解質板の上下に配設されるように型を用いて行な
い、480tT、全圧10トンでプレス成形して最終的
な電解質体を得た。この電解質体の長繊維構造体を電解
質保持体とする層の厚さは約0.5咽であり、その両面
に配設された微粉末を電解質保持層とする層の厚みは約
0.25簡であった。
Fiber length: 0.3 to 3 days) After press-forming at a total pressure of 10 tons, the lithium aluminate long fiber structure was obtained by processing at 480C for 10 hours with lithium hydroxide. The mixture (62:38 molar ratio) was impregnated in a heated and molten state at 5,200 ml, and cooled to form an electrolyte holding layer using the long fiber structure as an electrolyte holding body. Next, using a mold, 5 g of each mixture with lithium aluminate powder having an average particle size of 0.8 microns containing 50 wt% of the electrolyte having the above mixed composition was placed above and below the electrolyte plate, The final electrolyte body was obtained by press molding at 480 tT and a total pressure of 10 tons. The thickness of the layer in which the long fiber structure of the electrolyte body is used as an electrolyte holding layer is approximately 0.5 mm, and the thickness of the layer in which the fine powder provided on both sides thereof is used as an electrolyte holding layer is approximately 0.2 mm. It was easy.

実施例2 平均粒径が約3ミクロンのリチウムチタネートを母原料
として得られた2 00wnX 200wonX2.5
tの焼結板に炭酸リチウムと炭酸カリウムの混合物(6
2:38.モル比)を実施例1と同様の方法で溶融、含
浸して電解板を得た。さらに実施例1と同様の方法で、
該電解質板の両面に厚さ約0.2rtrmの電解質とり
チウムアルミネートの混合体からなる電解質層を設けて
なる多重層電解質体を得た。
Example 2 200wnX 200wonX2.5 obtained using lithium titanate with an average particle size of about 3 microns as a base material
A mixture of lithium carbonate and potassium carbonate (6
2:38. molar ratio) was melted and impregnated in the same manner as in Example 1 to obtain an electrolytic plate. Furthermore, in the same manner as in Example 1,
A multilayer electrolyte body was obtained in which electrolyte layers made of a mixture of electrolyte and tium aluminate and having a thickness of about 0.2 rtrm were provided on both sides of the electrolyte plate.

(10) 実施例3 炭酸リチウムと炭酸カリウムの混合体(62:38、モ
ル比)33g、水酸化リチウム・1水和物8g及び平均
粒径0.5ミクロンのりチウムアルミネート20$ll
r含む混合スラリヲ実施例1と同寸法のフェルト状アル
ミナ長繊維構造体上に流し込み、その上部に他の1枚の
同寸法のフェルト状アルミナ長繊維JfIt造体を置く
形でフィルタプレスした。
(10) Example 3 33 g of a mixture of lithium carbonate and potassium carbonate (62:38, molar ratio), 8 g of lithium hydroxide monohydrate, and 20 $ll of lithium aluminate with an average particle size of 0.5 microns.
The mixed slurry containing R was poured onto a felt-like alumina long fiber structure having the same dimensions as in Example 1, and another felt-like alumina long fiber JfIt structure having the same dimensions was placed on top of the felt-like alumina long fiber structure and filter-pressed.

これ全50′Cで5時間、150tl:’で3時間乾燥
したのち、500Cで10時間加熱処理して最終的な電
解質体を得た。
This was dried at 50'C for 5 hours and at 150 tl:' for 3 hours, and then heated at 500C for 10 hours to obtain the final electrolyte body.

この電解質体のペースト型電解質体部(内部)の厚きは
約2mであり、衣層の長繊維構造体による補強部の厚さ
はそれぞれ約0.5間であった。
The thickness of the paste-type electrolyte body portion (inside) of this electrolyte body was approximately 2 m, and the thickness of each reinforced portion by the long fiber structure of the coating layer was approximately 0.5 m.

