JPH09283160A - Manufacture of solid electrolyte for solid electrolyte type fuel cell - Google Patents

Manufacture of solid electrolyte for solid electrolyte type fuel cell

Info

Publication number
JPH09283160A
JPH09283160A JP8090680A JP9068096A JPH09283160A JP H09283160 A JPH09283160 A JP H09283160A JP 8090680 A JP8090680 A JP 8090680A JP 9068096 A JP9068096 A JP 9068096A JP H09283160 A JPH09283160 A JP H09283160A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte
fuel cell
solid
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8090680A
Other languages
Japanese (ja)
Inventor
Satoshi Seike
聡 清家
Hisashi Suwahara
久 諏訪原
Tomofumi Miyashita
朋史 宮下
Chieko Imazawa
智恵子 今澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP8090680A priority Critical patent/JPH09283160A/en
Publication of JPH09283160A publication Critical patent/JPH09283160A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To enhance mechanical strength by reducing the porosity of solid electrolyte so as not to allow the permeation of fuel gas. SOLUTION: Sm is doped into CeO2 so as to produce electrolyte material composed of (CQO2 )0.8 (SmO1.5 )0.2 . The electrolyte material is formed into solid electrolyte by a hot press method. In the hot press method the electrolyte material is filled into a material filling room 6. Next, pressure is applied to a water pressure press 10 so as to mold the same. In that case, a furnace, which is surrounded by a fire resistant lining 11 and is formed, is heated so as to complete the solid electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主に固体電解質型
燃料電池に用いられる固体電解質の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a solid electrolyte mainly used in a solid oxide fuel cell.

【0002】[0002]

【従来の技術】従来周知の固体電解質型燃料電池の概要
構成図を図4に示す。図4において、酸素イオン導電性
のある固体電解質41の両側にペロブスカイトから成る
多孔質の酸素極(カソード)42とNiサーメットから成
る多孔質の水素極(アノード)43を装着する。酸素極4
2側には、酸素ガスO2もしくは空気を空間47に流し
込むと、次式に示す反応が起こる。
2. Description of the Related Art FIG. 4 shows a schematic configuration diagram of a conventionally known solid oxide fuel cell. In FIG. 4, a porous oxygen electrode (cathode) 42 made of perovskite and a porous hydrogen electrode (anode) 43 made of Ni cermet are mounted on both sides of a solid electrolyte 41 having oxygen ion conductivity. Oxygen pole 4
On the second side, when oxygen gas O 2 or air is flown into the space 47, the reaction shown by the following equation occurs.

【0003】 1/2O2 + 2e- → O2- …… (1) 還元された酸素イオンO2-は、酸素イオン導電性のある
固体電解質41を通過して水素極43に達する。水素極
43側には、水素ガスH2もしくは天然ガス等の燃料ガ
スを空間48に流し込み、固体電解質41を通過してき
た酸素イオンO2-と次式に示す反応が起こる。
1 / 2O 2 + 2e → O 2− (1) The reduced oxygen ion O 2− reaches the hydrogen electrode 43 through the solid electrolyte 41 having oxygen ion conductivity. On the side of the hydrogen electrode 43, a fuel gas such as hydrogen gas H 2 or natural gas is caused to flow into the space 48, and the reaction represented by the following formula occurs with the oxygen ion O 2- which has passed through the solid electrolyte 41.

【0004】 H2 + O2- → H2O + 2e- …… (2) 図4に示すように、負荷44を酸素極42と水素極43
に接続すると、酸素極42側が陽極、そして水素極43
側が陰極となった電圧が(2)式の右辺の2e-によって
負荷44の両端に発生する。
H 2 + O 2 − → H 2 O + 2e (2) As shown in FIG. 4, load 44 is applied to oxygen electrode 42 and hydrogen electrode 43.
, The oxygen electrode 42 side is the anode, and the hydrogen electrode 43
A voltage whose side is the cathode is generated across the load 44 by 2e − on the right side of the equation (2).

