JPH02183450A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH02183450A
JPH02183450A JP323289A JP323289A JPH02183450A JP H02183450 A JPH02183450 A JP H02183450A JP 323289 A JP323289 A JP 323289A JP 323289 A JP323289 A JP 323289A JP H02183450 A JPH02183450 A JP H02183450A
Authority
JP
Japan
Prior art keywords
recording
magneto
layer
medium
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP323289A
Other languages
Japanese (ja)
Inventor
Satoshi Shimokawato
下川渡 聡
Masaya Ishida
方哉 石田
Mitsuhiro Horikawa
堀川 満広
Hiroshi Ito
浩 伊藤
Tsugio Ide
次男 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP323289A priority Critical patent/JPH02183450A/en
Publication of JPH02183450A publication Critical patent/JPH02183450A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the formation of magnetic domains to a teardrop type even with the short recording domains and to lessen the decrease in C/N to lower the error rate of the medium by forming at least one layer of dielectric layers of a specific metal oxide. CONSTITUTION:The above medium is obtd. by forming the dielectric layers 101, magnetic layers 102 consisting of TbFeCo films, etc., and the dielectric layers 103 respectively by a sputtering method, etc., on two sheets of substrates 104 consisting of polycarbonate, etc., and sticking the layer 103 side thereof by using a thermosetting resin. At least one layer of the layers 101 and the layers 103 are formed of any among BeO, SrO and BaO. the combination of the above-mentioned metal oxides and AlN, Si3N4, etc., as the dielectrics can be used.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野〕[Industrial application field]

