JPH0218574B2 - - Google Patents

Info

Publication number
JPH0218574B2
JPH0218574B2 JP58076003A JP7600383A JPH0218574B2 JP H0218574 B2 JPH0218574 B2 JP H0218574B2 JP 58076003 A JP58076003 A JP 58076003A JP 7600383 A JP7600383 A JP 7600383A JP H0218574 B2 JPH0218574 B2 JP H0218574B2
Authority
JP
Japan
Prior art keywords
weight
powder
plating
silver
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58076003A
Other languages
Japanese (ja)
Other versions
JPS59200792A (en
Inventor
Noboru Kunimine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KCK CO Ltd
Original Assignee
KCK CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KCK CO Ltd filed Critical KCK CO Ltd
Priority to JP7600383A priority Critical patent/JPS59200792A/en
Publication of JPS59200792A publication Critical patent/JPS59200792A/en
Publication of JPH0218574B2 publication Critical patent/JPH0218574B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 発明の技術分野 この発明は硫酸銅−硫酸浴を用いる銅メツキ、
アルカノールスルホン酸鉛、アルカノールスルホ
ン酸錫系の半田メツキ液などの強酸性電解メツキ
液に耐え、しかも磁器コンデンサとして良好な電
気的特性、特にtanδ値、Q値およびIR値を満足
できる導電性塗料に関するものである。 (ロ) 従来技術と問題点 従来より一般の円板型、楔型、円筒形などのセ
ラミツクコンデンサの電極には銀を主体とした導
電性塗料が用いられてきた。この導電性塗料を端
子電極用として用いた場合は、第1図の如き焼成
プロフイルが一般的で、普通最高温度750℃にて
焼成が行なわれている。一般市販品銀塗料中には
融点400〜600℃のガラス質が含まれており、これ
を850℃で焼成すると、第2図に示すように内部
電極2の膨張、突上げにより素体1と端子電極3
との間に空隙4が発生し、極端な場合には端子電
極3が突破られてしまうという不具合がある。こ
のためメツキ工程において、電解質が染込み、
tanδ、Q値が著しく劣化し、安定した製品を得る
ことができなかつた。また、最近の傾向として半
田喰われ耐性を高めるため、パラジウム粉末の添
加、ニツケルメツキ、銅メツキ加工などの対策が
試みられている。特に積層チツプコンデンサの端
子電極は、銀−パラジウム比が80〜20乃至63〜35
のものが用いられ、電極の厚みも30〜80μmと厚
い。また、銀、パラジウムは共に高価であり、内
部電極剤を含めて積層チツプコンデンサの価格中
に占める割合は50〜60%に達している。しかも、
パラジウム含有率の高い塗料を用いても半田喰わ
れを防止することは不可能であり、市場の動向も
自動化ラインで直接半田付けが多くなつてきたの
で、半田喰われについて心配のない積層チツプコ
ンデンサへの要望が極めて高くなつている。 (ハ) 発明の目的 この発明はかかる要望に応えるために為された
ものであり、半田乗りが良く、半田喰われがな
く、かつ電気的特性の優れたコンデンサを製造す
るのに好適なメツキ下地用導電性塗料を提供する
ことを目的とするものである。 (ニ) 発明の構成 この発明はかかる目的を達成するために、銀粉
あるいは銀粉に対して1〜10重量%のパラジウム
粉末を含有する貴金属粉体50〜80重量%と、融点
600〜900℃の耐酸性ガラス粉末1〜5重量%と、
有機ビヒクル15〜49重量%とからなる構成とし
た。 (ホ) 発明の実施例 この発明の第1の成分である銀粉あるいは銀粉
に対して1〜10重量%のパラジウム粉末を含有す
る貴金属粉体は、この発明の基材となるものであ
り、この発明の塗料中50〜80重量%の範囲で用い
られる。この第1の成分が50重量%以下ではコン
デンサの端子電極の厚みが薄くなりすぎ、逆に80
重量%を越える領域では実際に良好な塗料物性を
保持することがむづかしい。実験結果によると、
この割合は65〜75重量%が実用的な範囲であるこ
とが判明している。 また、第1の成分としては、原価計算上銀粉末
単独使用が望ましく、塗料コストが最低となるば
かりでなく、この発明のメツキ下地用導電塗料と
しての特性を十分に発揮することができる。 しかし、半田喰われ耐性を高めるためにはパラ
ジウム粉末を添加することが好ましい。そこで、
このパラジウム粉末の添加量について種々実験し
たところ、銀粉に対し1〜10重量%の添加にする
と、コンデンサに適用した場合に、半田付け性が
改善され、内部、外部電極の相互拡散が促進され
ることが判つた。また、従来の銀−パラジウム塗
料の銀に対するパラジウム粉末添加量(25〜45重
量%)に比し、少量ですむので、コスト低減が図
れる。 また、第1の成分である銀粉の粒子は平均粒径
1〜3μmが望ましい。銀粉は粒径が小さいほど
良好な焼結銀面が得られるが、40〜70μmの焼成
厚みでは割れ、脹みなどを起こし易い。したがつ
て、実際には1〜2μm粒径のものが配合される。
また、粒子の形状としては厚みのある盤状結晶が
良い。 一方、パラジウム粉末の粒子は平均粒径で0.1μ
m以下が望ましく、特にパラジウム黒と称する極
微粒子のものが好ましい。 この発明の第2の成分である耐酸性ガラス粉末
は、コンデンサの焼成温度(一般に850℃)で必
ず溶融し、素子と端子電極とを密着結合させるた
めに添加される。 この耐酸性ガラス粉末は、普通、融点700〜800
℃のものが用いられ、融点850℃以上のものを用
いる場合には融点600〜800℃のガラスを任意混合
し、850℃焼成においても必ず溶融し、素体と端
子電極を密着結合させるように組成を定める。 この第2の成分である耐酸性ガラス粉末の配合
割合を1〜5重量%としたのは、この範囲内であ
れば、メツキの析出も良好で剥離が見られず、メ
ツキ物のQ値が十分に保証されるからである。こ
れに反し、この割合が1重量%未満では十分な接
着強度が得られず、またメツキによるQ値劣化を
もたらし、逆に5重量%を越える場合には焼成さ
れた電極表面にガラスの析出が多くなり、メツキ
を阻害するばかりでなく、電極面とメツキ層間の
剥離を起こす原因となる。 この発明における耐酸性ガラス粉末の選別法は
次の如く行なつた。 検体ガラス粉末をチタン酸バリウム円板に薄く
乗せ、加熱溶融しガラス化させた。これを1規定
硫酸(40℃)中に5時間浸漬した後、残つたガラ
スの状態を観察すると共に溶解減量を測定した。
これを第1表に示す。残存ガラス層を超音波洗浄
によりチタン酸バリウム基板から剥離させたとこ
ろ、No.2、No.8のガラス皮膜は高い融点を持つた
