JPH02186285A - Magnetic bearing detector - Google Patents

Magnetic bearing detector

Info

Publication number
JPH02186285A
JPH02186285A JP1005795A JP579589A JPH02186285A JP H02186285 A JPH02186285 A JP H02186285A JP 1005795 A JP1005795 A JP 1005795A JP 579589 A JP579589 A JP 579589A JP H02186285 A JPH02186285 A JP H02186285A
Authority
JP
Japan
Prior art keywords
magnetic field
bridge circuit
thin film
magnetoresistive element
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1005795A
Other languages
Japanese (ja)
Other versions
JP2923959B2 (en
Inventor
Yoshi Yoshino
吉野 好
Kenichi Ao
青 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP1005795A priority Critical patent/JP2923959B2/en
Publication of JPH02186285A publication Critical patent/JPH02186285A/en
Application granted granted Critical
Publication of JP2923959B2 publication Critical patent/JP2923959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a smaller size eliminating assembling at a sensor section by providing a permanent magnet which is so arranged that a specified biased magnetic field is applied roughly at 45 deg. to the length of respective magnetoresistance elements of first and second half bridge circuits. CONSTITUTION:First and second half bridge circuits 21 and 31 made up of fixed resistance elements 3 and 8 comprising a resistor thin film and magnetoresistance elements 2 and 7 comprising a fine line-shaped ferromagnetic thin film connected in series on an insulation substrate 1 are formed so as to be at the right angle between lengths of the magnetoresistance elements 2 and 7 thereof. A permanent magnet 12 is fixed on the underside of the insulation substrate 1 so that a specified biased magnetic field 22 is applied roughly at 45 deg. to the length of the first magnetoresistance element 2 and roughly at 45 deg. to the length of the second magnetoresistance element 7.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、地磁気を検知し、方位の測定等を行うために
使用される磁気方位検出装置に関する。
The present invention relates to a magnetic orientation detection device used to detect earth's magnetism and measure orientation.

【従来技術】[Prior art]

従来、地磁気を検知し、磁気方位を測定するものとして
、フラックスゲートと言われる磁気変調形センサが知ら
れている。このフラックスゲートは、リング状の鉄心に
一次コイルを焉状に巻き、更に、上記鉄心の直径線上に
互いに直角に十文字状に交差するように二次コイルを巻
いて構成される。
2. Description of the Related Art A magnetic modulation type sensor called a fluxgate is conventionally known as a device that detects earth's magnetism and measures magnetic direction. This flux gate is constructed by winding a primary coil around a ring-shaped core, and further winding a secondary coil so as to intersect with each other at right angles to each other on the diameter line of the core.

【発明が解決しようとする課題】[Problem to be solved by the invention]

上記フラックスゲートを利用した磁気方位検出装置は、
そのフラックスゲートの二次コイルを正確に直交するよ
うに配置する必要があり、その組立構成は複雑であり比
較的大型のものとなる。更に、この磁気方位検出装置を
駆動制御する回路部には、高精度の発振回路が要求され
るため大型化すると共に複雑高価なものとなる。 本発明は、上記の課題を解決するために成されたもので
あり、その目的とするところは、センサ部においては、
ICの製造工程と同様に形成し、従来の組立を無くすと
共に小型化し、更に回路部においては、発振回路を除い
て安価で高精度な磁気方位検出装置を提供することであ
る。
The magnetic direction detection device using the above flux gate is
It is necessary to arrange the secondary coils of the flux gate so that they are exactly perpendicular to each other, and the assembly structure thereof is complicated and relatively large. Furthermore, the circuit section for driving and controlling this magnetic orientation detecting device requires a highly accurate oscillation circuit, which makes it large, complex, and expensive. The present invention has been made to solve the above problems, and its purpose is to:
The object of the present invention is to provide an inexpensive and highly accurate magnetic orientation detecting device that is formed in the same manner as the manufacturing process of an IC, eliminates the conventional assembly, is miniaturized, and has a circuit section excluding an oscillation circuit.

