JPH02183501A - Manufacture of mn-zn soft ferrite - Google Patents

Manufacture of mn-zn soft ferrite

Info

Publication number
JPH02183501A
JPH02183501A JP1001935A JP193589A JPH02183501A JP H02183501 A JPH02183501 A JP H02183501A JP 1001935 A JP1001935 A JP 1001935A JP 193589 A JP193589 A JP 193589A JP H02183501 A JPH02183501 A JP H02183501A
Authority
JP
Japan
Prior art keywords
compound
calcination
aqueous solution
mixing
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1001935A
Other languages
Japanese (ja)
Inventor
Hideaki Inaba
秀明 稲場
Hiroto Nakamura
中村 広登
Hidetada Yoshimatsu
吉松 秀格
Masakatsu Yamazaki
山崎 正勝
Satoru Narutani
成谷 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1001935A priority Critical patent/JPH02183501A/en
Publication of JPH02183501A publication Critical patent/JPH02183501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an Mn-Zn soft ferrite with a uniform crystal organization and a crystal grain boundary as well as an improved magnetic characteristics and a low iron loss value by adding an aqueous solution Ca compound as a Ca source and an aqueous solution Si compound as SiO2 source to a calcination blend material consisting of Fe2O3, Mno and Zno obtained at the calcination process and then grinding-mixing it in water slurry shape. CONSTITUTION:Fe2O3 is used as a main material and the one where Mn and Zn oxides (ZnO and Zn3O4) are mixed by a specified amount is ground and mixed by a ball mill or a vibrating mill and then is calcined. Then, with a calcination powder as 50 to 70% concentration water slurry, grinding mixing is made at warm temperature using a device such as the ball mill, attriter, etc. Aqueous solution CaCl2 and Si compound are blended as CaO and SiO2 sources, which are added by a specified amount as an aqueous solution to this grinding mixing process. These additives become CaO and SiO2 due to oxidation on calcination, are deposited in a thin film shape at a grain boundary of a sintered body, and increases grain boundary resistance, thus efficiently operating on reducing iron loss in high-frequency range.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は高磁束密度下における低損失な特性を要求され
る1tia用高周波トランス、フライバックトランス、
平滑チッークなどに用いられるMn−Zn系ソフトフェ
ライトの製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applicable to high frequency transformers for 1 tier, flyback transformers, which require low loss characteristics under high magnetic flux density.
The present invention relates to a method for manufacturing Mn-Zn soft ferrite used in smooth ticks and the like.

〈従来の技術〉 フェライトの一般的な製造方法は、所定組成となるよう
に原料粉を秤量し、混合・仮焼後、粉砕しバインダー等
を加え、プレス成形を経て焼成することからなる。
<Prior Art> A general method for producing ferrite consists of weighing raw material powder to have a predetermined composition, mixing and calcining, pulverizing, adding a binder, etc., press-forming, and sintering.

このようなプロセスで製造されるMn  Zn系フェラ
イトにおいて要求される特性として、高周波域での鉄…
が低いことがあげられる。従来、Mn−Zn系フェライ
トにおいて高周波特性を改善するためにCaOおよび5
rOtを複合添加する方法が広く知られている〔例えば
特公昭36−2283号公報、「粉体及び粉末冶金」誌
第8巻、第3号、第101頁(1961)参照〕。
The characteristics required for Mn Zn-based ferrite manufactured by such a process are iron...
can be cited as low. Conventionally, CaO and 5
A method of adding rOt in combination is widely known [see, for example, Japanese Patent Publication No. 36-2283, "Powder and Powder Metallurgy", Vol. 8, No. 3, p. 101 (1961)].

CaOと5iO1の複合添加により、これらが結晶粒界
に偏析して電気抵抗を増加させることにより高周波領域
における磁気特性を改善するものである。
The combined addition of CaO and 5iO1 segregates at grain boundaries and increases electrical resistance, thereby improving magnetic properties in the high frequency range.

CaO% Stagの添加方法は、通常、ソフトフェラ
イト原料粉に微量のCaCO5,5lot等を粉末の形
でボールミル、アトライター等の混合装置を用いて添加
していた。
The method of adding CaO% Stag is usually to add a small amount of CaCO5,5 lots, etc. in powder form to soft ferrite raw material powder using a mixing device such as a ball mill or attritor.