本発明はレーザー光等の集束光を利用して記録、消去、
再生を行う光磁気記録に用いられる光磁気記録媒体に関
わるもので、特に媒体の記録・再生特性の向上に関する
ものである。 [従来の技術] 光磁気記録は消去可能な光記録方式として媒体をはじめ
、装置等の研究が盛んに行われている。 媒体としてはガラスやポリカーボネート等の透明な基板
上に、TbFeCoに代表される希土類遷移金属非晶質
合金をスパッタリング法等で成膜したものが用いられ、
このとき磁性層の酸化を防ぐ目的で、アルミニウム、珪
素等の酸化物や窒化物から成る誘電体層を磁性層の上に
積層したり、あるいは磁性層の両側を誘電体層で挟む構
造をとることが一般的である。また場合によってはさら
にアルミニウム等の金属膜を反射層として積層すること
もある。 [発明が解決しようとする課題1 ところで光磁気記録方式における記録ドメインの形成は
、記録ビームにより加熱された磁性層の微小領域の温度
分布に起因する磁気特性の分布を利用して行われる。一
方、再生は記録ドメインと同程度の幅の集束光が用いら
れるので、記録ドメインの幅は一定であることが望まし
い、しかしながら実際の記録においては、短い記録ドメ
インの場合に記録時の磁性層の温度分布がビットの前方
と後方で非対称になり、結果としていわゆる製型の磁区
が形成されてしまうことが知られている。 このような記録ドメインでは、再生信号の変調度が十分
でないため記録周波数が高くなったときに十分な再生特
性が得られない他、再生信号に時間軸に対するずれが生
じてエラーの原因となることが知られている。さらにこ
のようなことは、記録密度の向上を目的に提案されてい
るビットエッヂ記録方式においては致命的な欠点になる
ことが指摘されている。 本発明はこのような問題点を解決するもので、その目的
とするところは、記録ドメインが短いときにも製型でな
く幅の揃った磁区を形成できるとともに、高周波におけ
る搬送波対雑音比(C/N)の低下が小さく低エラーレ
ートで信頼性の高い記録媒体を提供することにある。 【課題を解決するための手Fi1 本発明の光磁気記録媒体は、基体上に磁性層と少なくと
も一層の誘電体層を積層してなる光磁気記録媒体におい
て、該誘電体層の肉受なくとも一層が酸化ベリリウム(
BeO)、酸化ストロンチウム(SrO)、酸化バリウ
ム(BaO)の何れかであることを特徴とする。 【作用】 本願出願人らは光磁気記録媒体における誘電体層の種類
を変えて、記録・再生特性を調べたところ、BaO1l
を用いることにより従来から用いられている窒化珪素膜
や窒化アルミニウム膜を用いた場合に比べ 短い記録ド
メインが製型にならないことかを見いだした。さらに他
の材料についても調べたところ、同様な傾向がBad膜
やSrO膜を用いたときにも確認できた。この原因は明
らかではないが、類推するにビーム照射によって磁性層
の温度がいったんは上昇するものの、これらの酸化物の
熱伝導率は金属なみに大きく且つ磁性層よりも大きいの
で磁性層の熱が誘電体層を通して逃げてしまう、従って
磁性層が速やが元の温度まで冷めるため記録ドメインの
前後の部分での温度分布が対称になるためと考えられる
。また昇温時に記録層に生ずる温度勾配が急峻になるこ
とも影響していると思われる。 [実施例] 以下実施例に暴き具体例を挙げて本発明の詳細な説明す
る。 実施例1: 直径130mmの案内溝付きポリカーボネート(PC)
基板を用いて第1図に示す構成で光磁気記録媒体を作製
した。即ちBaO膜101、TbFeCo膜102、さ
らにBaO膜103をそれぞれ80nm、90nm、8
0nmの膜厚にスパッタ法にてPC基板104に順次成
膜した0次に、これと同じもの2枚をIIII側で熱硬
化性樹脂を用いて貼合わせ、反射型の両面光磁気記録媒
体を作製した。この媒体を用いて波長780nmの半導
体レーザーを用いた測定系で、線速5 m / sのと
きのC/Nの記録周波数依存性を調べた。第2図に結果
を示すがIMH2(ドメイン長2.5μm)のとき57
.0dB、3MHz(ドメイン長0゜8、clm)にお
いては52.5dBとC/Nの低下は4.5dBであっ
た。 比較のために、誘電体層をSi3N4としたほかは上の
例と同じ構成で作製した記録媒体を用意した。第3因に
この記録媒体のC/Nの周波数依存性をしめすが、 I
MHz(ドメイン長2.5μm)のときは57.2dB
と本発明実施例と有意な差は認められなかったが、3M
Hz(ドメイン長0.8μm)においては51.0dB
とC/Nの低下は6.2dBで高密度記録には向いてい
ないことがわかった。また、本発明実施例と比較例の媒
体の記録ドメインを偏光顕微鏡で観察したところ、前者
の記録ドメインはきれいな楕円形であったが、後者は液
形であった。 実施例2: 誘電体膜の材料としてBeOSrOを用いて実施例1と
まったく同様な構成の記録媒体を作製した。即ち誘電体
膜、TbFeCo11、さらに誘電体膜をそれぞれ80
nm、90nm、80nmの膜厚にスパッタ法にてPC
基板に順次成膜した。 次に、これと同じもの2枚を機側で熱硬化性樹脂を用い
て貼合わせ、反射型の両面光磁気記録媒体を作製した。 これらの媒体を用いて実施g41と同じように波長78
0nmの半導体レーザーを用いた測定系で、線速5 m
 / sのときのC/Nの記録周波数依存性を調べた。 その結果、BeOを用いた媒体はIMHz(ドメイン長
2.5μm)のとき56.8dB、3MHz(ドメイン
長0.8μm)においては52.7dBとC/Nの低下
は4゜1dB、SrOを用いた媒体はIMHzのとき5
7.3dB、3MHzにおいては53.0dBとC/N
の低下は4.3dBで、高密度記録に適していることが
わかった。 実施例3: 誘電体膜にBed、SrO,BaOを用いて第1表に示
すような種々の構成の記録媒体を作製した。試料1〜5
は通常の反射型媒体、試料6〜8は反射層を有する反射
型媒体、試料9.10はファラデー効果を再生に利用す
る透過型媒体である。 第1表 これら1〜10の媒体試料に2−7コードのランダムパ
ターンを記録し、再生信号のエラーレートを測定したと
ころ、何れの試料も10−@以下の値を示した0次に、
比較のために第2表に示すような構成の記録媒体を作製
した。ここで試y411.12.13は各々通常の反射
型媒体、反射層を有する反射型媒体、透過型媒体である
。 第2表 同じく11〜13の媒体に2−7コードのランダムパタ
ーンを記録し、再生信号のエラーレートを測定したとこ
ろ、何れの試料も104以上の値であった。
The present invention utilizes focused light such as laser light to record, erase, and
It relates to magneto-optical recording media used in magneto-optical recording for reproduction, and particularly relates to improving the recording and reproduction characteristics of the medium. [Prior Art] Magneto-optical recording is an erasable optical recording system, and research on media, devices, etc. is being actively conducted. The medium used is a film of a rare earth transition metal amorphous alloy represented by TbFeCo formed by a sputtering method on a transparent substrate such as glass or polycarbonate.
At this time, in order to prevent oxidation of the magnetic layer, a dielectric layer made of an oxide or nitride of aluminum or silicon is laminated on top of the magnetic layer, or a structure is adopted in which the magnetic layer is sandwiched between dielectric layers on both sides. This is common. Further, depending on the case, a metal film such as aluminum may be further laminated as a reflective layer. [Problem to be Solved by the Invention 1] By the way, recording domains in the magneto-optical recording method are formed using the distribution of magnetic properties resulting from the temperature distribution of minute regions of the magnetic layer heated by the recording beam. On the other hand, since a focused beam with a width similar to that of the recording domain is used for reproduction, it is desirable that the width of the recording domain is constant.However, in actual recording, when the recording domain is short, the width of the magnetic layer during recording is It is known that the temperature distribution becomes asymmetric between the front and rear of the bit, resulting in the formation of so-called mold-making magnetic domains. In such a recording domain, the degree of modulation of the reproduction signal is not sufficient, so when the recording frequency becomes high, sufficient reproduction characteristics cannot be obtained, and the reproduction signal may be misaligned with respect to the time axis, causing errors. It has been known. Furthermore, it has been pointed out that this is a fatal drawback in the bit edge recording method proposed for the purpose of improving recording density. The present invention is intended to solve these problems, and its purpose is to be able to form magnetic domains of uniform width without molding even when the recording domain is short, and to improve the carrier-to-noise ratio (C) at high frequencies. An object of the present invention is to provide a highly reliable recording medium with a small decrease in /N) and a low error rate. [Measures to Solve the Problems Fi1] The magneto-optical recording medium of the present invention is a magneto-optical recording medium in which a magnetic layer and at least one dielectric layer are laminated on a substrate. One layer is beryllium oxide (