にも拘らず剥離したが、この発明に規定されるNo.
5、No.12の各ガラスは全く変化を示さなかつた。
また、No.5、No.12の各ガラスは、強酸性メツキ浴
においても侵されることがなく、極めて有効なも
のであることが判つた。 また、この耐酸性ガラス粉末の粒径は、特にメ
ツキ下地用導電性塗料において重要な意味を持つ
ている。もし第1の成分である銀粉、パラジウム
粉より著しく大きな粒径、たとえば10μmの場
合、端子電極の焼成に際し、ガラス粒子の存在位
置はガラス粒子の溶融と素体方向への流動、染込
みにより10μmそのままの大きな空胴となる(第
3図のB参照)。その後、銀、パラジウム粒子の
焼結によつて空洞が多少埋められるにしても、大
きな穴として残る。したがつて、メツキ液の染込
みを許すことになる。第4図はニツケルメツキに
おけるニツケルNiの染込み析出を示す。しかし、
用いるガラス粒径が微少であれば、メタライジン
グにより穴は埋まり電極は耐酸性ガラスの分布し
た安定なものとなる。 かかる条件からこの発明における耐酸性ガラス
粉末の粒径は、用いる銀粒子より小さい、平均粒
径1μm以下とした。 また、耐酸性ガラスの組成は、TiO210〜30重
量%を基本とし、SiO230〜60重量%と、残余物
質としてAl2O3、B2O3、PbO、Pb3O4、PbF2
CaF2、MgO、CaO、BaO、ZrO2、CdO、Bi2O3
Na2O、K2Oなどが含まれる。この他に融点調整
用としてBORAX、長石粉末などを用いてもよ
い。 この発明の第3の成分である有機ビヒクルは、
塗料としての形態を保持するためのものである。
スクリーン印刷用、デイツプ用としてはブチルカ
ルビトール、カルビトールアセテート、石油ナフ
サ、ターピネオールなどの溶剤にエチルセルロー
ズ、オイルアルキツド樹脂、ロジンエステル樹脂
などを加える。吹付、筆塗り用としてはトルエ
ン、キシレン、セロソルブ系の沸点の低い溶剤群
を用いればよい。
(a) Technical field of the invention This invention relates to copper plating using a copper sulfate-sulfuric acid bath;
Concerning a conductive paint that can withstand strongly acidic electrolytic plating solutions such as lead alkanolsulfonate and tin alkanolsulfonate solder plating solutions and has good electrical properties as a ceramic capacitor, particularly satisfying tanδ value, Q value, and IR value. It is something. (b) Prior Art and Problems Conventionally, conductive paint containing silver as a main component has been used for the electrodes of general disc-shaped, wedge-shaped, cylindrical, etc. ceramic capacitors. When this conductive paint is used for terminal electrodes, the firing profile shown in FIG. 1 is generally used, and firing is usually carried out at a maximum temperature of 750°C. General commercially available silver paint contains glass with a melting point of 400 to 600°C, and when it is fired at 850°C, the internal electrode 2 expands and pushes up, forming the element body 1. Terminal electrode 3
There is a problem that a gap 4 is generated between the terminal electrode 3 and the terminal electrode 3 in an extreme case. For this reason, during the plating process, the electrolyte soaks into the
The tan δ and Q value deteriorated significantly, and a stable product could not be obtained. In addition, as a recent trend, measures such as adding palladium powder, nickel plating, and copper plating are being attempted in order to increase resistance to solder corrosion. In particular, the terminal electrodes of multilayer chip capacitors have a silver-palladium ratio of 80-20 to 63-35.
The electrodes are thick, ranging from 30 to 80 μm. Furthermore, both silver and palladium are expensive, and their proportion, including internal electrode materials, in the price of a multilayer chip capacitor reaches 50 to 60%. Moreover,
Even if paint with a high palladium content is used, it is impossible to prevent solder erosion, and the market trend is toward direct soldering on automated lines, so multilayer chip capacitors that do not have to worry about solder erosion are being developed. The demand for this is becoming extremely high. (c) Purpose of the Invention This invention was made in response to such demands, and provides a plating base suitable for manufacturing capacitors with good solder adhesion, no solder corrosion, and excellent electrical characteristics. The purpose of the present invention is to provide a conductive paint for use in industrial applications. (d) Structure of the Invention In order to achieve the above object, the present invention provides silver powder or 50 to 80% by weight of noble metal powder containing 1 to 10% by weight of palladium powder relative to silver powder, and
