JPH02183571A - Varactor diode - Google Patents

Varactor diode

Info

Publication number
JPH02183571A
JPH02183571A JP301789A JP301789A JPH02183571A JP H02183571 A JPH02183571 A JP H02183571A JP 301789 A JP301789 A JP 301789A JP 301789 A JP301789 A JP 301789A JP H02183571 A JPH02183571 A JP H02183571A
Authority
JP
Japan
Prior art keywords
region
concentration
layer
type dopant
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP301789A
Other languages
Japanese (ja)
Other versions
JP2639041B2 (en
Inventor
Hisashi Uchida
久 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1003017A priority Critical patent/JP2639041B2/en
Publication of JPH02183571A publication Critical patent/JPH02183571A/en
Application granted granted Critical
Publication of JP2639041B2 publication Critical patent/JP2639041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To prevent the decrease of effective carrier concentration of a p-layer by setting an initial n-type dopant concentration of a p-layer region as a specified concentration profile. CONSTITUTION:A buffer region 2 and an n<-> region 3 on an n-type substrate region 1 are doped with n-type Si in order, which are grown by molecular beam epitaxial method (MBE). After epitaxial growth from a pn junction part J, doping of n-type dopant is stopped, and MBE growth of non-doping is continued up to the thickness of p-region 4. After that, Be as p-type dopant, is ion- implanted to formed a p-layer, and the pn junction part J is formed to a desired depth. Thereby, the decrease of effective carrier concentration of the p-layer can be prevented, which contributes to the ohmic contact formation with an electrode.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバラクタダイオードのエピタキシャルウェハー
のドーパント濃度プロファイルに関し、特にp層のn型
ドーパント濃度プロファイルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a dopant concentration profile of an epitaxial wafer of a varactor diode, and particularly to an n-type dopant concentration profile of a p-layer.

〔従来の技術〕[Conventional technology]

従来、この種のバラクタダイオードのエピタキシャルウ
ェハーの濃度プロファイルとしては、第3図のプロファ
イル図に示す様に、p領域4内のn型ドーパントの濃度
は、n層エビ成長技術上の制約から、P−N接合部Jの
ドーパント濃度と同レベルとなっていた。
Conventionally, the concentration profile of an epitaxial wafer for this type of varactor diode is as shown in the profile diagram of FIG. The dopant concentration was at the same level as the -N junction J.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の濃度プロファイルでは、p領域4のp型
ドーパント濃度がn型ドーパント濃度により相殺される
ため、実効p型キャリア濃度は第4図の点線に示す様に
、p型ドーパント濃度より低くなってしまい、表面電極
とのオーミックコンタクトの点で不利であるという欠点
がある。
In the conventional concentration profile described above, the p-type dopant concentration in p region 4 is offset by the n-type dopant concentration, so the effective p-type carrier concentration becomes lower than the p-type dopant concentration, as shown by the dotted line in FIG. This has the disadvantage that it is disadvantageous in terms of ohmic contact with the surface electrode.

〔課題を解決するための手段〕[Means to solve the problem]

従来のバラクタダイオードのエピタキシャルウェハーに
おいては、n層の形成はイオン注入が主であったため、
p層を形成する領域のn型ドーパントの濃度を極端に下
げることはできなかったので、本発明では、n層エビを
分子線エピタキシャル法(MBE)で成長することによ
り、第1図のプロファイル図の様に、p領域4内でのn
型ドーパントの濃度をできるだけ低くすることができ、
これにより、p領域4内の実効キャリア濃度の減少を防
ぐことができる。
In conventional varactor diode epitaxial wafers, the n-layer was mainly formed by ion implantation.
Since it was not possible to extremely reduce the concentration of n-type dopant in the region forming the p-layer, in the present invention, the profile diagram shown in Fig. 1 was obtained by growing the n-layer shrimp by molecular beam epitaxial method (MBE). As in, n in p region 4
The concentration of type dopant can be made as low as possible,
This can prevent the effective carrier concentration in p region 4 from decreasing.