しかし、CaCO2、SiO□等の粉末添加量が微■(
たとえば0.2%以下〕であるためボールミル、アトラ
イター等を用いても原料粉中に均一に分散せず均一に混
合することが困難であった。このように添加物の混合が
不均一であるとCaO、SiO□の粒界析出が不均一と
なり、Mn−Znフェライト焼結体の結晶粒が不均一に
なったり粒界相の厚みにむらが生じたりして磁気特性の
劣化をもたらしていた。
However, the amount of powders added such as CaCO2 and SiO□ is small (
For example, 0.2% or less], even if a ball mill, an attritor, etc. are used, it is not uniformly dispersed in the raw material powder and it is difficult to mix uniformly. If the additives are mixed unevenly in this way, the grain boundary precipitation of CaO and SiO□ will become uneven, and the crystal grains of the Mn-Zn ferrite sintered body will become uneven, and the thickness of the grain boundary phase will become uneven. This caused deterioration of magnetic properties.

〈発明が解決しようとする課題〉 本発明では以上のような実情に鑑み、Mn−Znソフト
原料む)に微量添加物を均一に分散させ、均一な結晶組
織と結晶粒界を持つ高周波域における磁気特性のすぐれ
た特に鉄…値の低いMn−Zn系ソフトフェライトの製
造方法を提供することを目的とするものである。
<Problems to be Solved by the Invention> In view of the above-mentioned circumstances, the present invention uniformly disperses trace amounts of additives in the Mn-Zn soft raw material (Mn-Zn soft raw material) to provide a solution in the high frequency range that has a uniform crystal structure and grain boundaries. The object of the present invention is to provide a method for manufacturing Mn-Zn soft ferrite with excellent magnetic properties and particularly low iron value.

〈課題を解決するための手段〉 本発明者らは、Mn −Zn系フェライトの高周波域に
おける磁気特性、特に鉄損値を低くするため添加物を均
一に分散させる方法につき鋭意検討を重ねた。その結果
、Mn−Zn系フェライト仮仮焼への添加物の混合解砕
がボールミル、アトライター等で仮焼粉の50〜70%
濃度の水スラリー状態で行われている。このことから添
加物としてシラン化合物、CaC1z等の水溶性添加物
を用いることにより、添加物のフェライト粉への分散が
均一に行われることを思いつき種々実験を行った。
<Means for Solving the Problems> The present inventors have conducted extensive studies on a method for uniformly dispersing additives in order to lower the magnetic properties of Mn-Zn ferrite in the high frequency range, particularly the iron loss value. As a result, the mixing and crushing of additives to the Mn-Zn ferrite calcined powder can be reduced to 50-70% of the calcined powder using a ball mill, attritor, etc.
It is done in a concentrated water slurry state. From this, we came up with the idea that by using water-soluble additives such as silane compounds and CaC1z as additives, the additives could be uniformly dispersed in the ferrite powder, and we conducted various experiments.

その結果均一な水溶性添加物の分散により、その後の造
粒、成形、焼結工程においても微量添加物の微細な分散
性が維持され、焼結体の結晶粒の均一性、粒界相の厚み
の均一性を保持できることを知見し、本発明を開発する
に至った。
As a result, the uniform dispersion of water-soluble additives maintains the fine dispersion of trace additives during the subsequent granulation, molding, and sintering processes, resulting in uniformity of crystal grains in the sintered body and the formation of grain boundary phases. It was discovered that the uniformity of the thickness can be maintained, and the present invention was developed.