1-5% by weight of acid-resistant glass powder at 600-900℃,
The composition consisted of 15-49% by weight of organic vehicle. (E) Examples of the Invention The first component of this invention, the silver powder or the noble metal powder containing 1 to 10% by weight of palladium powder relative to the silver powder, is the base material of this invention, and It is used in the paint of the invention in a range of 50 to 80% by weight. If this first component is less than 50% by weight, the thickness of the terminal electrode of the capacitor becomes too thin;
It is actually difficult to maintain good physical properties of the paint in the range exceeding % by weight. According to the experimental results,
It has been found that this proportion is in a practical range of 65 to 75% by weight. Further, as the first component, it is desirable to use silver powder alone from the viewpoint of cost calculation, which not only minimizes the paint cost but also allows the present invention to fully exhibit the characteristics as a conductive paint for plating base. However, it is preferable to add palladium powder to increase resistance to solder eating. Therefore,
After conducting various experiments on the amount of palladium powder added, we found that adding 1 to 10% by weight of palladium powder to silver powder improves solderability and promotes mutual diffusion between internal and external electrodes when applied to capacitors. It turned out that. Furthermore, compared to the amount of palladium powder added to silver in conventional silver-palladium paints (25 to 45% by weight), a small amount is required, so costs can be reduced. Further, it is desirable that the average particle size of the silver powder particles, which is the first component, is 1 to 3 μm. The smaller the particle size of the silver powder, the better the sintered silver surface can be obtained, but if the firing thickness is 40 to 70 μm, cracking and swelling are likely to occur. Therefore, in reality, particles with a particle size of 1 to 2 μm are blended.
In addition, the shape of the particles is preferably thick disk-like crystals. On the other hand, the average particle size of palladium powder particles is 0.1μ
m or less, and ultrafine particles called palladium black are particularly preferred. The acid-resistant glass powder, which is the second component of this invention, always melts at the firing temperature of the capacitor (generally 850° C.) and is added to tightly bond the element and the terminal electrode. This acid-resistant glass powder usually has a melting point of 700-800