実施例4 平均粒径が0.5ミクロンのりチウムアルミネート20
gと水酸化リチウム・1水和物8gk含む混合スラリを
実施例1と同寸法のフェルト状アルミナ繊維構造体2枚
ではさむ状態にしてフィルタ(11) プレスした。これに50rで5時間、150tTで3時
間乾燥したのち、1300tTで5時間処理して焼結体
を4た。これに炭酸リチウムと炭酸カリウムの混合体(
62:38.モル比)を実施例1と同様の方法で含浸、
冷却して最終的々′111.M、質体を得た。
Example 4 Lithium aluminate 20 with an average particle size of 0.5 microns
A mixed slurry containing 8 gk of lithium hydroxide monohydrate and 8 gk of lithium hydroxide monohydrate was sandwiched between two felt-like alumina fiber structures having the same dimensions as in Example 1, and then pressed into a filter (11). This was dried at 50 r for 5 hours and at 150 tT for 3 hours, and then treated at 1300 tT for 5 hours to obtain a sintered body. This is combined with a mixture of lithium carbonate and potassium carbonate (
62:38. molar ratio) in the same manner as in Example 1,
Cool and finally '111. M, obtained a substance.

実施例5 実施例1ないし実施例4で得た電解質体を用い、アノー
ド及びカソードには多孔質ニッケル焼結板及びリチウノ
・化した酸化ニッケル焼結板を用いて単十ルを構成し、
電池性能を測定した。
Example 5 Using the electrolyte body obtained in Examples 1 to 4, a porous nickel sintered plate and a lithiated nickel oxide sintered plate were used for the anode and cathode to form a single cell,
Battery performance was measured.

アノード側の燃料室に燃料としてHt50%。50% Ht as fuel in the fuel chamber on the anode side.

N、50%混合ガスを、カソード側の酸化剤室に酸化剤
として0,15%、Co230%、N、55%混合カス
全供給し、650tll’の温度で電池全作動させた。
A mixed gas of 0.15%, 30% Co2, and 55% N was completely supplied to the oxidizer chamber on the cathode side as an oxidizer, and the battery was fully operated at a temperature of 650 tll'.

電流密度100 mA /cm2放電時のセル電圧を測
定した結果、実施例】がら実施例4の電解質体を用いた
電池において、それぞれo、78V、0.78V、0.
75V、0.76VTi1+っ7’n。
As a result of measuring the cell voltage during discharge at a current density of 100 mA/cm2, in the battery using the electrolyte body of Example 4, the voltages were 0, 78 V, 0.78 V, and 0.0 V, respectively.
75V, 0.76VTi1+7'n.

100時間後においても電池性能は低下してぃな(12
) ンづ かった。その間、650trがら300?Tまで降混し
、再度6501Tに昇混するシャットダウン全それぞれ
7回づつくりかえしたが、ガスクロス現象やウェットシ
ール部からのガス洩れは認められな(13)
Even after 100 hours, the battery performance has deteriorated (12
) I used it. In the meantime, 650tr to 300? The entire shutdown was repeated 7 times, with the mixture dropping to T and rising again to 6501T, but no gas cross phenomenon or gas leakage from the wet seal was observed (13)

Claims (1)