すなわち本発明は、主原料のFezOzに所定量のMn
OとZnOを配合した配合原料を粉砕混合したのち仮焼
を行い、上記仮焼工程で得られた仮焼配合原料に添加物
としてCaO換算で0.03〜0.13wL%およびS
iO2換算で0.005〜0.025 wt%の5iO
taを粉砕配合したのち造粒及び成形工程を経て焼成す
るMn−Zn系ソフトフェライトの製造方法において、
上記仮焼工程で得られたPa工01、MnOおよびZn
Oからなる仮焼配合原料に上記添加物のCa源として水
溶性Ca化合物を、SiO□源として水溶性Si化合物
を添加し、水スラリー状で粉砕混合する工程を有するこ
とを特徴とするMn−Zn系ソフトフェライトの製造方
法である。
That is, in the present invention, a predetermined amount of Mn is added to the main raw material FezOz.
After pulverizing and mixing the blended raw material containing O and ZnO, calcination is performed, and 0.03 to 0.13 wL% in terms of CaO and S are added to the calcined blended raw material obtained in the above calcination process as additives.
5iO of 0.005 to 0.025 wt% in terms of iO2
In a method for producing Mn-Zn soft ferrite, the process involves pulverizing and blending ta, followed by granulation and molding steps, and then firing.
Pa-01, MnO and Zn obtained in the above calcination step
Mn-, which is characterized by having a step of adding a water-soluble Ca compound as the Ca source and a water-soluble Si compound as the SiO□ source to the calcined compound raw material consisting of O, and pulverizing and mixing them in the form of a water slurry. This is a method for manufacturing Zn-based soft ferrite.

上記水溶性Ca化合物としてはCaC1,tが好適であ
り、また水溶性S+化合物としては水溶性シラン化合物
あるいは11□5iFaが好適である。
The water-soluble Ca compound is preferably CaC1,t, and the water-soluble S+ compound is preferably a water-soluble silane compound or 11□5iFa.

以下本発明についての構成を作用と共に詳しく説明する
The configuration of the present invention will be explained in detail below along with its operation.

まず、原料としてFe2ntを主原料として、Mnおよ
びZnの酸化物(ZnO,Mn、04)を所定量配合し
たものを用いる。必要に応して、例えば粒径が適当でな
い場合等には、各々配合前に粉砕工程を入れてもかまわ
ない、ついで、この原料を、ボールミルや振動ミルによ
って、粉砕混合したのち仮焼する。
First, as a raw material, Fe2nt is used as a main raw material, and a predetermined amount of Mn and Zn oxides (ZnO, Mn, 04) is blended. If necessary, for example, if the particle size is not appropriate, a pulverization step may be added before each compounding. Then, the raw materials are pulverized and mixed using a ball mill or a vibration mill, and then calcined.

ここに、仮焼は、本焼成における均質な反応を助勢し、
かつ反応により過度の収縮を緩和する意味で重要であり
、本焼成よりも100〜300”C低い800〜110
0°C程度の温度が好ましい。
Here, calcination helps homogeneous reaction in main firing,
800-110, which is important in terms of alleviating excessive shrinkage due to reaction, and is 100-300"C lower than the main firing.
A temperature of about 0°C is preferred.

次に、該仮焼粉を50〜70%濃度の水スラリーとし、
ボールミル、アトライター等の装置を用いて湿式で粉砕
混合する。この粉砕混合工程中に本発明の特長であるC
aO,5iOz源として水溶性のCaCl3、およびS
+化合物を複合して、水溶液として所定量添加する。こ
れらの添加物は焼成時酸化によりCaO、SiO□とな
り、焼結体の粒界に薄い膜状に析出し、粒界抵抗を増し
高周波域における鉄損の低減に有効に作用する。
Next, the calcined powder is made into a water slurry with a concentration of 50 to 70%,
Pulverize and mix wet using equipment such as a ball mill or attritor. During this pulverization and mixing process, C
Water-soluble CaCl3 and S as aO,5iOz sources
+Compounds are combined and added in a predetermined amount as an aqueous solution. These additives become CaO and SiO□ by oxidation during firing, and precipitate in the form of a thin film at the grain boundaries of the sintered body, increasing the grain boundary resistance and effectively working to reduce iron loss in the high frequency range.

CaO5としては水溶性のCaC1□を用いる。その添
加量はCaOとして0.03〜0.13wL%の範囲で
鉄順の改良が認められる。上記範囲をはずれると鉄損の
改善は認められない。またSiO□源としては、水溶性
のSi化合物なかてもシラン化合物(例えば少なくとも
1つが0CIh、0Czllsを含むP、・R2・R1
・R4Si )コロイダルシリカあるいは、IIzSi
F6が鉄損改善に効果がある。添加■はS2Og換算で
0.005〜0.025 wt%の範囲で従来値よりも
鉄損の改善が認められた。
Water-soluble CaC1□ is used as CaO5. An improvement in iron order is observed when the amount added is in the range of 0.03 to 0.13 wL% as CaO. If the temperature is outside the above range, no improvement in iron loss will be observed. In addition, as the SiO□ source, water-soluble Si compounds, especially silane compounds (for example, P, .
・R4Si) Colloidal silica or IIzSi
F6 is effective in improving iron loss. Addition (2) was found to improve iron loss over the conventional value in the range of 0.005 to 0.025 wt% in terms of S2Og.