℃ is used, and if a glass with a melting point of 850℃ or higher is used, a glass with a melting point of 600 to 800℃ is optionally mixed to ensure that it melts even when fired at 850℃ and tightly bonds the element body and terminal electrode. Determine the composition. The reason why the blending ratio of the acid-resistant glass powder, which is the second component, is 1 to 5% by weight is that within this range, the plating will be deposited well, no peeling will be observed, and the Q value of the plating will be low. This is because it is fully guaranteed. On the other hand, if this proportion is less than 1% by weight, sufficient adhesive strength will not be obtained and the Q value will deteriorate due to plating, while if it exceeds 5% by weight, glass will precipitate on the surface of the fired electrode. This not only hinders plating but also causes peeling between the electrode surface and the plating layer. The acid-resistant glass powder selection method in this invention was carried out as follows. The sample glass powder was thinly placed on a barium titanate disk and heated and melted to vitrify it. After this was immersed in 1N sulfuric acid (40°C) for 5 hours, the state of the remaining glass was observed and the weight loss by dissolution was measured.
This is shown in Table 1. When the remaining glass layer was peeled off from the barium titanate substrate by ultrasonic cleaning, the glass films of No. 2 and No. 8 peeled off despite having a high melting point, but the glass films of No. 2 and No. 8 peeled off despite having a high melting point.
Glasses No. 5 and No. 12 showed no change at all.
Further, each glass No. 5 and No. 12 was not attacked even in a strongly acidic plating bath, and was found to be extremely effective. Moreover, the particle size of this acid-resistant glass powder has an important meaning, especially in the conductive paint for the plating base. If the particle size is significantly larger than the first component, silver powder or palladium powder, for example, 10 μm, the position of the glass particles will be 10 μm due to melting of the glass particles, flow toward the element body, and penetration during firing of the terminal electrode. It becomes a large cavity as it is (see B in Figure 3). After that, even if the cavity is somewhat filled by sintering the silver and palladium particles, it remains as a large hole. Therefore, the staining solution is allowed to penetrate. Figure 4 shows the penetration and precipitation of nickel nickel in nickel metal. but,
If the glass particle size used is minute, the holes will be filled by metallizing and the electrode will be stable with acid-resistant glass distributed. Under these conditions, the particle size of the acid-resistant glass powder in this invention was set to an average particle size of 1 μm or less, which is smaller than the silver particles used. In addition, the composition of the acid-resistant glass is based on 10 to 30% by weight of TiO2 , 30 to 60% by weight of SiO2 , and the remaining substances include Al2O3 , B2O3 , PbO , Pb3O4 , PbF. 2 ,
CaF2 , MgO, CaO, BaO, ZrO2 , CdO, Bi2O3 ,
Contains Na 2 O, K 2 O, etc. In addition, BORAX, feldspar powder, etc. may be used to adjust the melting point. The third component of this invention, the organic vehicle, is
It is used to maintain the form of paint.
For screen printing and dip printing, ethyl cellulose, oil alkyd resin, rosin ester resin, etc. are added to solvents such as butyl carbitol, carbitol acetate, petroleum naphtha, and terpineol. For spraying and brush painting, toluene, xylene, and cellosolve-based solvents with low boiling points may be used.