【課題を解決するための手段】[Means to solve the problem]

上記課題を解決するための発明の構成は、絶縁基板上に
抵抗体薄膜から成る固定抵抗素子と細線状の強磁性体薄
膜から成る磁気抵抗素子とを直列に接続して形成された
第1のハーフブリッジ回路と、前記絶縁基板上で抵抗体
薄膜から成る固定抵抗素子と前記第1のハーフブリッジ
回路の磁気抵抗素子の長手方向と直角方向を長手方向と
した細線状の強磁性体薄膜から成る磁気抵抗素子とを直
列に接続して形成された第2のハーフブリッジ回路と、
前記第1のハーフブリッジ回路の磁気抵抗素子の長手方
向及び前記第2のハーフブリッジ回路の磁気抵抗素子の
長手方向に対して各々略45度方向に所定のバイアス磁
界が印加されるように配設された永久磁石とを備えたこ
とを特徴とする。
The structure of the invention for solving the above problems is such that a fixed resistance element made of a resistive thin film and a magnetoresistive element made of a thin wire-shaped ferromagnetic thin film are connected in series on an insulating substrate. a half-bridge circuit, a fixed resistance element made of a resistor thin film on the insulating substrate, and a thin wire-shaped ferromagnetic thin film whose longitudinal direction is perpendicular to the longitudinal direction of the magnetoresistive element of the first half-bridge circuit. a second half-bridge circuit formed by connecting a magnetoresistive element in series;
Arranged so that a predetermined bias magnetic field is applied in a direction of approximately 45 degrees with respect to the longitudinal direction of the magnetoresistive element of the first half-bridge circuit and the longitudinal direction of the magnetoresistive element of the second half-bridge circuit. It is characterized by being equipped with a permanent magnet.

【作用】[Effect]

絶縁基板上に抵抗体薄膜から成る固定抵抗素子と細線状
の強磁性体薄膜から成る磁気抵抗素子とを直列に接続し
て形成された第1のハーフブリッジ回路及び第2のハー
フブリッジ回路は、それら磁気抵抗素子の長手方向が直
角に形成されている。 そして、永久磁石はそれら磁気抵抗素子の長手方向に対
して各々略45度方向に所定のバイアス磁界が印加され
るように配設されている。従って、上記構成を有する磁
気方位検出装置に外部磁界が作用すると、第1のハーフ
ブリッジ回路及び第2のハーフブリッジ回路の出力端子
から外部磁界方向に対して90度の位相差を有した信号
が得られることにより、外部磁界方向が計測される。
A first half-bridge circuit and a second half-bridge circuit are formed by connecting in series a fixed resistance element made of a resistive thin film and a magnetoresistive element made of a thin wire-shaped ferromagnetic thin film on an insulating substrate. The longitudinal directions of these magnetoresistive elements are formed at right angles. The permanent magnets are arranged so that a predetermined bias magnetic field is applied to each of the permanent magnets in a direction of about 45 degrees with respect to the longitudinal direction of the magnetoresistive elements. Therefore, when an external magnetic field acts on the magnetic orientation detection device having the above configuration, a signal having a phase difference of 90 degrees with respect to the direction of the external magnetic field is generated from the output terminals of the first half-bridge circuit and the second half-bridge circuit. By obtaining this, the direction of the external magnetic field is measured.