【0005】なお、水素極雰囲気等により前記固体電解
質41が還元されないように固体電解質41と水素極4
3との間に第1保護膜45、第2保護膜46を介挿す
る。第1保護膜45は固体電解質41側に固着され、そ
の材料は主にCeO2とYSZを混合して得た部材が用
いられる。第2保護膜46は水素極43側に固着され、
その材料は主に100%YSZから成る部材が用いられ
る。
The solid electrolyte 41 and the hydrogen electrode 4 are prevented from being reduced by the hydrogen electrode atmosphere or the like.
The first protective film 45 and the second protective film 46 are interposed between the first protective film 45 and the third protective film 45. The first protective film 45 is fixed to the solid electrolyte 41 side, and the material thereof is mainly a member obtained by mixing CeO 2 and YSZ. The second protective film 46 is fixed to the hydrogen electrode 43 side,
As the material, a member mainly made of 100% YSZ is used.

【0006】以上は、従来周知の固体電解質型燃料電池
の動作である。前記燃料電池で使用される固体電解質4
1の電解質材料には、イットリウム等の酸化物をジルコ
ニアに固溶させて生成された安定化ジルコニア(YSZ)
を使用したものが多い。
The above is the operation of the well-known solid oxide fuel cell. Solid electrolyte 4 used in the fuel cell
The electrolyte material of No. 1 is stabilized zirconia (YSZ) produced by solid-dissolving an oxide such as yttrium in zirconia.
Many used.

【0007】電解質材料にYSZを使用した燃料電池の
動作温度は約1000℃の高温となるため、固体電解質
型燃料電池の構成材料には耐熱性のあるものを使用しな
ければならない不都合がある。そこで燃料電池の動作温
度を下げて電池構成材料の耐熱性を低下させる試みがな
されている。
Since the operating temperature of a fuel cell using YSZ as the electrolyte material is as high as about 1000 ° C., there is a disadvantage that a heat resistant material must be used as a constituent material of the solid oxide fuel cell. Therefore, attempts have been made to lower the operating temperature of the fuel cell to lower the heat resistance of the cell constituent materials.

【0008】その手段として、電解質材料に、例えば
(CeO2)O・8(SmO1・5)O・2を使用して固体電解質を形
成し、燃料電池の動作温度を700〜800℃にしたも
のが研究されている。前記電解質材料を用いて形成され
た固体電解質は、水素極雰囲気等において還元されてし
まう問題があるが、YSZを電解質材料として使用した
場合と比較して、燃料電池の動作温度を低下させること
ができる利点がある。このため、電解質材料において、
最近ではYSZの代替材料に(CeO2)O・8(SmO1・5)
O・2を使用して燃料電池が製造されるようになってい
る。
As a means therefor, electrolyte materials such as
(CeO 2) O · 8 ( SmO 1 · 5) using the O · 2 to form a solid electrolyte, that the operating temperature of the fuel cell 700 to 800 ° C. has been studied. The solid electrolyte formed using the electrolyte material has a problem of being reduced in a hydrogen electrode atmosphere or the like, but it can lower the operating temperature of the fuel cell as compared with the case where YSZ is used as the electrolyte material. There are advantages. Therefore, in the electrolyte material,
Alternate materials YSZ recently (CeO 2) O · 8 ( SmO 1 · 5)
Fuel cells are being manufactured using O · 2 .

【0009】[0009]

【発明が解決しようとする課題】通常、固体電解質の電
解質材料として(CeO2)0・8(SmO1・5)0・2を使用する
際、形成される固体電解質が緻密な層になるように電解
質材料を焼結する必要がある。一般的に、固体電解質が
緻密な層になるようにする方法には、例えば常圧焼結法
により微粒子状態の(CeO20・8(SmO1・5)0・2を所
望の形に圧力成形した後、高温で焼結する手段が採られ
ている。
[SUMMARY OF THE INVENTION Usually, as the electrolyte material of the solid electrolyte when using (CeO 2) 0 · 8 ( SmO 1 · 5) 0 · 2, so that the solid electrolyte formed becomes dense layer It is necessary to sinter the electrolyte material. Generally, the way to the solid electrolyte is a dense layer, for example by atmospheric pressure sintering particulate state (CeO 2) 0 · 8 ( SmO 1 · 5) 0 · 2 to a desired shape After pressure forming, a means of sintering at high temperature is adopted.