【表】 次に、本発明を実施例により具体的に説明す
る。 実施例 1 塗料組成(A): Ag粒子(平均粒径2μm) 40重量% Ag粒子(平均粒径1μm) 30重量% Pd粒子(平均粒径0.1μm以下) 2重量% 耐酸性ガラス粉末(第1表No.5) 2重量% 有機ビヒクル 26重量% (エチルセルローズ 10重量% ターピネオール 40重量% ブチルカルビトール 30重量% ロジンエステル樹脂 20重量%) 塗料組成(B): Ag粒子(平均粒径2μm) 40重量% Ag粒子(平均粒径1μm) 30重量% Pd粒子(平均粒径0.1μm以下) 2重量% 耐酸性ガラス粉末(第1表No.6) 2重量% 有機ビヒクル(塗料(A)と同じ組成) 26重量% 上述の塗料組成(A)、(B)をTC系チツプコンデン
サの端子電極として夫々塗布し、850℃で焼成し
た後、バレルを用いてニツケル、半田の通電メツ
キを行ない第5図の如き3層構造の端子電極を得
た。図中、5は素体、6は内部電極、7は銀電極
層、8はニツケル層、9は半田層である。 得られたチツプコンデンサをHP4275A、1MHz
でQ値を測定した。その結果を第2表に示す。 また、上述の塗料組成(A)、(B)をHiK系チツプ
コンデンサについても同様に3層構造の端子電極
を得た。得られたHi系チツプコンデンサを
HP4275A、10KHzでtanδ値を測定した。その結
果を第3表に示す。
[Table] Next, the present invention will be specifically explained with reference to Examples. Example 1 Paint composition (A): Ag particles (average particle size 2 μm) 40% by weight Ag particles (average particle size 1 μm) 30% by weight Pd particles (average particle size 0.1 μm or less) 2% by weight Acid-resistant glass powder (No. 1 Table No. 5) 2% by weight Organic vehicle 26% by weight (Ethyl cellulose 10% by weight Terpineol 40% by weight Butyl carbitol 30% by weight Rosin ester resin 20% by weight) Paint composition (B): Ag particles (average particle size 2 μm) ) 40% by weight Ag particles (average particle size 1 μm) 30% by weight Pd particles (average particle size 0.1 μm or less) 2% by weight Acid-resistant glass powder (Table 1 No. 6) 2% by weight Organic vehicle (paint (A) (same composition) 26% by weight The above paint compositions (A) and (B) were respectively applied as terminal electrodes of TC chip capacitors, fired at 850℃, and then nickel and solder were electrically plated using a barrel. A terminal electrode having a three-layer structure as shown in FIG. 5 was obtained. In the figure, 5 is an element body, 6 is an internal electrode, 7 is a silver electrode layer, 8 is a nickel layer, and 9 is a solder layer. The obtained chip capacitor is HP4275A, 1MHz
The Q value was measured. The results are shown in Table 2. Furthermore, terminal electrodes having a three-layer structure were similarly obtained for HiK chip capacitors using the above-mentioned paint compositions (A) and (B). The obtained Hi-type chip capacitor
The tanδ value was measured using HP4275A at 10KHz. The results are shown in Table 3.