【実施例】【Example】

以下、本発明を具体的な実施例に基づいて説明する。 第1図は本実施例装置の構成を示している。 先ず、絶縁基板1下に強磁性体薄膜及び抵抗体薄膜を蒸
着し、これらの強磁性体薄膜及び抵抗体薄膜をエツチン
グして、細線状の第1の磁気抵抗素子2及び第1の固定
抵抗素子3を形成する。そして、上記第1の磁気抵抗素
子2と第1の固定抵抗素子3とが直列に電気的接続され
るようにAI等の導体金属を第1の磁気抵抗素子2及び
第1の固定抵抗素子3上に蒸着しエツチングして電極4
゜5.6を形成する。これらの電極4,5.6をそれぞ
れ電源、グランド、第1の出力端子として、第1の磁気
抵抗素子2と第1の固定抵抗素子3とにより第1のハー
フブリッジ回路21を形成する。 次に、上記絶縁基板1上に、上述と同様の製造方法にて
、第1の磁気抵抗素子2の長手方向と直角方向を長手方
向とした細線状の第2の磁気抵抗素子7及び第2の固定
抵抗素子8を形成する。次に、上述と同様に形成された
電極9.10.11をそれぞれ電源、グランド、第2の
出力端子として、第2の磁気抵抗素子7と第2の固定抵
抗素子8とにより第2のハーフブリッジ回路31を形成
する。 そして、第1の磁気抵抗素子2の長手方向に対して略−
45度、第2の磁気抵抗素子7の長手方向に対して略4
5度の方向に所定のバイアス磁界22が印加されるよう
に絶縁基板1下に永久磁石12を固設する。 一般に、強磁性体Ps膜から成る磁気抵抗素子の面に平
行な磁界を加えると、その内部抵抗は電流と磁界方向が
平行になったとき最大、電流と磁界方向が直交したとき
最小となる第4図に示したような非線形特性となる。 上記構成から成る磁気方位検出装置は、永久磁石12の
所定のバイアス磁界22により、第1のハーフブリッジ
回路21の第1の磁気抵抗素子2の短手方向には負方向
のバイアス磁界(−Horr)が印加され、第2のハー
フブリッジ回路31の第2の磁気抵抗素子7の短手方向
には正方向のバイアス磁界(H,、、)が印加される。 そして、第4図に示したように、上述のバイアス磁界(
H6,、或いは−H,、、)の強さは、磁界の変動にお
ける抵抗値が略直線的に変化する範“囲の略中心値、つ
まり、磁界の強さと抵抗値とが比例関係にあるとみなす
ことができる範囲の略中心値であるRoの値を採るよう
に設定される。従って、このバイアス磁界により、第1
のハーフブリッジ回路21の第1の磁気抵抗素子2及び
第2のハーフブリッジ回路31の第2の磁気抵抗素子7
の内部抵抗は、外部磁界が存在しないならばRoであり
、固定抵抗素子3.8の抵抗値も便宜上、R。 と同じ値とする。 次に、その作用について説明する。 第2図は、第1のハーフブリッジ回路21を示した回路
図であり、第1の磁気抵抗素子2の抵抗値をRI、第1
の固定抵抗素子3の抵抗値をR7とする。 そして、第1図に示したように、+X方向を紙面の右方
向、+yX方向紙面の上方向、又、第1のハーフブリッ
ジ回路2工の第1の磁気抵抗素子2の長手方向で+yX
方向外部磁界Hが作用した時の角度を0度として、この
外部磁界■(が時計方向に回転した時の回転角をθとす
る。その回転角θに対応した第1のハーフブリッジ回路
21の第1の出力端子6の出力電圧をVlを求める。 先ず、R8は外部磁界HのX方向の成分H,により抵抗
値が変化する関数であるので、R,=g(H)とし、比
例係数をkとすると、g(H)= g(−H、rr−H
、) =g(−H,rr)−k −Hイ 但し、H、< l −H0re 1 ここで、上述のように、g(−Horr)= Raと設
定されているので1 、’、R,=Ra−に−H,・−・・−−一・    
(1)又、R2は、上述のように、 R、= R、−−−−−・  ・−(2)である。 次に、電源電極4とグランド電極5との間の電源電圧を
Eとすると、第1の出力端子6の出力電圧Vlは、 v、= (Ri/(R,+R2)l E   ・−・°
・・ °・(3)で表される。従って、(3)式に(1
)弐及びC)式のRR;を代入すると、 V +=  (Ro/(R6−k  −H、+Ro))
  E=  (R,/(2Ro−k  −H,))  
E=  (1/ (2−(k/R,)H,))  Eこ
こで、 t=(k/Ro)H。 とすると、(4)式は、 V、= (1/(2−t))E ここで、 f(t)= 1 /(2−t ) として、(6)式に(7)式を代入すると、V、=f(
t)・ E ここで、t<1であると、(8)式は、V 、= (f
(0)+(1/2 + )f’ (0)・t+(1,/
3 ! )f’ (0)・t2+・・・・・・) E 
 (9)と表すことができ、(7)式を微分すると、f
’ (t)= 1 /(2−t )”、’、 f’ (
()) = 1 /4 −・・  ・−・−・  00
となり、(9)式の右辺の第3項以下は十分小さいので
、無視でき、(9)式に(7)式で
The present invention will be described below based on specific examples. FIG. 1 shows the configuration of the apparatus of this embodiment. First, a ferromagnetic thin film and a resistive thin film are deposited under an insulating substrate 1, and these ferromagnetic thin films and resistive thin films are etched to form a thin wire-shaped first magnetoresistive element 2 and a first fixed resistor. Element 3 is formed. Then, a conductive metal such as AI is connected to the first magnetoresistive element 2 and the first fixed resistance element 3 so that the first magnetoresistive element 2 and the first fixed resistance element 3 are electrically connected in series. Electrode 4 is deposited on top and etched.
゜5.6 is formed. A first half-bridge circuit 21 is formed by the first magnetoresistive element 2 and the first fixed resistance element 3, using these electrodes 4, 5.6 as a power supply, a ground, and a first output terminal, respectively. Next, on the insulating substrate 1, by the same manufacturing method as described above, a thin wire-shaped second magnetoresistive element 7 and a second A fixed resistance element 8 is formed. Next, using the electrodes 9, 10, and 11 formed in the same manner as described above as power supply, ground, and second output terminals, a second half is formed by a second magnetoresistive element 7 and a second fixed resistance element 8. A bridge circuit 31 is formed. And approximately - with respect to the longitudinal direction of the first magnetoresistive element 2