仮焼粉に添加物を混合粉砕したのち、バインダを添加、
スプレードライヤで造粒し、しかるのち、プレス加工等
で所定の形状に成形するわけである。
After mixing and pulverizing the calcined powder with additives, adding a binder,
It is granulated using a spray dryer and then formed into a predetermined shape using press processing or the like.

次いで、この成形体を常法に従い、酸素分圧を調整しな
がら1200〜12O0°C,2〜4時間程度の焼成を
して、完全なフェライト化させた焼結体とする。
Next, this molded body is fired according to a conventional method at 1200 to 1200° C. for about 2 to 4 hours while adjusting the oxygen partial pressure to obtain a sintered body completely converted into ferrite.

CaC0z、SiO□などの微量添加物のむ)未添加は
サブミクロン以下のレベルでの均一な混合は不可能であ
るのに対し、CaO源、 SiO□源として水溶液性の
化合物を用いることによって均一混合を可能にする6粉
末でCaCO3とSiO2の複合添加した場合に比較し
水溶液として(:aCl zとシラン化合物を複合添加
した場合は、EPMA (X線マイクロアナライザ)で
Caの分布状態を調査すると、粉末で添加した試料は1
0〜数10μのオーダーで濃淡の大きな差が見られるの
に対して水溶液で添加した試料は均一な分散が得られる
。これが特性向上の原因と考えられる。
If trace additives such as CaC0z and SiO□ are not added, uniform mixing at a submicron level or less is impossible, but by using aqueous compounds as the CaO source and SiO□ source, uniform mixing is possible. Compared to the case where CaCO3 and SiO2 are added as a composite of 6 powders that enable mixing, when aClz and a silane compound are added as an aqueous solution, when investigating the Ca distribution state with an EPMA (X-ray microanalyzer), , the sample added as powder is 1
A large difference in density is observed on the order of 0 to several tens of microns, whereas a sample added as an aqueous solution shows uniform dispersion. This is considered to be the cause of the improved characteristics.

〈実施例〉 以下本発明の好適な実施例を比較例と共に説明する。<Example> Preferred embodiments of the present invention will be described below along with comparative examples.

実施例l FeO3−53モル%、MnO=35モル%、ZnO=
12モル%からなる基本組成の原料を混合し、温度85
0°Cにおいて空気中で2時間仮焼した。この仮焼粉に
第1表に示す比率で添加物副成分を添加して湿式アトラ
イター(水スラリー濃度55%)にて30分混合・解砕
し、バインダーを添加後、スプレードライヤにて造粒し
た。その後外径36mm、内径24嗣、高さ7膳寸法の
トロイダル状に成形した。この成形体を酸素濃度を制御
した雰囲気中で1350’C53時間の条件で焼成した
Example 1 FeO3-53 mol%, MnO=35 mol%, ZnO=
Raw materials with a basic composition of 12 mol% are mixed and heated to a temperature of 85%.
Calcined in air at 0°C for 2 hours. Additives and subcomponents are added to this calcined powder in the ratio shown in Table 1, mixed and crushed for 30 minutes in a wet attritor (water slurry concentration 55%), and after adding a binder, the powder is manufactured using a spray dryer. It was grainy. Thereafter, it was molded into a toroidal shape with an outer diameter of 36 mm, an inner diameter of 24 mm, and a height of 7 mm. This molded body was fired for 53 hours at 1350'C in an atmosphere with controlled oxygen concentration.

得られた焼成品の磁気特性を測定し、その結果を第1表
に示す。
The magnetic properties of the obtained fired product were measured and the results are shown in Table 1.