【表】【table】

【表】 実施例 2 塗料組成(C): Ag粒子(平均粒径3μm) 35重量% Ag粒子(平均粒径1μm) 35重量% 耐酸性ガラス(第1表No.5) 1重量% 耐酸性ガラス(第1表No.12) 1重量% 有機ビヒクル(塗料(A)と同じ組成) 28重量% 上述の塗料組成(C)を積層チツプコンデンサの端
子電極として塗布し、850℃で焼成したところ、
第2図の如き空隙の発生は見られず、良好な接着
状態を示しており、ニツケル−半田メツキを施し
た3層構造においても第4表に示すように良好な
電気的特性を示した。
[Table] Example 2 Paint composition (C): Ag particles (average particle size 3 μm) 35% by weight Ag particles (average particle size 1 μm) 35% by weight Acid-resistant glass (Table 1 No. 5) 1% by weight Acid resistance Glass (Table 1 No. 12) 1% by weight Organic vehicle (same composition as paint (A)) 28% by weight The above paint composition (C) was applied as a terminal electrode of a multilayer chip capacitor and baked at 850℃. ,
The occurrence of voids as shown in FIG. 2 was not observed, indicating a good adhesion state, and the three-layer structure with nickel-solder plating also showed good electrical characteristics as shown in Table 4.