45 degrees, approximately 4 degrees with respect to the longitudinal direction of the second magnetoresistive element 7
A permanent magnet 12 is fixed under the insulating substrate 1 so that a predetermined bias magnetic field 22 is applied in a direction of 5 degrees. Generally, when a parallel magnetic field is applied to the surface of a magnetoresistive element made of a ferromagnetic Ps film, its internal resistance is maximum when the current and magnetic field directions are parallel, and minimum when the current and magnetic field directions are orthogonal. This results in nonlinear characteristics as shown in Figure 4. In the magnetic orientation detection device having the above configuration, a predetermined bias magnetic field 22 of the permanent magnet 12 causes a negative bias magnetic field (-Horr ) is applied, and a positive bias magnetic field (H, , , ) is applied to the second magnetoresistive element 7 of the second half-bridge circuit 31 in the lateral direction. Then, as shown in FIG. 4, the bias magnetic field (
The strength of H6, , or -H, , ) is approximately the center value of the range in which the resistance value changes approximately linearly due to fluctuations in the magnetic field, that is, the strength of the magnetic field and the resistance value are in a proportional relationship. It is set to take the value of Ro, which is approximately the center value of the range that can be considered as.Therefore, by this bias magnetic field, the first
The first magnetoresistive element 2 of the half-bridge circuit 21 and the second magnetoresistive element 7 of the second half-bridge circuit 31
The internal resistance of is Ro if no external magnetic field exists, and the resistance value of the fixed resistance element 3.8 is also R for convenience. The same value as . Next, its effect will be explained. FIG. 2 is a circuit diagram showing the first half-bridge circuit 21, in which the resistance value of the first magnetoresistive element 2 is RI, the first
The resistance value of the fixed resistance element 3 is assumed to be R7. Then, as shown in FIG. 1, +
The angle at which the external magnetic field H acts is 0 degrees, and the rotation angle when the external magnetic field H rotates clockwise is θ. Find Vl as the output voltage of the first output terminal 6. First, R8 is a function whose resistance value changes depending on the component H in the X direction of the external magnetic field H, so let R, = g(H), and use the proportional coefficient Let k be g(H) = g(-H, rr-H
, ) = g (-H, rr) - k - H, however, H, < l - H0re 1 Here, as mentioned above, since g (-Horr) = Ra is set, 1, ', R ,=Ra− to −H,・−・・−1・
(1) Also, R2 is R,=R,-----(2) as described above. Next, if the power supply voltage between the power supply electrode 4 and the ground electrode 5 is E, the output voltage Vl of the first output terminal 6 is v, = (Ri/(R, +R2)l E ・−・°
... is expressed as °・(3). Therefore, in equation (3), (1
)2 and C) Formula RR; is substituted, V += (Ro/(R6-k −H, +Ro))
E= (R, /(2Ro-k −H,))
E= (1/ (2-(k/R,)H,)) Ewhere, t=(k/Ro)H. Then, equation (4) is V, = (1/(2-t))E, where f(t)=1/(2-t), and substituting equation (7) into equation (6). Then, V,=f(
t)・E Here, if t<1, equation (8) becomes V,=(f
(0)+(1/2+)f' (0)・t+(1,/
3! )f' (0)・t2+・・・・・・)E
It can be expressed as (9), and by differentiating equation (7), f
'(t)=1/(2-t)'',', f'(
()) = 1/4 −・・ ・−・−・ 00
The third and subsequent terms on the right-hand side of equation (9) are sufficiently small and can be ignored, and equation (9) and equation (7)