【0010】前記電解質材料の最適焼結温度は1650
℃と高温であることが知られている。
The optimum sintering temperature of the electrolyte material is 1650.
It is known to be as high as ℃.

【0011】しかし、前記最適焼結温度で固体電解質を
形成すると、固体電解質の各結晶粒子が増大し(約15
μm)、その結晶粒子内部に気孔が残存して焼結体の相
対密度が低下してしまい、燃料ガスが固体電解質を透過
してしまう問題が生じる。
However, when the solid electrolyte is formed at the optimum sintering temperature, each crystal grain of the solid electrolyte increases (about 15
[mu] m), pores remain inside the crystal particles, and the relative density of the sintered body decreases, causing a problem that the fuel gas permeates the solid electrolyte.

【0012】燃料ガスが固体電解質を透過してしまう
と、燃料電池の起電力が低下してしまい、その発電量が
大幅に低下することが現在知られている。また、固体電
解質の気孔率の増大に伴って燃料電池の機械的強度が低
下するため、ピンホールがある固体電解質を用いて燃料
電池を製造することは望ましくない。なお、理想的な固
体電解質は、結晶粒径が小さくて揃っていることであ
る。すなわち、燃料ガスが固体電解質を透過せず、かつ
機械的強度が高いことが望まれている。
It is now known that if the fuel gas permeates the solid electrolyte, the electromotive force of the fuel cell is reduced, and the amount of power generation is greatly reduced. In addition, since the mechanical strength of the fuel cell decreases as the porosity of the solid electrolyte increases, it is not desirable to manufacture the fuel cell using the solid electrolyte having pinholes. It is to be noted that an ideal solid electrolyte has a small crystal grain size and is uniform. That is, it is desired that the fuel gas does not pass through the solid electrolyte and that the mechanical strength is high.

【0013】本発明は前記課題に基づいて成されたもの
であり、緻密な固体電解質を形成して気孔率を低下さ
せ、燃料ガスが固体電解質を透過させないようにし、固
体電解質の機械的強度を増大させる固体電解質型燃料電
池の固体電解質の製造方法を提供することにある。
The present invention has been made based on the above-mentioned problems, and it forms a dense solid electrolyte to reduce the porosity, prevents the fuel gas from passing through the solid electrolyte, and improves the mechanical strength of the solid electrolyte. It is an object of the present invention to provide a method for producing a solid electrolyte of a solid oxide fuel cell which is increased.

【0014】[0014]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、第1方法は電解質材料を成形機により圧
力成形して固体電解質を得、その固体電解質の側面に酸
素極と水素極を装着した後、固体電解質と水素極との間
に保護膜を介挿し、その酸素極と水素極に負荷を設けて
燃料ガスにより動作する固体電解質型燃料電池の固体電
解質の製造方法において、前記電解質材料をホットプレ
ス法により圧力成形すると同時に焼結して固体電解質を
形成することを特徴とする。
In order to solve the above-mentioned problems, the first method of the present invention is to pressure-mold an electrolyte material by a molding machine to obtain a solid electrolyte, and an oxygen electrode and hydrogen are provided on the sides of the solid electrolyte. After mounting the electrode, a protective film is interposed between the solid electrolyte and the hydrogen electrode, in the method for producing a solid electrolyte of a solid oxide fuel cell that operates by fuel gas by providing a load on the oxygen electrode and the hydrogen electrode, It is characterized in that the electrolyte material is pressure-molded by a hot pressing method and simultaneously sintered to form a solid electrolyte.

【0015】第2発明は、前記ホットプレス法におい
て、プレス圧を1000kg/cm2、焼結温度を16
50℃未満で固体電解質を形成することを特徴とする。
A second invention is the hot pressing method, wherein the pressing pressure is 1000 kg / cm 2 , and the sintering temperature is 16.
It is characterized by forming a solid electrolyte below 50 ° C.