BeO), strontium oxide (SrO), or barium oxide (BaO). [Operation] Applicants investigated the recording and reproducing characteristics by changing the type of dielectric layer in the magneto-optical recording medium, and found that BaO11
We discovered that by using this method, a shorter recording domain can be manufactured into a mold compared to the conventionally used silicon nitride film or aluminum nitride film. Furthermore, when other materials were investigated, a similar tendency was confirmed when using a Bad film or a SrO film. The cause of this is not clear, but by analogy, although the temperature of the magnetic layer increases once due to beam irradiation, the thermal conductivity of these oxides is as high as that of metals and is also higher than that of the magnetic layer, so the heat of the magnetic layer increases. This is thought to be due to the fact that the magnetic layer escapes through the dielectric layer, and as a result, the magnetic layer quickly cools down to its original temperature, resulting in a symmetrical temperature distribution in the front and rear portions of the recording domain. It is also thought that the temperature gradient that occurs in the recording layer when the temperature rises becomes steeper, which also has an effect. [Example] The present invention will be explained in detail below by giving specific examples. Example 1: Polycarbonate (PC) with a guide groove of 130 mm in diameter
A magneto-optical recording medium was fabricated using a substrate with the configuration shown in FIG. That is, the BaO film 101, the TbFeCo film 102, and the BaO film 103 are respectively 80 nm, 90 nm, and 80 nm thick.
A film of 0nm was sequentially formed on the PC board 104 by sputtering, and then two of the same films were bonded together using a thermosetting resin on the III side to form a reflective double-sided magneto-optical recording medium. Created. Using this medium, the dependence of C/N on recording frequency at a linear velocity of 5 m/s was investigated using a measurement system using a semiconductor laser with a wavelength of 780 nm. The results are shown in Figure 2, and when IMH2 (domain length 2.5 μm), 57
.. At 0 dB and 3 MHz (domain length 0°8, clm), the C/N drop was 52.5 dB and 4.5 dB. For comparison, a recording medium manufactured with the same configuration as the above example except that the dielectric layer was made of Si3N4 was prepared. The third factor is the frequency dependence of the C/N of this recording medium.
57.2 dB at MHz (domain length 2.5 μm)
Although no significant difference was observed between the results and the examples of the present invention, 3M
51.0 dB at Hz (domain length 0.8 μm)
The drop in C/N was 6.2 dB, indicating that this was not suitable for high-density recording. Furthermore, when the recording domains of the media of the examples of the present invention and the comparative examples were observed using a polarizing microscope, the recording domains of the former had a neat elliptical shape, but the recording domains of the latter were liquid. Example 2: A recording medium having exactly the same configuration as Example 1 was produced using BeOSrO as the material of the dielectric film. That is, the dielectric film, TbFeCo11, and the dielectric film were each 80%
PC by sputtering method to film thickness of nm, 90nm, 80nm
Films were sequentially formed on the substrate. Next, two sheets of the same material were bonded together using a thermosetting resin on the machine side to produce a reflective double-sided magneto-optical recording medium. Wavelength 78 using these media as in implementation g41
The measurement system uses a 0 nm semiconductor laser, and the linear velocity is 5 m.
The dependence of C/N on the recording frequency was investigated at /s. As a result, the medium using BeO had a C/N drop of 4°1 dB, which was 56.8 dB at IMHz (domain length 2.5 μm) and 52.7 dB at 3 MHz (domain length 0.8 μm). When the medium was IMHz, it was 5
7.3dB, 53.0dB and C/N at 3MHz
The reduction was 4.3 dB, which was found to be suitable for high-density recording. Example 3: Recording media having various configurations as shown in Table 1 were fabricated using Bed, SrO, and BaO as dielectric films. Samples 1-5
Samples 6 to 8 are reflective media having a reflective layer, and Samples 9 and 10 are transmissive media that utilize the Faraday effect for reproduction. Table 1 When a random pattern of 2-7 codes was recorded on these media samples 1 to 10 and the error rate of the reproduced signal was measured, all samples showed a value of 10-@ or less.
For comparison, recording media having the configurations shown in Table 2 were produced. Here, the samples y411.12.13 are a normal reflective medium, a reflective medium having a reflective layer, and a transmissive medium, respectively. Similarly to Table 2, when a random pattern of 2-7 codes was recorded on the media numbered 11-13 and the error rate of the reproduced signal was measured, all samples had a value of 104 or more.