【=0とした時の値
及び01式の値を代入して、 V、=  (<1/2)+(1/2H1,/4)t) 
 E=  ((1/2 )+(1/8 ) t )  
E   −−−Q+)上記09式に(5)式を代入する
と、 VI= ((1/2)+(1/8)(k/R,)H,)
 E= f(1/2>+(k/8Ra)H#)E  −
OZ、°、H,=(8R,/k)((V、/E)−(1
/2))  −(131ここで、H,=H−sinθで
あるので、0の式は、V+= ((1/2)+(k/8
Ra)H−sinθ) E−04)となる。 同様に、第2のハーフブリッジ回路31の第2の出力端
子IIの出力電圧V2は、外部磁界HのX方向の成分H
,により抵抗値が変化するので、v、= ((1/2)
+(k/8Ro)H,) E  −−・・−Q9、−、
H,=(8R,/k)((V、/E)−(1/2)3 
 ′・・00ここで、Hy=H−cosθであるので、
09式は、V == ((1/2 >+(k /8 R
0)H−cosθ) E−Q’l)となるので、第1の
ハーフブリッジ回路21の第1の出力端子6の出力電圧
V、及び第2のハーフブリッジ回路31の第2の出力端
子11の出力電圧V、は、第3図に示したような、90
度の位相差を有する信号となる。 従って、回転角θに対応した外部磁界HのX方向の成分
H8を示す出力電圧V1の値及び回転角θに対応した外
部磁界HのX方向の成分Hyを示す出力電圧V、の値と
からその外部磁界Hの方位角θが、次式にO!1式及び
00式を代入して求められる。 jan−’θ= H、/H。 又、その外部磁界Hの大きさは、次式に0式及び00式
を代入して求められる。 I Hl =r(H,’+)(y2) 又、外部磁界HのX方向の成分H8とX方向の成分H7
の検出に、全ブリッジ回路を用いれば出力電圧V、、V
、を(1/2 )E基準からO基準とすることができる
。そして、予め外部磁界Hの大きさが分かっており、そ
の方位のみ検出するのであれば、全ブリッジ回路の出力
電圧Vlの値とその時の出力電圧V2の符号とから外部
磁界Hの方位を求めることができる。 従って、本発明による磁気方位検出装置はICと同様の
製造工程にて、その検出素子部が形成できるので高精度
なものを十分に小型化でき、且つ、駆動制御回路部には
発振回路を必要としないので安価となる。 更に、上述の実施例の構成を示した第1図において、絶
縁基板1下に永久磁石12を貼り付ける代わりに、他の
絶縁基板上にCoPt等をスパッタリングして、被着さ
せ、被膜を形成し、その被膜をエツチング、66flし
てバイアス磁石としての永久磁石を形成する。その永久
磁石上に絶縁被膜を蒸着、エツチングして、絶縁基板1
に代わる絶縁部を形成する。以下、上述と同様にして、
その絶縁部上に磁気方位検出装置のセンサ部が形成でき
る。このような構成による磁気方位検出装置は、上述の
実施例と同様の作用、効果を有すると共に、永久磁石を
貼り付けたりする必要がないので一4層小型で高精度に
できる。又、上記他の絶縁基板として半導体基板を用い
ることにより、信号処理回路を一体IC化して形成する
ことも可能となる。 【発明の効果】 本発明は、絶縁基板上に抵抗体薄膜から成る固定抵抗素
子と細線状の強磁性体薄膜から成る磁気抵抗素子とを直
列に接続して形成され、互いに磁気抵抗素子の長手方向
が直交するように配設された第1のハーフブリッジ回路
及び第2のハーフブリッジ回路と、第1のハーフブリッ
ジ回路の磁気抵抗素子の長手方向及び第2のハーフブリ
ッジ回路の磁気抵抗素子の長手方向に対して各々略45
度方向に所定のバイアス磁界が印加されるように配設さ
れた永久磁石とを備えており、センサ部においては、I
Cの製造工程と同様に形成されるために、組立の必要が
無く高精度に小型化できる。更に、ハーフブリッジ回路
を用いているために、発振回路が必要ないので安価とな
る。
[Substituting the value when = 0 and the value of formula 01, V, = (<1/2) + (1/2H1, /4)t)
E= ((1/2)+(1/8)t)
E ---Q+) Substituting equation (5) into equation 09 above, VI= ((1/2)+(1/8)(k/R,)H,)
E= f(1/2>+(k/8Ra)H#)E −
OZ, °, H, = (8R, /k) ((V, /E) - (1
/2)) -(131Here, since H,=H-sinθ, the equation for 0 is V+= ((1/2)+(k/8
Ra) H-sin θ) E-04). Similarly, the output voltage V2 of the second output terminal II of the second half-bridge circuit 31 is the X-direction component H of the external magnetic field H.
Since the resistance value changes due to , v, = ((1/2)
+(k/8Ro)H,) E ---...-Q9,-,
H, = (8R, /k) ((V, /E) - (1/2)3
'...00 Here, since Hy=H-cosθ,
Equation 09 is V == ((1/2 >+(k /8 R
0)H-cosθ)E-Q'l), so the output voltage V of the first output terminal 6 of the first half-bridge circuit 21 and the second output terminal 11 of the second half-bridge circuit 31 The output voltage V, is 90 as shown in FIG.
The result is a signal with a phase difference of degrees. Therefore, from the value of the output voltage V1 indicating the component H8 in the X direction of the external magnetic field H corresponding to the rotation angle θ, and the value of the output voltage V indicating the component Hy in the X direction of the external magnetic field H corresponding to the rotation angle θ, The azimuth angle θ of the external magnetic field H is expressed as O! It is obtained by substituting formula 1 and formula 00. jan-'θ=H, /H. Further, the magnitude of the external magnetic field H can be obtained by substituting the 0 formula and the 00 formula into the following formula. I Hl =r(H,'+)(y2) Also, the X-direction component H8 and the X-direction component H7 of the external magnetic field H
If a full bridge circuit is used to detect the output voltage V, , V