実施例2 Fe2O2=53モル%、MnO=35モル%、ZnO
=12モル%からなる基本組成の原料を混合、850°
C空気中で2時間仮焼した。この仮焼粉に第1表に示す
比率で添加物副成分を添加してアトライク−にて湿式混
合および粉砕を30分行い、バインダーを、添加後、ス
プレードライヤーにて造粒した。その後、外径36mm
、内径24閣、高さ7ILII11のトロイダル状に成
形した。この成形体を酸素濃度を制御した雰囲気下で、
1350’C13時間焼成した。得られた焼結体の磁気
特性を測定した結果を第2表に示す。
Example 2 Fe2O2 = 53 mol%, MnO = 35 mol%, ZnO
= Mixing raw materials with a basic composition of 12 mol%, 850°
C Calcined in air for 2 hours. Additive subcomponents were added to this calcined powder in the proportions shown in Table 1, wet mixed and pulverized in an attrike for 30 minutes, and after addition of a binder, the mixture was granulated in a spray dryer. After that, the outer diameter is 36mm
It was molded into a toroidal shape with an inner diameter of 24 mm and a height of 7 IL II 11 mm. This molded body is placed in an atmosphere with controlled oxygen concentration.
It was fired at 1350'C for 13 hours. Table 2 shows the results of measuring the magnetic properties of the obtained sintered body.

これらの結果より明らかなように、CaCf! z と
11□5iFiの水溶液を添加物として使用することで
鉄tnが低下している。
As is clear from these results, CaCf! Iron tn is reduced by using an aqueous solution of z and 11□5iFi as additives.

第1表および第2表から分かるように、CaCj!□と
水溶液有機シラン化合物の複合添加が鉄損の低下に寄与
していることが分かる。第1表においてA添加量がSi
O□換算で0.005〜0.025%の範囲で鉄損が従
来例(No、 15 )のレベルよりも低い、また、第
2表において、CaCIV、、が0.05〜0.25w
t%の領域ずなわちCaO換算で0.03〜0.3 w
L%において、鉄損が従来例よりも低くなっている。こ
れが、CaC1□および水溶性シラン化合物を限定した
理由である。
As can be seen from Tables 1 and 2, CaCj! It can be seen that the combined addition of □ and an aqueous organic silane compound contributes to a reduction in iron loss. In Table 1, the amount of A added is Si
The iron loss is lower than the level of the conventional example (No. 15) in the range of 0.005 to 0.025% in O□ conversion, and in Table 2, CaCIV,, is 0.05 to 0.25w.
t% area, that is, 0.03 to 0.3 w in terms of CaO
At L%, the iron loss is lower than that of the conventional example. This is the reason why CaC1□ and the water-soluble silane compound were limited.

更にMnZnフェライト焼結体において、CaOおよび
SiO□源を水溶液性にして鉄…を低下させた理由は以
下のように説明される。すなわち、CaC0,、SiO
□などの微量添加物の粉末添加は、サブミクロン以下の
レベルでの均一な混合は不可能であるのに対し、CaO
rA、 SiO□源として水溶液性の化合物を用いるこ
とによって均一混合を可能にする。
Furthermore, in the MnZn ferrite sintered body, the reason why the CaO and SiO□ sources are made aqueous to reduce the iron content is explained as follows. That is, CaC0,, SiO
Adding powdered trace additives such as □ makes it impossible to mix uniformly at submicron levels;
Uniform mixing is possible by using an aqueous compound as the rA, SiO□ source.

〈発明の効果〉 以上説明したように本発明によれば、鉄損特性のすぐれ
たMn −Zn系ソフトフェライトを容易に得ることか
でき、 a器の小型化ならびに発熱対策上 に多大の利点が得られる。
<Effects of the Invention> As explained above, according to the present invention, Mn-Zn soft ferrite with excellent iron loss characteristics can be easily obtained, and it has many advantages in terms of miniaturization of A-type devices and measures against heat generation. can get.