【特許請求の範囲】 1、アノード及びカソードとその両電極間に配設される
電解質を保持してなる電解質体よりなり、燃料及び酸化
剤をそれぞれアノード側に配設される燃料室及びカソー
ド側に配設される酸化剤室に供給することにより電気化
学的に発電する燃料電池において、該電解質体の少くと
も一方の面に細孔特性の異なる電解質保持層金膜けてな
り、それに電解質全保持していること全特徴とする燃料
電池。 2、特許請求の範囲第1項記載の燃料電池において、該
電解質体が自己支持性を有する長繊維構造体若しくは多
孔質焼結体に電解質を保持してなり、該電解質体の少く
とも一方の面に細孔特性の異なる非導電性微粉末からな
る電解質保持層を設けてなり、それに電解質を保持して
いること全特徴とする燃料電池。 3、%許請求の範囲第1項記載の燃料電池において、該
電解質体が非導電性微粉末と電解質の混合体であり、該
電解質体の少くとも一方の面に補強材全役けてなること
を特徴とする燃料電池。 4、特許請求の範囲第3項記載の燃料電池において、補
強材が金属製若しくば一ヒラミックス製の自己支持性を
有する長繊維構造体、網状構造体若しくはハニカム状構
造体であることを!特徴とする燃料電、池。 5、特許請求の範囲第1項記載の燃料電池において、該
電解質体が電解質を保持してなる多孔質焼結体であり、
該電解質体の少くとも一方の面に補強材を設けてなるこ
とを特徴とする燃料電池。 6、特許請求の範囲第5項記載の燃料電池において、補
強材が金属製若しくはセラミックス環の自己支持性を有
する長繊維構造体であることを特徴とする燃料電池。 7、特許請求の範囲第5項記載の燃料電池において、補
強材が金網若しくはエキスバンプイドメタルであること
全特徴とする燃料電池。 8、特許請求の範囲第1項記載の燃料電池において、該
電解質体の表層電解質保持層の平均細孔径が内部のそれ
にくらべてより小さいことを特徴とする燃料′電池。 9、特許請求の範囲第1項記載の燃料電池において、該
電解質体がペースト型である燃料電池。 10、%許請求の範囲第1項記載の燃料電池において、
該電解質体がマド11ツクス型である燃料電池。 11、%許請求の範囲第1項記載の燃料電池において、
自己支持性を有する長繊維構造体を補強芯材とする燃料
電池。
[Claims] 1. An electrolyte body comprising an anode, a cathode, and an electrolyte disposed between the two electrodes, and a fuel chamber and a cathode side in which a fuel and an oxidizing agent are respectively disposed on the anode side. In a fuel cell that electrochemically generates electricity by supplying an oxidizer to an oxidizer chamber arranged in It has all the characteristics of a fuel cell. 2. In the fuel cell according to claim 1, the electrolyte body has an electrolyte held in a self-supporting long fiber structure or a porous sintered body, and at least one of the electrolyte bodies A fuel cell characterized in that an electrolyte holding layer made of non-conductive fine powder with different pore characteristics is provided on the surface, and an electrolyte is held in the electrolyte holding layer. 3.% Permissible In the fuel cell according to claim 1, the electrolyte body is a mixture of non-conductive fine powder and electrolyte, and at least one surface of the electrolyte body has a reinforcing material. A fuel cell characterized by: 4. In the fuel cell according to claim 3, it is provided that the reinforcing material is a self-supporting long fiber structure, a network structure, or a honeycomb structure made of metal or Hiramix. ! Features fuel cells and ponds. 5. In the fuel cell according to claim 1, the electrolyte body is a porous sintered body holding an electrolyte,
A fuel cell characterized in that a reinforcing material is provided on at least one surface of the electrolyte body. 6. The fuel cell according to claim 5, wherein the reinforcing material is a self-supporting long-fiber structure such as a metal or ceramic ring. 7. The fuel cell according to claim 5, wherein the reinforcing material is a wire mesh or an extracted bumped metal. 8. The fuel cell according to claim 1, wherein the average pore diameter of the surface electrolyte retaining layer of the electrolyte body is smaller than that of the inside. 9. The fuel cell according to claim 1, wherein the electrolyte body is a paste type. 10.% In the fuel cell according to claim 1,
A fuel cell in which the electrolyte body is of Madox type. 11.% Allowance In the fuel cell according to claim 1,
A fuel cell that uses a self-supporting long fiber structure as a reinforcing core material.
JP57011514A 1982-01-29 1982-01-29 Fuel battery Pending JPS58129775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011514A JPS58129775A (en) 1982-01-29 1982-01-29 Fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011514A JPS58129775A (en) 1982-01-29 1982-01-29 Fuel battery

Publications (1)

Publication Number Publication Date
JPS58129775A true JPS58129775A (en) 1983-08-02

Family

ID=11780109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011514A Pending JPS58129775A (en) 1982-01-29 1982-01-29 Fuel battery

Country Status (1)