, can be changed from (1/2) E standard to O standard. If the magnitude of the external magnetic field H is known in advance and only its direction is to be detected, the direction of the external magnetic field H can be found from the value of the output voltage Vl of the full bridge circuit and the sign of the output voltage V2 at that time. Can be done. Therefore, in the magnetic orientation detection device according to the present invention, the detection element portion can be formed in the same manufacturing process as an IC, so a highly accurate device can be sufficiently miniaturized, and an oscillation circuit is not required in the drive control circuit portion. It is inexpensive because it does not require Furthermore, in FIG. 1 showing the configuration of the above-described embodiment, instead of attaching the permanent magnet 12 under the insulating substrate 1, CoPt or the like is sputtered and deposited on another insulating substrate to form a film. Then, the film is etched to form a permanent magnet as a bias magnet. An insulating film is deposited and etched on the permanent magnet, and an insulating substrate 1 is formed.
form an insulating section in place of the Below, in the same way as above,
A sensor section of a magnetic orientation detecting device can be formed on the insulating section. The magnetic orientation detecting device having such a configuration has the same functions and effects as those of the above-described embodiment, and since it is not necessary to attach a permanent magnet, it can be made even more compact and highly accurate. Further, by using a semiconductor substrate as the other insulating substrate, it is also possible to form the signal processing circuit as an integrated IC. Effects of the Invention The present invention is formed by connecting in series a fixed resistance element made of a resistive thin film and a magnetoresistive element made of a thin wire-like ferromagnetic film on an insulating substrate. A first half-bridge circuit and a second half-bridge circuit arranged such that the directions are orthogonal to each other, and the longitudinal direction of the magnetoresistive element of the first half-bridge circuit and the longitudinal direction of the magnetoresistive element of the second half-bridge circuit. Approximately 45 mm each in the longitudinal direction
The sensor section includes a permanent magnet arranged so that a predetermined bias magnetic field is applied in the direction of I.
Since it is formed in the same manner as the manufacturing process of C, there is no need for assembly and it can be miniaturized with high precision. Furthermore, since a half-bridge circuit is used, an oscillation circuit is not required, resulting in low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の具体的な一実施例に係る磁気方位検出
装置のセンサ部の構成と外部磁界の方向を示した説明図
。第2図は第1図における第1のハーフブリッジ回路2
1を示した回路図。第3図は同実施例装置のセンサ部に
おける2つの出力信号を示した説明図。第4図は強磁性
体薄膜から観る磁気抵抗素子に磁界を加えた時の内部抵
抗の変化を表す説明図である。 絶縁基板 2,7 8 固定抵抗素子 第2の出力端子 第1のハーフプリ 第2のハーフブリ 磁気抵抗素子 6 第1の出力端子 12 永久磁石 ッジ回路 ッジ回路
FIG. 1 is an explanatory diagram showing the configuration of a sensor section of a magnetic direction detecting device according to a specific embodiment of the present invention and the direction of an external magnetic field. Figure 2 shows the first half-bridge circuit 2 in Figure 1.
1 is a circuit diagram showing 1. FIG. 3 is an explanatory diagram showing two output signals from the sensor section of the device according to the embodiment. FIG. 4 is an explanatory diagram showing a change in internal resistance when a magnetic field is applied to a magnetoresistive element as viewed from a ferromagnetic thin film. Insulating substrate 2, 7 8 Fixed resistance element Second output terminal First half-pre-second half-preferential magnetic resistance element 6 First output terminal 12 Permanent magnet edge circuit Edge circuit