【発明の効果】【Effect of the invention】

以上に述べたように本発明によれば、光磁気記録の熱磁
気書き込みの過程において、記録層の温度分布の対称性
が高くなるので、記録ドメインが短いときにも製形にな
らない、その結果、高周波におけるC/Hの低下を小さ
くできる他、媒体のエラーレートを低減し信頼性の高い
記録媒体を提供できる。なお、これらの効果は実施例に
示した基板、記録材料、誘電体膜の組合せの記録媒体に
のみ現れるものではなく、例えば基板にガラスやアクリ
ル系の樹脂基板を用いた場合や、記録材料にD y F
 e Co、  G d T b F e、  N d
 T b F e CO等の材料を用いても、あるいは
誘電体としてAl5iNや5i02等を組み合わせて用
いた場合にも、同等な効果が得られることは言うまでも
As described above, according to the present invention, the temperature distribution of the recording layer becomes highly symmetrical during the thermomagnetic writing process of magneto-optical recording, so that even when the recording domain is short, it does not become shaped. , it is possible to reduce the drop in C/H at high frequencies, reduce the error rate of the medium, and provide a highly reliable recording medium. Note that these effects do not only appear in recording media with the combination of substrate, recording material, and dielectric film shown in the examples; for example, when a glass or acrylic resin substrate is used as the substrate, or when the recording material is D y F
e Co, G d T b Fe, N d
It goes without saying that the same effect can be obtained even if a material such as T b Fe CO is used, or if a dielectric material such as Al5iN or 5i02 is used in combination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の媒体の構成を表す模式図で
ある。 101・・・Ba0 102・・・TbFeC0 103・・・Ba0 104・・・ポリカーボネート基板 第2因は実施例1における本発明の光磁気記録媒体の再
生C/Nの周波数依存性を示す図である。 第3図は実施例1における従来の光磁気記録媒体の再生
C/Nの周波数依存性を示す図である。 以上 出願人 セイコーエプソン株式会社 代理人弁理士 上櫛 雅誉 他1名 第1図 第2図 3丁目3番5号 セイコーエプソン株式 %式% セイコーエプソン株式
FIG. 1 is a schematic diagram showing the configuration of a medium according to Example 1 of the present invention. 101...Ba0 102...TbFeC0 103...Ba0 104...Polycarbonate substrate The second factor is a diagram showing the frequency dependence of the reproduction C/N of the magneto-optical recording medium of the present invention in Example 1. . FIG. 3 is a diagram showing the frequency dependence of the reproduction C/N of the conventional magneto-optical recording medium in Example 1. Applicant Seiko Epson Co., Ltd. Representative Patent Attorney Masayoshi Kamikushi and 1 other person Figure 1 Figure 2 3-3-5 Seiko Epson stock % formula % Seiko Epson stock