【0016】第3発明は、前記電解質材料を(CeO2)
0・8(SmO1・5)0・2とすることを特徴とする。
A third aspect of the present invention uses the electrolyte material (CeO 2 )
0 · 8 (SmO 1 · 5 ) , characterized in that the 0-2.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。CeO2にSmをドープして得た
(CeO2)0・8(SmO1・5)0・2から成る電解質材料をホッ
トプレス法により所望の成形体に圧力成形すると同時に
焼結して固体電解質を形成するが、そのホットプレス法
により固体電解質を形成する際に使用するホットプレス
装置において、図1に示すホットプレス装置の概要構成
図に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings. Obtained by doping CeO 2 with Sm
(CeO 2) 0 · 8 ( SmO 1 · 5) 0 · 2 an electrolyte material made of a hot press method is to form a solid electrolyte and sintered simultaneously when pressure molded into a desired shaped body, by the hot pressing A hot press machine used for forming a solid electrolyte will be described with reference to the schematic configuration diagram of the hot press machine shown in FIG.

【0018】図1において、電解質材料を圧力成形する
成形機全体を支えるために配置された耐熱ブロック1の
上面に、型支持用ブロック2を配置する。その型支持用
ブロック2の上面中央には、電解質材料を所望の成形体
に形成するためのプラグ3を配置し、材料充填室4が設
けられるように交換可能な内張り5をプラグ3の側面を
囲むように配置する。さらに、前記交換可能な内張り5
の側面を囲むように、前記型支持用ブロック2の上面端
部に型6を配置する。
In FIG. 1, a mold supporting block 2 is arranged on the upper surface of a heat-resistant block 1 arranged to support the entire molding machine for pressure-molding an electrolyte material. A plug 3 for forming an electrolyte material into a desired molded body is arranged in the center of the upper surface of the mold supporting block 2, and a replaceable inner lining 5 is provided on the side surface of the plug 3 so that a material filling chamber 4 is provided. Place it so that it surrounds it. Further, the replaceable lining 5
The mold 6 is arranged at the upper end of the mold supporting block 2 so as to surround the side surface of the mold 6.

【0019】電解質材料を圧力成形するための耐熱性パ
ンチ7が前記材料充填室4に装填され、その耐熱性パン
チ7の上面には高強度耐熱ブロック8が設けられる。そ
の高強度耐熱ブロック8の上面には冷却板9を配置し、
その冷却板9に水圧プレス10を設けられる。その水圧
プレス10に圧力を加えることにより材料充填室に充填
された電解質材料が所望の固体電解質に成形される仕組
みとなっている。
A heat resistant punch 7 for pressure forming an electrolyte material is loaded in the material filling chamber 4, and a high strength heat resistant block 8 is provided on the upper surface of the heat resistant punch 7. A cooling plate 9 is arranged on the upper surface of the high-strength heat-resistant block 8,
A hydraulic press 10 is provided on the cooling plate 9. By applying pressure to the hydraulic press 10, the electrolyte material filled in the material filling chamber is shaped into a desired solid electrolyte.

【0020】前記のように構成された成形機全体を耐火
内張り11で囲うようにして炉12を形成してホットプ
レス装置が構成される。なお、前記炉12の上部中央に
は耐熱性パンチ10を貫通させる孔13が穿設され、電
解質材料を焼結する際は、炉の高温部14が最も高温と
なる部分である。
A hot press machine is constructed by forming a furnace 12 so that the entire molding machine constructed as described above is surrounded by a refractory lining 11. A hole 13 is formed in the center of the upper part of the furnace 12 for penetrating the heat resistant punch 10, and the high temperature part 14 of the furnace is the highest temperature when sintering the electrolyte material.

