JPH09312043A - Magneto-optical recording medium and is production - Google Patents

Magneto-optical recording medium and is production

Info

Publication number
JPH09312043A
JPH09312043A JP12695996A JP12695996A JPH09312043A JP H09312043 A JPH09312043 A JP H09312043A JP 12695996 A JP12695996 A JP 12695996A JP 12695996 A JP12695996 A JP 12695996A JP H09312043 A JPH09312043 A JP H09312043A
Authority
JP
Japan
Prior art keywords
layer
reproducing
reproduction
temperature
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12695996A
Other languages
Japanese (ja)
Inventor
Koyata Takahashi
小弥太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP12695996A priority Critical patent/JPH09312043A/en
Publication of JPH09312043A publication Critical patent/JPH09312043A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain high recording density by successively forming at least a reproducing layer, nonmagnetic intermediate layer, auxiliary reproducing layer, cutoff layer and recording layer in this order on a transparent substrate in such a manner that each layer except for the nonmagnetic intermediate layer has a specified Curie temp. SOLUTION: A first dialectic layer 12 of a SiN is formed to 70nm thickness on a polycarbonate substrate 11 having 1.1μm track pitch, and then a reproducing layer 13 of Gd0.26 (Fe0.70 Co0.30 )0.74 having 0eum/cc magnetization at room temp. and >=350 deg.C Curie temp. is formed to 20nm to 26nm thickness thereon. Then a nonmagnetic intermediate layer 14 of 5nm thickness, an auxiliary reproducing layer 15 of 30nm thickness, a cutoff layer 16 of 10nm thickness, a recording layer 17 of 40nm thickness, and a second dielectric layer of 18 to 30nm thickness are formed in this order. A protective coating 19 comprising a UV- curing resin is applied on the second dielectric layer 18. It is especially preferable that the nonmagnetic intermediate layer consists of one or more kinds of nitrides of Si, Al, Ti and Ta considering the stability and tenseness of the thin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光を用いて情報の記
録、再生及び消去を行う光磁気記録媒体に関し、より詳
しくは、再生光の光学的回折限界以下の大きさで記録さ
れた情報を読み取ることができる超解像再生を行う光磁
気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium that records, reproduces, and erases information by using light, and more specifically, it records information recorded in a size not larger than the optical diffraction limit of reproduction light. The present invention relates to a readable magneto-optical recording medium that performs super-resolution reproduction.

【0002】[0002]

【従来の技術】光磁気記録媒体のさらなる高密度化を目
的として、再生用の光の光学的回折限界以下の大きさに
記録された情報を再生することが可能な磁気超解像が提
案されている。この方法は少なくとも再生層と記録層と
を用いており、再生光の照射されているビームスポット
のうちの一定の領域をマスクとして用いることによっ
て、実質的にビームスポットが小さくなったのと同様の
効果を持つようにしたものであり、ビームスポット中で
は光の強度分布があり、またビームの進行方向に対して
後方が温度上昇が大きいことを利用している。
2. Description of the Related Art For the purpose of further increasing the density of a magneto-optical recording medium, a magnetic super-resolution capable of reproducing information recorded at a size smaller than the optical diffraction limit of reproduction light has been proposed. ing. This method uses at least the reproducing layer and the recording layer, and by using a certain area of the beam spot irradiated with the reproducing light as a mask, the beam spot is substantially the same as that in which the beam spot is reduced. It has an effect, and utilizes the fact that there is a light intensity distribution in the beam spot and that the temperature rise is large at the rear in the beam traveling direction.

【0003】この方法には大きく分けて2通りの方法が
ある。一つは温度が一定以上となっている領域で再生層
が特定の状態になるようにしてマスクとする消滅型の方
法(例えば、特開平1−143041号公報、特開平1
−143042号公報など)、他方は再生層が再生前に
は特定の状態であり、温度が一定以上となった領域で記
録層に記録された情報が再生層に転写される浮き出し型
の方法(例えば、特開平3ー93058号公報など)が
ある。後者の方法では隣接トラックにおいても再生層が
特定の状態にあるために、隣接トラックとのクロストー
クは小さい。また、浮きだし型と消滅型をあわせたダブ
ルマスク型の磁気超解像(例えば、特開平 4−271
039号公報など)も提案されている。
This method is roughly classified into two methods. One is an extinction type method in which the reproduction layer is brought into a specific state in a region where the temperature is equal to or higher than a certain level to use as a mask (for example, Japanese Patent Laid-Open Nos. 1-143041 and 1).
No. 143042), the other is an embossing type method in which the reproducing layer is in a specific state before reproducing, and the information recorded in the recording layer is transferred to the reproducing layer in an area where the temperature becomes a certain temperature or more ( For example, there is JP-A-3-93058). In the latter method, the crosstalk with the adjacent track is small because the reproduction layer is in a specific state even in the adjacent track. In addition, a magnetic super-resolution of a double mask type including both an embossed type and an extinct type (for example, Japanese Patent Laid-Open No. 4-271).
No. 039) is also proposed.