【表】 実施例 3 塗料組成(D): Ag粒子(平均粒径1.0μm) 50重量% 耐酸性ガラス(第1表No.5) 1重量% 有機ビヒクル 49重量% (エチルセルローズ 5重量% ブチルセロソルブ 20重量% キシレン 20重量% トルエン 30重量% オイルアルキツド樹脂 15重量%) 上記塗料組成(D)(吹付け又は筆塗り用、粘度1
〜5POISE)をチタン酸バリウム円板に筆で塗布
し、850℃で焼成して厚み約5μmの電極層を形成
し、この上にニツケルメツキ、半田メツキを施し
た。 本品はCap(PF)、tanδ、IRなどの諸特性は銀
電極による通常品と変わりがなく、270℃、60/
40共晶半田浴においても30秒デイツプによる半田
喰われが見られなかつた。半田付け後の引張強度
もメツキを施さない銀電極の場合と同等で素体の
破断を示し、十分な強度を持つことが証明され
た。 上述の各実施例において、専ら積層チツプコン
デンサの端子電極への適用について詳述したが、
この発明にかかるメツキ下地用導電性塗料はリー
ドレスコンデンサの電極形成用としても有効であ
る。 すなわち、塗料組成(A)、(C)、(D)をスクリーン印
刷、筆塗り、吹付けなどの方法でリードレスコン
デンサに塗布、焼成を行なつた後、得られた電極
上にバレルを用い通電メツキ(ニツケル−銅−半
田メツキ又は錫メツキ、ニツケル−半田メツキ又
は錫メツキ、ニツケル−銅−銀メツキ)を行なつ
た。この結果、半田付け性が良好で半田喰われに
強く、しかも電気的特性に優れたリードレスセラ
ミツクコンデンサを得ることができた。 また、この発明は円筒型セラミツク、IC基板
などに利用することが可能であり、特に半田喰わ
れ防止の点で有効である。 (ヘ) 発明の効果 上述の如くこの発明は、TiO2とSiO2を含有す
る耐酸性高融点ガラス粉末を1μm以下の微粒と
して銀又は銀−パラジウム塗料に添加するもので
あるから、優れたメツキ下地用塗料を製造するこ
とが可能となつた。これによつて、HiK系、TC
系いづれのセラミツクコンデンサについてもニツ
ケル、半田、錫、銅、銀メツキなどが可能とな
り、電気的特性の良好なしかも半田喰われに対し
極めて強いセラミツク電子部品を得ることが可能
となるばかりでなく、特に高価なパラジウムの除
外又は減少が達成され、チツプコンデンサのコス
ト低減に大きく寄与する等の利点を有する。
[Table] Example 3 Paint composition (D): Ag particles (average particle size 1.0 μm) 50% by weight Acid-resistant glass (No. 5 in Table 1) 1% by weight Organic vehicle 49% by weight (Ethyl cellulose 5% by weight Butyl cellosolve 20% by weight xylene 20% by weight toluene 30% by weight oil alkyd resin 15% by weight) Above coating composition (D) (for spraying or brush painting, viscosity 1
~5POISE) was applied with a brush to a barium titanate disk and fired at 850°C to form an electrode layer with a thickness of approximately 5 μm. Nickel plating and solder plating were performed on this. The properties of this product, such as Cap (PF), tanδ, and IR, are the same as regular products using silver electrodes, and the temperature is 270℃, 60/
Even in the 40 eutectic solder bath, no solder was eaten away by the 30 second dip. The tensile strength after soldering was also the same as that of unplated silver electrodes, and the element body did not break, proving that it had sufficient strength. In each of the above embodiments, the application to terminal electrodes of a multilayer chip capacitor was described in detail.
The conductive paint for plating base according to the present invention is also effective for forming electrodes of leadless capacitors. That is, paint compositions (A), (C), and (D) are applied to a leadless capacitor by a method such as screen printing, brush painting, or spraying, and after baking, a barrel is applied to the resulting electrode. Electric plating (nickel-copper-solder plating or tin plating, nickel-solder plating or tin plating, nickel-copper-silver plating) was performed. As a result, it was possible to obtain a leadless ceramic capacitor that has good solderability, is resistant to solder corrosion, and has excellent electrical characteristics. Further, the present invention can be used for cylindrical ceramics, IC boards, etc., and is particularly effective in preventing solder from being eaten away. (f) Effects of the invention As described above, this invention adds acid-resistant high-melting glass powder containing TiO 2 and SiO 2 as fine particles of 1 μm or less to silver or silver-palladium paints, which provides excellent plating. It became possible to produce base paint. As a result, HiK series, TC
Ceramic capacitors of any type can be plated with nickel, solder, tin, copper, silver, etc., which not only makes it possible to obtain ceramic electronic components that have good electrical characteristics and are extremely resistant to solder erosion. In particular, the elimination or reduction of expensive palladium is achieved, which has the advantage of greatly contributing to the cost reduction of chip capacitors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は積層チツプコンデンサの端子電極の焼
成プロフイルを示すグラフ、第2図は積層チツプ
コンデンサの内部電極の突上げと空隙を示す拡大
断面図、第3図は積層チツプコンデンサの端子電
極におけるガラス質の溶出によるボイドの発生を
示す拡大断面図、第4図は積層チツプコンデンサ
の端子電極におけるニツケルメツキによるニツケ
ルの染込み析出を示す拡大断面図、第5図は積層
チツプコンデンサの端子電極に本発明にかかる塗
料(塗料組成(A))を塗布後にニツケル−半田メツ
キを施した試料の拡大断面図である。 1,5……素体、2,6……内部電極、3……
端子電極、4……空隙、7……銀電極層、8……
ニツケル層、9……半田層。
Fig. 1 is a graph showing the firing profile of the terminal electrode of a multilayer chip capacitor, Fig. 2 is an enlarged cross-sectional view showing the protrusion and gap of the internal electrode of the multilayer chip capacitor, and Fig. 3 is a graph showing the firing profile of the terminal electrode of the multilayer chip capacitor. FIG. 4 is an enlarged cross-sectional view showing the occurrence of voids due to the elution of nickel. FIG. 4 is an enlarged cross-sectional view showing the penetration and precipitation of nickel due to nickel plating in the terminal electrode of a multilayer chip capacitor. FIG. FIG. 2 is an enlarged cross-sectional view of a sample that has been coated with a paint (paint composition (A)) and then subjected to nickel-solder plating. 1, 5... element body, 2, 6... internal electrode, 3...
Terminal electrode, 4... air gap, 7... silver electrode layer, 8...
Nickel layer, 9...Solder layer.