Claims (1)

【特許請求の範囲】[Claims]  基体上に磁性層と少なくとも一層の誘電体層を積層し
てなる光磁気記録媒体において、該誘電体層の内少なく
とも一層が酸化ベリリウム(BeO)、酸化ストロンチ
ウム(SrO)、酸化バリウム(BaO)の何れかであ
ることを特徴とする光磁気記録媒体。
In a magneto-optical recording medium formed by laminating a magnetic layer and at least one dielectric layer on a substrate, at least one of the dielectric layers is made of beryllium oxide (BeO), strontium oxide (SrO), or barium oxide (BaO). A magneto-optical recording medium characterized by being any of the above.
JP323289A 1989-01-10 1989-01-10 Magneto-optical recording medium Pending JPH02183450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP323289A JPH02183450A (en) 1989-01-10 1989-01-10 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP323289A JPH02183450A (en) 1989-01-10 1989-01-10 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH02183450A true JPH02183450A (en) 1990-07-18

Family

ID=11551703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP323289A Pending JPH02183450A (en) 1989-01-10 1989-01-10 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH02183450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497863B1 (en) * 2002-11-07 2005-06-29 노건상 Ventilation apparatus with whirlpool type for a kitchen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497863B1 (en) * 2002-11-07 2005-06-29 노건상 Ventilation apparatus with whirlpool type for a kitchen

Similar Documents

Publication Publication Date Title
JP3781823B2 (en) Magneto-optical recording medium and reproducing method thereof
JP2000306271A (en) Optical recording medium and its production
JPH02183450A (en) Magneto-optical recording medium
US6754140B2 (en) Magneto optical recording medium having multiple magnetic layers
JP3472158B2 (en) Magneto-optical recording medium
JPH02778B2 (en)
JPH08221827A (en) Magneto-optical recording medium
JP3172051B2 (en) Magneto-optical recording medium
JP3109927B2 (en) Magneto-optical recording medium
JP3657667B2 (en) Magneto-optical recording medium
JP3454814B2 (en) Recording method for magneto-optical recording medium
JPS6314343A (en) Information recording medium
JP2861807B2 (en) Method for manufacturing magneto-optical recording medium
JP3454813B2 (en) Recording method for magneto-optical recording medium
JP3396084B2 (en) Recording method for magneto-optical recording medium
JP3655121B2 (en) Magneto-optical information recording / reproducing apparatus, magneto-optical recording medium, and method of manufacturing magneto-optical recording medium
EP0598524A1 (en) Magnetooptical recording medium
JP2008152842A (en) Magnetic recording medium
JPH09312043A (en) Magneto-optical recording medium and is production
JPS6379247A (en) Optical recording medium
JP2006252760A (en) Magnetic recording medium and magnetic recording device using it
JP2000285544A (en) Magnetooptic recording and reproducing device
JPH01107343A (en) Magneto-optical recording medium
JP2001229575A (en) Optical information recording medium
JPH07161091A (en) Reproducing method for magneto-optical recording medium