【0004】磁気超解像はおもに再生層と記録層の間の
交換結合力を制御することで動作するが、そのほかに磁
性層が再生層、非磁性中間層、記録層の3層構造で、再
生時に再生磁界により室温において再生層の磁化が一様
に再生磁界と反対向きに初期化され、再生ビームにより
ある温度以上に温度が上昇すると記録層から再生層に静
磁結合により磁区が転写することによる磁気超解像も報
告されている(例えば、Japanese Journal of Applied
Physics Vol. 35 (1996) pp.410-414 など)。
The magnetic super-resolution mainly operates by controlling the exchange coupling force between the reproducing layer and the recording layer. In addition, the magnetic layer has a three-layer structure of a reproducing layer, a non-magnetic intermediate layer and a recording layer. At room temperature during reproduction, the reproducing magnetic field uniformly initializes the magnetization of the reproducing layer in the direction opposite to the reproducing magnetic field, and when the reproducing beam raises the temperature above a certain temperature, the magnetic domains are transferred from the recording layer to the reproducing layer by magnetostatic coupling. Magnetic super-resolution has also been reported (for example, Japanese Journal of Applied
Physics Vol. 35 (1996) pp.410-414).

【0005】[0005]

【発明が解決しようとする課題】光磁気記録媒体の記録
密度をあげる手法として4倍密度媒体以降採用された方
法としてマークエッジ記録がある。磁気超解像は磁区の
転写や消滅により生じるが、従来、再生信号の立ち上が
りあるいは立ち下がりのいずれか一方が他方より急峻と
なっていた。磁気超解像とマークエッジ記録を組み合わ
せる場合は緩やかなほうのエッジのジッタ(揺らぎ)が
記録密度の向上を妨げていた。ダブルマスク型の磁気超
解像とすることである程度は立ち上がりと立ち下がりの
バランスは良くなるとされているが、さらなる改良が望
まれている。本発明が解決しようとする課題は従来の磁
気超解像媒体より再生信号の立ち上がりと立ち下がりを
バランスよく急峻とすることでさらに高い記録密度を可
能とするものである。
Mark edge recording has been adopted as a method adopted after the quadruple density medium as a method for increasing the recording density of the magneto-optical recording medium. Although the magnetic super-resolution occurs due to the transfer or disappearance of magnetic domains, conventionally, either the rising edge or the falling edge of the reproduction signal is steeper than the other. When magnetic super resolution and mark edge recording were combined, the jitter (fluctuation) of the slower edge hindered the improvement of recording density. It is said that the double-mask type magnetic super-resolution improves the balance between rising and falling to some extent, but further improvement is desired. The problem to be solved by the present invention is to achieve a higher recording density by making the rising and falling edges of the reproduction signal steep in a well-balanced manner compared to the conventional magnetic super-resolution medium.

【0006】[0006]

【課題を解決するための手段】本発明者は鋭意研究を重
ねた結果、静磁結合による転写と交換結合が切れること
による磁区の消滅を組み合わせることで立ち上がりと立
ち下がりの何れをも限界まで急峻とすることが可能なこ
とを見いだし、本発明を完成した。
As a result of intensive studies, the present inventor has found that both rising and falling are steep to the limit by combining transfer due to magnetostatic coupling and disappearance of magnetic domains due to breakage of exchange coupling. The present invention has been completed by discovering that