Claims (1)

【特許請求の範囲】 1 銀粉あるいは銀粉に対して1〜10重量%のパ
ラジウム粉末を含有する貴金属粉体50〜80重量%
と、融点600〜900℃の耐酸性ガラス粉末1〜5重
量%と、有機質ビヒクル15〜49重量%とからなる
メツキ下地用導電性塗料。 2 耐酸性ガラス粉末の平均粒径が1μm以下で
ある特許請求の範囲第1項記載のメツキ下地用導
電性塗料。 3 耐酸性ガラス粉末が主成分としてTiO210〜
30重量%、SiO230〜50重量%を含有する特許請
求の範囲第1項記載のメツキ下地用導電性塗料。
[Claims] 1. Silver powder or 50 to 80% by weight of noble metal powder containing 1 to 10% by weight of palladium powder based on silver powder
A conductive paint for a plating base comprising: 1 to 5% by weight of acid-resistant glass powder having a melting point of 600 to 900°C, and 15 to 49% by weight of an organic vehicle. 2. The conductive paint for plating base according to claim 1, wherein the acid-resistant glass powder has an average particle size of 1 μm or less. 3 Acid-resistant glass powder is the main component of TiO 2 10~
30% by weight, and 30 to 50% by weight of SiO 2 .
JP7600383A 1983-04-28 1983-04-28 Electrically conductive paint for base for plating Granted JPS59200792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7600383A JPS59200792A (en) 1983-04-28 1983-04-28 Electrically conductive paint for base for plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7600383A JPS59200792A (en) 1983-04-28 1983-04-28 Electrically conductive paint for base for plating

Publications (2)

Publication Number Publication Date
JPS59200792A JPS59200792A (en) 1984-11-14
JPH0218574B2 true JPH0218574B2 (en) 1990-04-26

Family

ID=13592624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7600383A Granted JPS59200792A (en) 1983-04-28 1983-04-28 Electrically conductive paint for base for plating

Country Status (1)

Country Link
JP (1) JPS59200792A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806159A (en) * 1987-07-16 1989-02-21 Sprague Electric Company Electro-nickel plating activator composition, a method for using and a capacitor made therewith
JP2618019B2 (en) * 1988-09-22 1997-06-11 住友金属鉱山株式会社 Conductive paint for plating base and plating method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811565A (en) * 1981-07-14 1983-01-22 Murata Mfg Co Ltd Electrically conductive paint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811565A (en) * 1981-07-14 1983-01-22 Murata Mfg Co Ltd Electrically conductive paint

Also Published As

Publication number Publication date
JPS59200792A (en) 1984-11-14

Similar Documents

Publication Publication Date Title
KR100866220B1 (en) Conductor composition and method for production thereof
US5781402A (en) Conducting thick film composition, thick film electrode, ceramic electronic component and laminated ceramic capacitor
JP5426241B2 (en) Chip resistor front and back electrodes
US6436316B2 (en) Conductive paste and printed wiring board using the same
JPS6115523B2 (en)
KR880001344B1 (en) A method of forming electrodes ceramic bodies to provide electronic compounds
JPH0817671A (en) Conductive paste
JP3548775B2 (en) Conductive paste and ceramic electronic components
JPH0423308A (en) Ceramic capacitor
JP3257036B2 (en) Conductive paste for chip-type electronic components
JP2973558B2 (en) Conductive paste for chip-type electronic components
JPH0218574B2 (en)
JPH097879A (en) Ceramic electronic part and manufacture thereof
JPH0136243B2 (en)
JP2618019B2 (en) Conductive paint for plating base and plating method using the same
JPH0834168B2 (en) Conductive composition for ceramic capacitor terminal electrodes
JPH0817140B2 (en) Conductive composition for ceramic capacitor terminal electrodes
JP3291831B2 (en) Conductive paste for chip-type electronic components
JPS6127003A (en) Conductive paste composition
JP2996016B2 (en) External electrodes for chip-type electronic components
JPS635842B2 (en)
JP2968316B2 (en) Multilayer ceramic capacitors
JPH0440803B2 (en)
JPH0878279A (en) Formation of outer electrode on electronic chip device
JP2996015B2 (en) External electrodes for chip-type electronic components