Country Link
JP (1) JPS58129775A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097558A (en) * 1983-11-01 1985-05-31 Agency Of Ind Science & Technol Molten carbonate fuel cell
JPS61281469A (en) * 1985-06-06 1986-12-11 Matsushita Electric Ind Co Ltd Fused carbonate fuel cell
JPS6282657A (en) * 1985-10-08 1987-04-16 Fuji Electric Co Ltd Electrolyte plate of molten carbonate fuel cell
JPS62237672A (en) * 1986-04-09 1987-10-17 Hitachi Ltd Molten carbonate fuel cell and its manufacture
JPS62295359A (en) * 1986-06-13 1987-12-22 Hitachi Ltd Fuel cell
JPS63190256A (en) * 1987-02-02 1988-08-05 Hitachi Ltd Electrolyte plate for fuel cell
JPH01186760A (en) * 1988-01-18 1989-07-26 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell
JPH0215572A (en) * 1988-07-01 1990-01-19 Mitsubishi Electric Corp Manufacture of molten salt type fuel cell
WO1992004496A1 (en) * 1989-04-12 1992-03-19 Ishikawajima-Harima Heavy Industries Co., Ltd. Method of producing porous lithium aluminate fiber and coarse particle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097558A (en) * 1983-11-01 1985-05-31 Agency Of Ind Science & Technol Molten carbonate fuel cell
JPH0222505B2 (en) * 1983-11-01 1990-05-18 Kogyo Gijutsuin
JPS61281469A (en) * 1985-06-06 1986-12-11 Matsushita Electric Ind Co Ltd Fused carbonate fuel cell
JPS6282657A (en) * 1985-10-08 1987-04-16 Fuji Electric Co Ltd Electrolyte plate of molten carbonate fuel cell
JPS62237672A (en) * 1986-04-09 1987-10-17 Hitachi Ltd Molten carbonate fuel cell and its manufacture
JPS62295359A (en) * 1986-06-13 1987-12-22 Hitachi Ltd Fuel cell
JPH0565991B2 (en) * 1986-06-13 1993-09-20 Hitachi Ltd
JPS63190256A (en) * 1987-02-02 1988-08-05 Hitachi Ltd Electrolyte plate for fuel cell
JPH01186760A (en) * 1988-01-18 1989-07-26 Ishikawajima Harima Heavy Ind Co Ltd Fuel cell
JPH0215572A (en) * 1988-07-01 1990-01-19 Mitsubishi Electric Corp Manufacture of molten salt type fuel cell
WO1992004496A1 (en) * 1989-04-12 1992-03-19 Ishikawajima-Harima Heavy Industries Co., Ltd. Method of producing porous lithium aluminate fiber and coarse particle

Similar Documents

Publication Publication Date Title
US8535848B2 (en) Structured body for an anode used in fuel cells
US4411968A (en) Molten carbonate fuel cell integral matrix tape and bubble barrier
US3901733A (en) Thin film solid electrolyte structures and process of making same
JP2846738B2 (en) Method for producing molten carbonate-fuel cell
US20200102663A1 (en) High-temperature alkaline water electrolysis using a composite electrolyte support membrane
US4439502A (en) Galvanic element having a porous solid-electrolyte sinter framework containing the cathode material
JP3331313B2 (en) Electrolyte matrix for molten carbonate fuel cells
US5453101A (en) Process for producing composite active electrolyte-matrix and laminated component tapes for molten carbonate fuel cells
JPS58129775A (en) Fuel battery
JP2001351647A (en) Solid electrolyte fuel cell
US4710436A (en) Molten carbonate fuel cell and method of manufacturing electrolyte plate thereof
US4244898A (en) Method of preparing porous, rigid ceramic separators for an electrochemical cell
US4526845A (en) Molten carbonate fuel cell integral matrix tape and bubble barrier
JP2001283877A (en) Unit cell for solid electrolytic fuel battery and its manufacturing method
JP2001283876A (en) Unit cell of solid electrolytic fuel battery
JP3592839B2 (en) Method for producing electrolyte plate, ceramic reinforcing material and ceramic sintered body
CN106033825B (en) A kind of anode-supported type sodium nickel-based battery and preparation method thereof
JPS58129774A (en) Electrolytic plate for molten salt fuel cell
JPS58129777A (en) Fuel battery
JPS58128670A (en) Molten salt fuel cell and its manufacture
JPH07262996A (en) Fuel electrode for molten carbonate fuel cell
JPS63184265A (en) Manufacture of bubble pressure resistant layer for fuel cell
JPH02186563A (en) Electrolyte tile for fuel cell and manufacture thereof
JPH09283160A (en) Manufacture of solid electrolyte for solid electrolyte type fuel cell
JPS62154575A (en) Manufacture of fuel electrode for molten carbonate fuel cell