【0007】すなわち本発明は透明な基板上に少なくと
も再生層、非磁性中間層、再生補助層、切断層、記録層
がこの順に積層された積層構造を有し、前記再生層、再
生補助層、切断層、記録層のキュリー温度を各々Tc1
c2、Tc3、Tc4としたとき、Tc3<Tc4、Tc2
c4、Tc1>Tc4であることを特徴とする光磁気記録媒
体であり、さらに、切断層のキュリー温度付近の所定の
温度Ts2未満では、記録層に記録された記録磁区が記録
層から再生補助層に転写されており、再生時に再生磁界
を加えることにより、再生補助層においては前記温度T
s2以上の温度の部分で再生補助層の磁区が消滅し、再生
層においては室温で磁化が再生磁界の方向に揃うために
磁区が存在しない状態であり、室温より高く前記温度T
s2未満の温度Ts1で、静磁的な結合により再生補助層か
ら再生層に記録磁区が転写し、前記温度Ts2で再生補助
層の磁区が消滅すると同時に再生層の磁区も消滅するこ
とを特徴とする光磁気記録媒体である。また、本発明の
再生方法は、前記のようにして、記録層に記録された情
報を再生する前記光磁気記録媒体の再生方法である。
That is, the present invention has a laminated structure in which at least a reproducing layer, a non-magnetic intermediate layer, a reproducing auxiliary layer, a cutting layer and a recording layer are laminated in this order on a transparent substrate, and the reproducing layer, the reproducing auxiliary layer, The Curie temperatures of the cutting layer and the recording layer are respectively T c1 ,
If T c2 , T c3 , and T c4 , then T c3 <T c4 , T c2 >
A magneto-optical recording medium, characterized in that T c4 and T c1 > T c4 . Further, at a temperature lower than a predetermined temperature T s2 near the Curie temperature of the cutting layer, the recording magnetic domain recorded in the recording layer is a recording layer. Is transferred to the reproduction assisting layer, and by applying a reproducing magnetic field during reproduction, the temperature T
The magnetic domain of the auxiliary reproduction layer disappears at the temperature of s2 or more, and the magnetic domain does not exist in the reproducing layer at room temperature because the magnetization is aligned in the direction of the reproducing magnetic field.
At a temperature T s1 less than s2 , a recording magnetic domain is transferred from the reproduction auxiliary layer to the reproduction layer by magnetostatic coupling, and at the temperature T s2 , the magnetic domain of the reproduction auxiliary layer disappears and the magnetic domain of the reproduction layer also disappears. It is a characteristic magneto-optical recording medium. The reproducing method of the present invention is the reproducing method of the magneto-optical recording medium for reproducing the information recorded on the recording layer as described above.

【0008】以下に本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0009】本発明の光磁気媒体の構造の基本例を図1
に示す。本例では、透明な基板11上に第1誘電体層1
2、再生層13、非磁性中間層14、再生補助層15、
切断層16、記録層17、第2誘電体層18の順に薄膜
が積層されている。通常、第2誘電体層18の上には紫
外線硬化樹脂などからなる保護コート19が施されてい
る。
A basic example of the structure of the magneto-optical medium of the present invention is shown in FIG.
Shown in In this example, the first dielectric layer 1 is formed on the transparent substrate 11.
2, the reproducing layer 13, the non-magnetic intermediate layer 14, the reproducing auxiliary layer 15,
Thin films are laminated in this order on the cutting layer 16, the recording layer 17, and the second dielectric layer 18. Usually, a protective coat 19 made of an ultraviolet curable resin or the like is applied on the second dielectric layer 18.