【0021】以上示したように電解質材料を圧力成形す
ると同時に焼結して製造された固体電解質の試料を使用
して、焼結温度1500、1550、1600、165
0℃に対する固体電解質の相対密度(%)を観測した。本
発明法により製造した固体電解質と比較するために、従
来法により常圧焼結法で製造した固体電解質の試料を使
用し、その観測結果を下記表1に示す。なお、固体電解
質の成形条件および焼結条件を以下に示す。
As described above, the sintering temperature 1500, 1550, 1600, 165 is used by using the sample of the solid electrolyte produced by pressure-forming and simultaneously sintering the electrolyte material.
The relative density (%) of the solid electrolyte with respect to 0 ° C. was observed. In order to compare with the solid electrolyte produced by the method of the present invention, a sample of the solid electrolyte produced by the conventional method by the atmospheric pressure sintering method was used, and the observation results are shown in Table 1 below. The molding conditions and sintering conditions for the solid electrolyte are shown below.

【0022】本発明法:ホットプレス(プレス圧…10
00kg/cm2、焼結時間…1時間) 従来法:常圧焼結(成形圧…1500kg/cm2、焼結
時間…15時間)
The method of the present invention: hot press (press pressure ... 10)
00 kg / cm 2 , sintering time ... 1 hour) Conventional method: normal pressure sintering (molding pressure ... 1500 kg / cm 2 , sintering time ... 15 hours)

【0023】[0023]

【表1】 [Table 1]

【0024】表1示す観測結果より、全ての焼結温度に
対して、本発明法により製造した固体電解質は、従来法
により製造した固体電解質と比較して高い相対密度の固
体電解質が形成されていることが判明した。特に、焼結
温度1500℃に対して、本発明法により製造した固体
電解質と従来法により製造した固体電解質との相対密度
の差が大きく生じた。なお、前記観測結果において、焼
結温度に対する相対密度特性図を図2に示す。
From the observation results shown in Table 1, at all sintering temperatures, the solid electrolyte produced by the method of the present invention has a higher relative density than the solid electrolyte produced by the conventional method. It turned out that In particular, there was a large difference in relative density between the solid electrolyte produced by the method of the present invention and the solid electrolyte produced by the conventional method at a sintering temperature of 1500 ° C. Note that, in the above observation results, a relative density characteristic diagram with respect to the sintering temperature is shown in FIG.

【0025】前記観測で使用した本発明法および従来法
により製造した固体電解質の微細構造図を図3に示す。
図3において、従来法により製造した固体電解質の微細
構造は結晶粒径が大きく、各結晶粒径のばらつきが大き
いことに対して、本発明法による微細構造は結晶粒径が
小さく、各結晶粒径がほぼ揃っていてばらつきが小さい
ことが判明した。
FIG. 3 shows a fine structure diagram of the solid electrolytes produced by the method of the present invention and the conventional method used in the above observation.
In FIG. 3, the fine structure of the solid electrolyte produced by the conventional method has a large crystal grain size, and the variation of each crystal grain size is large, whereas the fine structure of the method of the present invention has a small crystal grain size. It was found that the diameters were almost uniform and the variation was small.

【0026】以上示したことから、ホットプレス法によ
り電解質材料を圧力成形すると同時に焼結して固体電解
質を形成することにより、粒子内部の微細構造が緻密で
各粒径がほぼ同一となり、ピンホールのない固体電解質
を形成することが可能となる。
From the above, by compacting the electrolyte material simultaneously by hot pressing by the hot pressing method to form a solid electrolyte, the fine structure inside the particles becomes dense and each particle size becomes almost the same, and pinholes are formed. It becomes possible to form a solid electrolyte free of the charge.

【0027】ゆえに、燃料電池の固体電解質として使用
しても起電力が低下する問題が起きない。
Therefore, even if it is used as a solid electrolyte of a fuel cell, the problem of reduction of electromotive force does not occur.

【0028】[0028]

【発明の効果】以上示したとおり本発明によれば、ホッ
トプレス法で電解質材料を圧力成形すると同時に焼結し
て固体電解質を形成することにより、粒子内部が緻密で
ピンホールのない固体電解質を形成することができる。
この固体電解質を用いて燃料電池を製造することによ
り、燃料ガスが固体電解質を透過することがなくなり、
高い開放電圧が得られ、起電力が低下する問題が起こら
ない。
As described above, according to the present invention, a solid electrolyte having a dense particle interior and no pinhole is formed by pressure-forming an electrolyte material by hot pressing and simultaneously sintering it to form a solid electrolyte. Can be formed.
By producing a fuel cell using this solid electrolyte, the fuel gas does not pass through the solid electrolyte,
A high open circuit voltage is obtained, and the problem of reduced electromotive force does not occur.