〔実施例〕〔Example〕

次に本発明について図面を用いて説明する。 Next, the present invention will be explained using the drawings.

第1図は超階段バラクタダイオードのエピタキシャルウ
ェハーの濃度プロファイルを示す図である。濃度的2.
 OX 10 ”atoms/ ccの(Siドープ)
n型基板領域1上に約1. OX 10 ”atoms
/ ccのバッファー領域2を、次いでn−領域(約1
016〜1017atoms/cc) 3をn型Siド
ープMBEにより成長させる。引き続きP−N接合形成
部Jから約0.1〜0,2μm厚さにエビ成長させた後
、n型ドーパントのドーピングを中止し、更にp領域4
の厚さまでノンドープでMBE成長を行う。この後、p
型ドーパントであるBeをイオン注入で打ち込んでp層
を形成し、P−N接合部Jを希望の慄さで形成する。p
層の表面濃度は約5X10”atoms/ccである。
FIG. 1 is a diagram showing the concentration profile of an epitaxial wafer of a hyper-step varactor diode. Concentration 2.
OX 10”atoms/cc (Si-doped)
Approximately 1. OX 10”atoms
/cc of buffer region 2, then n-region (approximately 1
016 to 1017 atoms/cc) 3 is grown by n-type Si-doped MBE. Subsequently, after growing to a thickness of approximately 0.1 to 0.2 μm from the P-N junction forming portion J, doping with the n-type dopant was stopped, and the p-region 4 was further grown.
MBE growth is performed without doping to a thickness of . After this, p
A type dopant, Be, is ion-implanted to form a p-layer, and a PN junction J is formed with the desired degree of precision. p
The surface concentration of the layer is approximately 5×10” atoms/cc.

第2図は本発明の第2実施例についての濃度プロファイ
ルを示す図である。図において、第1図の超階段バラク
タと同様、約2. OX 10 ”atoms/ cc
のSiドープn型基板領域1の上に、約1.OX 10
”a t oms/ccのバッファー領域2を、次いで
約10 ”atoms/ ccのn−領域3をn型Si
ドープMBEにより、P−N接合部Jより0.1〜0.
2μm程成長させた後、ノンドープでp領域4の厚さま
でMBE成長を行う。この後、p型ドーパントであるB
eをイオン注入で打ち込んでp領域4を形成する。この
実施例でも、超階段バラクタと同様、p層の実効キャリ
ア濃度の低下を防ぐことができ、電極とのオーミックコ
ンタクト形成上有利である。
FIG. 2 is a diagram showing a concentration profile for a second embodiment of the present invention. In the figure, similar to the hyperstaircase varactor shown in FIG. OX 10”atoms/cc
On top of the Si-doped n-type substrate region 1 of about 1. OX10
Buffer region 2 of about 10" atoms/cc and then n-region 3 of about 10" atoms/cc of n-type Si.
By doping MBE, 0.1 to 0.
After growing to about 2 μm, MBE growth is performed without doping until the thickness of p region 4 is reached. After this, B, which is a p-type dopant,
A p region 4 is formed by ion implantation. Similarly to the hyperstep varactor, this embodiment also prevents a reduction in the effective carrier concentration of the p layer, which is advantageous in forming ohmic contact with the electrode.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、p層の実効キャリア濃度
の低下を防ぐ効果がある。p領域は表面電極とのオーミ
ックコンタクト形成のために、高濃度であることが要求
され、濃度の低下が抵抗の増加となり、特性に大きな影
響を与える。この意味で、本発明の効果は大きいといえ
る。
As explained above, the present invention has the effect of preventing a decrease in the effective carrier concentration of the p-layer. The p-region is required to have a high concentration in order to form an ohmic contact with the surface electrode, and a decrease in concentration causes an increase in resistance, which greatly affects the characteristics. In this sense, it can be said that the effects of the present invention are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の超階段バラクタダイオー
ドのエピタキシャルウェハーの濃度プロファイルを示す
図、第2図は第2実施例のエピタキシャルウェハーの濃
度プロファイルを示す図、第3図、第4図は従来の超階
段バラクタダイオードのエピタキシャルウェハーの濃度
プロファイルを示す図である。 1・・・・・・n型基板領域、2・・・・・・バッファ
ー領域、3・・・・・・n−領域、4・・・・・・p領
域。 第 2図
FIG. 1 is a diagram showing the concentration profile of an epitaxial wafer of a super-step varactor diode according to the first embodiment of the present invention, FIG. 2 is a diagram showing the concentration profile of an epitaxial wafer of the second embodiment, FIGS. The figure shows the concentration profile of an epitaxial wafer of a conventional hyper-step varactor diode. 1... N-type substrate region, 2... Buffer region, 3... N- region, 4... P region. Figure 2