【0010】本発明の光磁気記録媒体の記録再生原理に
ついて、図2で説明する。本発明の光磁気記録媒体への
記録は例えば記録方向に記録磁界26をかけながらパル
スレーザービーム27で記録層25をそのキュリー温度
c4以上に昇温させることで行う。記録後、温度が下が
る過程で記録された記録磁区が記録層25から再生補助
層23に転写する。再生時には、再生補助層23に再生
磁界30を加えることにより、切断層24のそのキュリ
ー温度Tc3付近の所定の温度Ts2以上の部分32に接す
る再生補助層23の磁区が消滅する。一方、再生層21
においては室温では磁化が再生磁界30の方向に揃うた
めに磁区が存在しない状態、つまり第1のマスク33と
なり、また、室温より高くTs2以下の温度Ts1で静磁的
な結合により再生補助層23から再生層21に磁区が転
写する。磁区の転写に伴い再生信号では非常に急峻な立
ち上がりが生じる。さらに温度Ts2以上では再生補助層
23の磁区が消滅すると同時に再生層21の磁区も消滅
し第2のマスク35となる。この磁区の消滅に伴い再生
信号では非常に急峻な立ち下がりが生じる。
The principle of recording / reproducing of the magneto-optical recording medium of the present invention will be described with reference to FIG. Recording on the magneto-optical recording medium of the present invention is performed, for example, by applying a recording magnetic field 26 in the recording direction and raising the temperature of the recording layer 25 to a Curie temperature T c4 or higher with a pulse laser beam 27. After the recording, the recording magnetic domain recorded in the process of the temperature decrease is transferred from the recording layer 25 to the reproduction auxiliary layer 23. At the time of reproducing, by applying the reproducing magnetic field 30 to the reproducing auxiliary layer 23, the magnetic domain of the reproducing auxiliary layer 23 which is in contact with the portion 32 having a predetermined temperature T s2 or more near the Curie temperature T c3 of the cutting layer 24 disappears. On the other hand, the reproduction layer 21
At room temperature, the magnetization is aligned in the direction of the reproducing magnetic field 30, so that no magnetic domain exists, that is, the first mask 33 is formed, and at the temperature T s1 higher than room temperature and not higher than T s2, reproduction assist is performed by magnetostatic coupling. Magnetic domains are transferred from the layer 23 to the reproducing layer 21. A very steep rise occurs in the reproduced signal as the magnetic domains are transferred. Further, above the temperature T s2 , the magnetic domain of the reproduction auxiliary layer 23 disappears and at the same time the magnetic domain of the reproduction layer 21 disappears to become the second mask 35. With the disappearance of this magnetic domain, a very sharp fall occurs in the reproduced signal.

【0011】なお、記録層に記録された記録磁区を保持
するためには、再生時の記録媒体の最高到達温度を記録
層のキュリー温度tTc4未満とする必要があることはい
うまでもないが、再生層と再生補助層の静磁的結合が、
再生状態でのいかなる温度でも保たれるためには、再生
層のキュリー温度Tc1及び再生補助層のキュリー温度T
c2はともに記録層のキュリー温度Tc4よりも高いことが
必要である(Tc1>Tc4、Tc2>Tc4)。また、切断層
が上述のように所定の温度で、記録層に記録された記録
磁区の再生補助層への転写を阻害して、再生補助層の磁
区を消滅させるよう機能するためには、切断層のキュリ
ー温度Tc3は記録層のキュリー温度Tc4より低いことが
必要である(Tc3<Tc4)。
Needless to say, in order to maintain the recording magnetic domains recorded in the recording layer, the maximum temperature reached by the recording medium during reproduction must be less than the Curie temperature tT c4 of the recording layer. , The magnetostatic coupling between the reproduction layer and the reproduction auxiliary layer
In order to maintain any temperature in the reproduction state, the Curie temperature T c1 of the reproduction layer and the Curie temperature T of the reproduction auxiliary layer
Both c2 must be higher than the Curie temperature T c4 of the recording layer (T c1 > T c4 , T c2 > T c4 ). Further, in order for the cutting layer to function so as to obstruct the transfer of the recording magnetic domain recorded in the recording layer to the auxiliary reproduction layer at a predetermined temperature as described above and to eliminate the magnetic domain of the auxiliary reproduction layer, The Curie temperature T c3 of the layer needs to be lower than the Curie temperature T c4 of the recording layer (T c3 <T c4 ).

【0012】ここで、図3により1つの記録磁区が再生
層側で時間的にどのような変化をするかをさらに詳しく
説明する。図3(a)の状態では第1のマスク42によ
り記録磁区が再生層に現れていない。ここで、再生磁界
をHr 、再生層の磁化をMs1、再生層の保磁力をHc1
再生層の磁壁エネルギーをσw1、記録磁区の平均的な大
きさをr、再生補助層から再生層におよぼす静磁界をH
s としたとき、以下の式(I )を満たせば第1のマスク
42が生じる。
Now, referring to FIG. 3, it will be described in more detail how one recording magnetic domain temporally changes on the reproducing layer side. In the state of FIG. 3A, the recording domain does not appear in the reproducing layer due to the first mask 42. Here, the reproducing magnetic field is H r , the reproducing layer magnetization is M s1 , the reproducing layer coercive force is H c1 ,
The domain wall energy of the reproducing layer is σ w1 , the average size of the recording magnetic domain is r, and the static magnetic field from the auxiliary recording layer to the reproducing layer is H.
If s is satisfied, the first mask 42 is generated if the following expression (I) is satisfied.