【0029】また、前記固体電解質の気孔率を低く抑え
ることができ、固体電解質の各粒径を小さくすることが
可能となり、従来法により常圧焼結法で形成した固体電
解質と比較して機械的強度が高くなることが判明した。
Further, the porosity of the solid electrolyte can be suppressed to a low level, and the respective particle sizes of the solid electrolyte can be reduced, and the solid electrolyte can be machined as compared with the solid electrolyte formed by the conventional pressure sintering method. It was found that the target strength becomes higher.

【図面の簡単な説明】[Brief description of drawings]

【図1】ホットプレス装置の概要構成図。FIG. 1 is a schematic configuration diagram of a hot press device.

【図2】観測結果における焼結温度に対する相対密度特
性図。
FIG. 2 is a relative density characteristic diagram with respect to the sintering temperature in the observation result.

【図3】本発明法および従来法により形成した固体電解
質の粒子内部の微細構造図。
FIG. 3 is a microstructure diagram inside the particles of the solid electrolyte formed by the method of the present invention and the conventional method.

【図4】従来周知の固体電解質型燃料電池の概要構成
図。
FIG. 4 is a schematic configuration diagram of a conventionally known solid oxide fuel cell.

【符号の説明】 1…耐熱ブロック 2…型支持用ブロック 3…プラグ 4…交換可能な内張り 5…型 6…材料充填室 7…耐熱性パンチ 8…高強度耐熱ブロック 9…冷却板 10…水圧プレス 11…耐火内張り 12…炉 13…孔 14…炉の高温部 31a、31b…結晶 41…固体電解質 42…酸素極 43…水素極 44…負荷 45…第1保護膜 46…第2保護膜 47、48…空間[Explanation of symbols] 1 ... Heat-resistant block 2 ... Mold support block 3 ... Plug 4 ... Replaceable lining 5 ... Mold 6 ... Material filling chamber 7 ... Heat resistant punch 8 ... High strength heat resistant block 9 ... Cooling plate 10 ... Hydraulic pressure Press 11 ... Fireproof lining 12 ... Furnace 13 ... Hole 14 ... High temperature part of furnace 31a, 31b ... Crystal 41 ... Solid electrolyte 42 ... Oxygen electrode 43 ... Hydrogen electrode 44 ... Load 45 ... First protective film 46 ... Second protective film 47 , 48 ... space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今澤 智恵子 東京都品川区大崎2丁目1番17号 株式会 社明電舎内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Chieko Imazawa 2-17 Osaki, Shinagawa-ku, Tokyo Inside the Meidensha Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解質材料を成形機により圧力成形して
固体電解質を得、その固体電解質の側面に酸素極と水素
極を装着した後、固体電解質と水素極との間に保護膜を
介挿し、その酸素極と水素極に負荷を設けて燃料ガスに
より動作する固体電解質型燃料電池の固体電解質の製造
方法において、 前記電解質材料をホットプレス法により圧力成形すると
同時に焼結して固体電解質を形成することを特徴とする
固体電解質型燃料電池の固体電解質の製造方法。
1. A solid electrolyte is obtained by pressure molding an electrolyte material with a molding machine, an oxygen electrode and a hydrogen electrode are attached to the side surfaces of the solid electrolyte, and a protective film is inserted between the solid electrolyte and the hydrogen electrode. A method for producing a solid electrolyte of a solid oxide fuel cell in which a load is placed on the oxygen electrode and the hydrogen electrode to operate with a fuel gas, wherein the electrolyte material is pressure-molded by a hot pressing method and simultaneously sintered to form a solid electrolyte A method for producing a solid electrolyte for a solid oxide fuel cell, comprising:
【請求項2】 前記ホットプレス法において、プレス圧
を1000kg/cm2、焼結温度を1650℃未満で
固体電解質を形成することを特徴とする請求項1記載の
固体電解質型燃料電池の固体電解質の製造方法。
2. The solid electrolyte for a solid oxide fuel cell according to claim 1, wherein in the hot pressing method, the solid electrolyte is formed at a pressing pressure of 1000 kg / cm 2 and a sintering temperature of less than 1650 ° C. Manufacturing method.
【請求項3】 前記電解質材料を(CeO2)0・8(SmO
1・5)0・2とすることを特徴とする請求項1および請求項
2記載の固体電解質型燃料電池の固体電解質の製造方
法。
3. The electrolyte material is (CeO 2 ) 0.8 (SmO 2
1.5 ) 0.2, The method for producing a solid electrolyte for a solid oxide fuel cell according to claim 1 or 2, wherein
JP8090680A 1996-04-12 1996-04-12 Manufacture of solid electrolyte for solid electrolyte type fuel cell Pending JPH09283160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8090680A JPH09283160A (en) 1996-04-12 1996-04-12 Manufacture of solid electrolyte for solid electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8090680A JPH09283160A (en) 1996-04-12 1996-04-12 Manufacture of solid electrolyte for solid electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH09283160A true JPH09283160A (en) 1997-10-31