Claims (1)

【特許請求の範囲】  絶縁基板上に抵抗体薄膜から成る固定抵抗素子と細線
状の強磁性体薄膜から成る磁気抵抗素子とを直列に接続
じて形成された第1のハーフブリッジ回路と、 前記絶縁基板上で抵抗体薄膜から成る固定抵抗素子と前
記第1のハーフブリッジ回路の磁気抵抗素子の長手方向
と直角方向を長手方向とした細線状の強磁性体薄膜から
成る磁気抵抗素子とを直列に接続して形成された第2の
ハーフブリッジ回路と、 前記第1のハーフブリッジ回路の磁気抵抗素子の長手方
向及び前記第2のハーフブリッジ回路の磁気抵抗素子の
長手方向に対して各々略45度方向に所定のバイアス磁
界が印加されるように配設された永久磁石と を備えたことを特徴とする磁気方位検出装置。
[Scope of Claims] A first half-bridge circuit formed by connecting in series a fixed resistance element made of a resistive thin film and a magnetoresistive element made of a thin wire-shaped ferromagnetic thin film on an insulating substrate; A fixed resistance element made of a resistor thin film and a magnetoresistive element made of a fine wire-shaped ferromagnetic thin film whose longitudinal direction is perpendicular to the longitudinal direction of the magnetoresistive element of the first half-bridge circuit are connected in series on an insulating substrate. a second half-bridge circuit formed by being connected to the first half-bridge circuit; 1. A magnetic orientation detection device comprising: a permanent magnet arranged so that a predetermined bias magnetic field is applied in the degree direction.
JP1005795A 1989-01-12 1989-01-12 Magnetic bearing detector Expired - Lifetime JP2923959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1005795A JP2923959B2 (en) 1989-01-12 1989-01-12 Magnetic bearing detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1005795A JP2923959B2 (en) 1989-01-12 1989-01-12 Magnetic bearing detector