【0013】 Hc1<Hr +σw1/(2Ms1・r)−Hs ……(I ) 式(I )を満たすためにはMs1、Hs が室温で小さけれ
ばよい。
H c1 <H r + σ w1 / (2M s1 · r) −H s (I) In order to satisfy the formula (I), M s1 and H s may be small at room temperature.

【0014】次に図3(b)のように室温より高くTs2
以下の温度Ts1で静磁的な結合により再生補助層から再
生層に磁区が転写する。そのためには温度がTs1より高
くTs2より低い領域43付近で以下の式(II)を満たせ
ばよい。
Next, as shown in FIG. 3B, T s2 is higher than room temperature.
At the temperature T s1 below, magnetic domains are transferred from the auxiliary reproduction layer to the reproduction layer by magnetostatic coupling. For that purpose, the following formula (II) may be satisfied in the vicinity of the region 43 where the temperature is higher than T s1 and lower than T s2 .

【0015】 Hc1<Hs −Hr −σw1/(2Ms1・r) ……(II) この式を満たすためにはMs1、Hs が領域43で十分大
きく、Hc1が小さければよい。
H c1 <H s −H r −σ w1 / (2M s1 · r) (II) In order to satisfy this expression, if M s1 and H s are sufficiently large in the region 43 and H c1 is small. Good.

【0016】さらに温度Ts2以上の領域44で再生補助
層の磁区が消滅するためには再生補助層の磁化をMs2
再生補助層の膜厚をh2 、再生補助層の保磁力をHc2
再生補助層の磁壁エネルギーをσw2、切断層を介した再
生層と記録層の交換結合による界面磁壁エネルギーをσ
i とすると以下の式(III )を満たせばよい。
Further, in order for the magnetic domains of the auxiliary reproduction layer to disappear in the region 44 above the temperature T s2 , the magnetization of the auxiliary reproduction layer is set to M s2 ,
The reproducing auxiliary layer has a film thickness h 2 , the reproducing auxiliary layer has a coercive force H c2 ,
Σ w2 is the domain wall energy of the auxiliary recording layer, and σ is the interface domain wall energy due to exchange coupling between the reproducing layer and the recording layer through the cutting layer.
If i , then the following equation (III) should be satisfied.

【0017】 Hc2<Hr +σw2/(2Ms2・r)−σi /(2Ms2・h2 ) ……(III ) 式(III )を満たすことで再生補助層の磁区が消滅し、
これに伴い以下の式(IV)を満たせば図3の(c)から
(d)への変化である再生層の磁区の消滅が起こる。
H c2 <H r + σ w2 / (2M s2 · r) −σ i / (2M s2 · h 2 ) ... (III) By satisfying the formula (III), the magnetic domain of the reproduction auxiliary layer disappears,
Along with this, if the following equation (IV) is satisfied, disappearance of the magnetic domain of the reproducing layer, which is a change from (c) to (d) in FIG.

【0018】 Hc1<Hs +Hr +σw1/(2Ms1・r) ……(IV) 磁区がビームスポットより十分小さい場合、図3の
(a)から(b)への変化は領域43で転写が始まると
同時に領域43より広い範囲で瞬時に磁区全体が浮き出
してくるために再生信号の立ち上がりは急激なものとな
る。また磁区がビームスポットより十分小さい場合、図
3の(c)から(d)への変化は領域44での磁区の消
滅は(III )、(IV)式が同時に満たされるまで起こら
ないが、満たされると同時に磁区全体が瞬時に消滅する
ために再生信号の立ち下がりは急激なものとなる。以上
のような原理で本発明により再生信号の立ち上がり、立
ち下がりが急峻となる。
H c1 <H s + H r + σ w1 / (2M s1 · r) (IV) When the magnetic domain is sufficiently smaller than the beam spot, the change from (a) to (b) in FIG. Simultaneously with the start of transfer, the entire magnetic domain instantly emerges in a wider area than the area 43, so that the rising edge of the reproduction signal becomes abrupt. Further, when the magnetic domain is sufficiently smaller than the beam spot, the change from (c) to (d) in FIG. 3 does not occur until the disappearance of the magnetic domain in the region 44 (III) and (IV) are satisfied at the same time. At the same time, the entire magnetic domain disappears instantly, and the fall of the reproduction signal becomes abrupt. According to the present invention based on the above principle, the rising and falling edges of the reproduced signal are sharp.