Family

ID=14005260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8090680A Pending JPH09283160A (en) 1996-04-12 1996-04-12 Manufacture of solid electrolyte for solid electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH09283160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013567A1 (en) * 2005-07-27 2007-02-01 Nippon Shokubai Co., Ltd. Method for producing solid electrolyte sheet and solid electrolyte sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013567A1 (en) * 2005-07-27 2007-02-01 Nippon Shokubai Co., Ltd. Method for producing solid electrolyte sheet and solid electrolyte sheet

Similar Documents

Publication Publication Date Title
US8535848B2 (en) Structured body for an anode used in fuel cells
JP5101777B2 (en) Electrode support manufacturing method and electrochemical cell
US20070037031A1 (en) Cermet and ceramic interconnects for a solid oxide fuel cell
EP0194374A1 (en) High temperature electrochemical cells
CN101834298A (en) The connector that is used for high-temperature solid electrolyte fuel cell
EP1680828B1 (en) Electrolyte-electrode joined assembly and method for producing the same
JP2004319491A (en) Fuel cell or electrode having passive support
EP1467421B1 (en) Fuel cell and passive support
US20080070084A1 (en) Fuel electrode precursor of low shrinkage rate in an electric power generation cell for a solid oxide fuel cell
KR20140043039A (en) Method for producing solid oxide fuel cells having a cathode-electrolyte-anode unit borne by a metal substrate, and use of said solid oxide fuel cells
JPH0785876A (en) Manufacture of positive electrode for fused carbonate fuel cell
JP4508592B2 (en) Fuel cell manufacturing method
JPH09283160A (en) Manufacture of solid electrolyte for solid electrolyte type fuel cell
KR102109730B1 (en) Method for fabricating solid oxide fuel cell
US20050069756A1 (en) High temperature fuel cell
US20040038118A1 (en) Fuel cell assembly
US6218037B1 (en) Process for the production of an insulating component for a high temperature fuel cell, and high temperature fuel cell
US20100297527A1 (en) Fast Ion Conducting Composite Electrolyte for Solid State Electrochemical Devices
KR20000012974A (en) Metal connection member for solid oxide fuel cell and method thereof
KR101210816B1 (en) Method for Preparing anode support for solid oxide fuel cells by high-frequency induction-heated sintering
JPH04238859A (en) Sintered material of lanthanum calcium chromite and flat plate type solid electrolytic fuel cell using the same sintered material
JPH09115542A (en) Manufacture of solid oxide fuel cell
JPS63184265A (en) Manufacture of bubble pressure resistant layer for fuel cell
RU2522188C1 (en) Double-layer supporting cathode manufacturing method for solid oxide fuel cells
JP2001068130A (en) Solid electrolyte fuel cell