Publications (2)

Publication Number Publication Date
JPH02186285A true JPH02186285A (en) 1990-07-20
JP2923959B2 JP2923959B2 (en) 1999-07-26

Family

ID=11621016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1005795A Expired - Lifetime JP2923959B2 (en) 1989-01-12 1989-01-12 Magnetic bearing detector

Country Status (1)

Country Link
JP (1) JP2923959B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003056276A1 (en) * 2001-12-27 2003-07-10 Matsushita Electric Industrial Co., Ltd. Direction sensor and its production method
US7034651B2 (en) 1998-05-27 2006-04-25 Honeywell International Inc. Magnetic field sensing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102414U (en) * 1979-12-31 1981-08-11
JPS58101483A (en) * 1981-12-11 1983-06-16 Nec Home Electronics Ltd Magneto-resistance element
JPS61262613A (en) * 1985-05-16 1986-11-20 Sumitomo Electric Ind Ltd Geomagnetic azimuth sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56102414U (en) * 1979-12-31 1981-08-11
JPS58101483A (en) * 1981-12-11 1983-06-16 Nec Home Electronics Ltd Magneto-resistance element
JPS61262613A (en) * 1985-05-16 1986-11-20 Sumitomo Electric Ind Ltd Geomagnetic azimuth sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034651B2 (en) 1998-05-27 2006-04-25 Honeywell International Inc. Magnetic field sensing device
WO2003056276A1 (en) * 2001-12-27 2003-07-10 Matsushita Electric Industrial Co., Ltd. Direction sensor and its production method
US7187168B2 (en) 2001-12-27 2007-03-06 Matsushita Electric Industrial Co., Ltd. Direction sensor including first and second detecting circuits and first and second magnetic bias application parts

Also Published As

Publication number Publication date
JP2923959B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US6028427A (en) Magnetism sensor using a magnetism detecting device of a magnetic impedance effect type and control apparatus using the same
US6191581B1 (en) Planar thin-film magnetic field sensor for determining directional magnetic fields
EP1329735A1 (en) Thin-film magnetic field sensor
EP0300635A1 (en) Current detecting device using ferromagnetic magnetoresistance element
JP2002318250A (en) Current detector and overload current protective device using the same
JP2005502888A (en) Method and system for improving efficiency of magnetic sensor set and offset strap
JP2003315376A (en) Current sensor
JP2009180608A (en) Ic chip type current sensor
EP0675339B1 (en) Geomagnetic direction sensor
US5751112A (en) CRT magnetic compensating circuit with parallel amorphous wires in the sensor
JP2012063203A (en) Magnetic sensor
US5808273A (en) Process for tuning a magneto-resistive sensor
JP2001116773A (en) Current sensor and current detector
JPH02186285A (en) Magnetic bearing detector
JPH01105178A (en) Current detector
JP2547169Y2 (en) Current detection sensor
JP2002131407A (en) Thin film magnetic field sensor
JP3144051B2 (en) Current detector
JPH04282481A (en) Magnetoelectric converter
JPH069306Y2 (en) Position detector
JP3047567B2 (en) Orientation sensor
JP2576136B2 (en) Magnetic direction measurement device
JP3494947B2 (en) MI element control device
JPH0329875A (en) Magnetoresistance element made of ferromagnetic body
JP2015194389A (en) Magnetic field detection device and multi piece substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080507

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10