Claims (3)

【特許請求の範囲】[Claims] 1.主原料のFe_2O_3に所定量のMnOとZnO
を配合した配合原料を粉砕混合したのち仮焼を行い、上
記仮焼工程で得られた仮焼配合原料に添加物としてCa
O換算で0.03〜0.13wt%およびSiO_2換
算で0.005〜0.025wt%のSiO_2源を粉
砕混合したのち造粒および成形工程を経て焼成するMn
−Zn系ソフトフェライトの製造方法において、上記仮
焼工程で得られたFe_2O_3、MnOおよびZnO
からなる仮焼配合原料に上記添加物のCa源として水溶
性Ca化合物を、SiO_2源として水溶性Si化合物
を添加し、水スラリー状で粉砕混合する工程を有するこ
とを特徴とするMn−Zn系ソフトフェライトの製造方
法。
1. A predetermined amount of MnO and ZnO is added to the main raw material Fe_2O_3.
Calcination is performed after pulverizing and mixing the blended raw materials containing
After pulverizing and mixing a SiO_2 source of 0.03 to 0.13 wt% in terms of O and 0.005 to 0.025 wt% in terms of SiO_2, Mn is fired through a granulation and molding process.
- In the method for manufacturing Zn-based soft ferrite, Fe_2O_3, MnO and ZnO obtained in the above calcination step are
A Mn-Zn system characterized by having a step of adding a water-soluble Ca compound as a Ca source and a water-soluble Si compound as a SiO_2 source to the calcined mixed raw material of the additives, and pulverizing and mixing them in the form of a water slurry. Method for producing soft ferrite.
2.水溶性Ca化合物がCaCl_2である請求項1記
載の製造方法。
2. The manufacturing method according to claim 1, wherein the water-soluble Ca compound is CaCl_2.
3.水溶性Si化合物が水溶性シラン化合物あるいはH
_2SiF_6である請求項1または2記載の製造方法
3. The water-soluble Si compound is a water-soluble silane compound or H
The manufacturing method according to claim 1 or 2, wherein the material is _2SiF_6.
JP1001935A 1989-01-10 1989-01-10 Manufacture of mn-zn soft ferrite Pending JPH02183501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001935A JPH02183501A (en) 1989-01-10 1989-01-10 Manufacture of mn-zn soft ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001935A JPH02183501A (en) 1989-01-10 1989-01-10 Manufacture of mn-zn soft ferrite

Publications (1)

Publication Number Publication Date
JPH02183501A true JPH02183501A (en) 1990-07-18

Family

ID=11515467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001935A Pending JPH02183501A (en) 1989-01-10 1989-01-10 Manufacture of mn-zn soft ferrite

Country Status (1)

Country Link
JP (1) JPH02183501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830910A (en) * 2016-12-21 2017-06-13 马鞍山起劲磁塑科技有限公司 A kind of preparation method of strontium ferrite magnetic powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830910A (en) * 2016-12-21 2017-06-13 马鞍山起劲磁塑科技有限公司 A kind of preparation method of strontium ferrite magnetic powder

Similar Documents

Publication Publication Date Title
JP2922864B2 (en) Ferrite magnet and manufacturing method thereof
JP4877514B2 (en) Manufacturing method of sintered ferrite magnet
JP3506174B2 (en) Method for producing ferrite magnet and powder thereof
JPH02183501A (en) Manufacture of mn-zn soft ferrite
JPH08104563A (en) High magnetic permeability manganese-zinc ferrite and its production
JPH05182820A (en) Manufacture of anisotropic ferrite magnet
CN113436823A (en) Ferrite sintered magnet
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP4461276B2 (en) Method for producing magnetic powder
JP2802839B2 (en) Oxide soft magnetic material
JP2002343616A (en) Method for manufacturing oxide containing rare earth element
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JPH11307331A (en) Ferrite magnet
JP3545438B2 (en) Method for producing Ni-Zn ferrite powder
JP3467838B2 (en) Ferrite resin and method for producing ferrite resin
JPH10265260A (en) Production of calcined ferrite powder and production of ferite magnet using the powder
JP2006001752A (en) Method for production of ferrite magnetic material
JP3406382B2 (en) Method for producing ferrite magnetic powder
JP2000173812A (en) Manufacture of anisotropic ferrite magnet
JPS62219903A (en) Manufacture of low loss oxide magnetic material
JPH03177002A (en) Manufacture of strontium ferrite magnet having high residual flux density and coercive force
JP2005170763A (en) Mn/Zn FERRITE, ITS MANUFACTURING METHOD AND ELECTRONIC PART
JPH0542128B2 (en)
JPH06131915A (en) High-frequency dielectric ceramic and its manufacture
JPS63260883A (en) Mn-zn base ferrite core with good high frequency properties