Claims (1)

【特許請求の範囲】[Claims] エピタキシャルウェハーにおけるP−N接合を形成する
p層領域の初期n型ドーパント濃度が、10^1^5a
toms/cc以下の濃度プロファイルであることを特
徴とするバラクタダイオード。
The initial n-type dopant concentration of the p layer region forming the P-N junction in the epitaxial wafer is 10^1^5a
A varactor diode characterized by having a concentration profile of toms/cc or less.
JP1003017A 1989-01-09 1989-01-09 Varactor diode manufacturing method Expired - Lifetime JP2639041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1003017A JP2639041B2 (en) 1989-01-09 1989-01-09 Varactor diode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1003017A JP2639041B2 (en) 1989-01-09 1989-01-09 Varactor diode manufacturing method

Publications (2)

Publication Number Publication Date
JPH02183571A true JPH02183571A (en) 1990-07-18
JP2639041B2 JP2639041B2 (en) 1997-08-06

Family

ID=11545567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1003017A Expired - Lifetime JP2639041B2 (en) 1989-01-09 1989-01-09 Varactor diode manufacturing method

Country Status (1)

Country Link
JP (1) JP2639041B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518073A (en) * 1978-07-26 1980-02-07 Fujitsu Ltd Manufacture of variable-capacity diode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518073A (en) * 1978-07-26 1980-02-07 Fujitsu Ltd Manufacture of variable-capacity diode

Also Published As

Publication number Publication date
JP2639041B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
US4707216A (en) Semiconductor deposition method and device
US5157473A (en) Avalanche photodiode having guard ring
JP2005508086A (en) SiC bipolar semiconductor device with minimal degradation
CN108110081B (en) Heterojunction avalanche photodiode
JPH05347313A (en) Manufacture of extremely thin active region of high-speed semiconductor device
EP0335445A1 (en) Method of manufacturing a conductivity modulation MOS semiconductor power device (Himos)
EP0011898B1 (en) Method of manufacturing a semiconductor device
JPH02183571A (en) Varactor diode
US7297990B1 (en) Si/SiGe interband tunneling diode structures including SiGe diffusion barriers
US20020110946A1 (en) Metamorphic long wavelength high-speed photodiode
FR3115393A1 (en) Bipolar transistor and method of manufacture
EP0196245A1 (en) Compound semiconductor layer having high carrier concentration and method of forming same
JPS5928392A (en) Method of producing planar photodiode with hetero structure
US11329193B2 (en) Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
US6680497B1 (en) Interstitial diffusion barrier
US3977016A (en) Electroluminescent device and method of manufacturing same
JPS584833B2 (en) Method for manufacturing G↓aA↓s light emitting diode
KR100317606B1 (en) Method for fabricating Schottky barrier diode
KR100305674B1 (en) Variable capacitance diode and method for fabricating the same
JP4691224B2 (en) Method of manufacturing a semiconductor device using an implantation step and device manufactured by this method
KR100278787B1 (en) Silicon Carbide Schotty Barrier Diode Device And Fabrication Methods Thereof
JPH1197717A (en) Manufacture of schottky barrier diode
JPH0320044A (en) Integrated circuti device and manufacture thereof
JPH09331076A (en) Hgcdte semiconductor device
JPH10200133A (en) Manufacture of variable capacitance diode