【0019】再生磁界Hr を適当に選び、後で説明する
ように各層の組成、膜厚などを調整することで式(I )
〜(IV)は容易に満たされる。ここで再生磁界Hr は通
常50〜400 Oeである。
The reproducing magnetic field H r is appropriately selected, and the composition (I) of each layer is adjusted by adjusting the composition and film thickness of each layer as described later.
~ (IV) is easily satisfied. Here, the reproducing magnetic field H r is usually 50 to 400 Oe.

【0020】本発明の光磁気記録媒体はマスクが2つ生
じるのでダブルマスク型の超解像媒体である。ただし、
従来のダブルマスク型の超解像媒体は図4に示すよう
に、(a)から(b)への変化は領域53で転写が始ま
ると同時に領域53より広い範囲で瞬時に磁区全体が浮
き出してくるために再生信号の立ち上がりは急激なもの
となるが、(c)から(d)への変化は、領域54の第
2のマスクの磁化が記録磁区と同じ向きとなっているの
で、(b)で浮き出した記録磁区はディスク移動に従い
徐々に第2のマスクの磁区に吸収されて行くことで起
り、再生信号の立ち下がりは立ち上がりに比べて緩やか
なものとなっていた。従来のダブルマスク型の超解像に
おいても第1、第2両方のマスクを記録磁区と反対向き
にすることが特開平4−255946などで提案されて
いるが、本発明者らの実験によると転写と消滅がバラン
スよく起こるように調整することが難しくノイズが高く
なるために本発明と同等の効果は得られなかった。
Since the magneto-optical recording medium of the present invention has two masks, it is a double mask type super-resolution medium. However,
In the conventional double-mask type super-resolution medium, as shown in FIG. 4, the change from (a) to (b) starts to be transferred in the region 53, and at the same time, the entire magnetic domain is instantly raised in a wider area than the region 53. However, the change from (c) to (d) changes because the magnetization of the second mask in the region 54 is in the same direction as the recording magnetic domain. The recording magnetic domain raised in () is caused by being gradually absorbed by the magnetic domain of the second mask as the disk moves, and the fall of the reproduced signal is gentler than the rise. Even in the conventional double mask type super resolution, it has been proposed in Japanese Patent Laid-Open No. 4-255946 that both the first and second masks face in the opposite direction to the recording magnetic domain. However, according to the experiments by the present inventors, Since it is difficult to adjust the transfer and disappearance in a well-balanced manner and the noise becomes high, the effect equivalent to that of the present invention cannot be obtained.

【0021】本発明の光磁気記録媒体では従来のダブル
マスク型の超解像媒体と同様に第1のマスクが隣接トラ
ックをマスクしているので隣接トラックからの信号の漏
れ込み(クロストーク)が小さい。
In the magneto-optical recording medium of the present invention, like the conventional double mask type super-resolution medium, the first mask masks the adjacent tracks, so that signal leakage (crosstalk) from the adjacent tracks occurs. small.

【0022】再生層、再生補助層は保磁力の小さな垂直
磁化膜からなり、記録層は保磁力の大きな垂直磁化膜か
らなる。切断層は垂直磁化膜あるいは室温からキュリー
温度に至るいずれかの温度で垂直磁化膜であればよい。
再生層、再生補助層、切断層、記録層の磁性層は希土類
遷移金属合金からなることが好ましい。再生層と再生補
助層の静磁結合を室温で小さく高温で大きくして式(I
)、(II)を満たすためには、再生層および再生補助
層の室温での磁化が50emu/cc以下であることが好まし
い。
The reproducing layer and the reproduction assisting layer are made of a vertically magnetized film having a small coercive force, and the recording layer is made of a vertically magnetized film having a large coercive force. The cutting layer may be a perpendicular magnetic film or a perpendicular magnetic film at any temperature from room temperature to the Curie temperature.
The reproducing layer, the reproducing auxiliary layer, the cutting layer, and the magnetic layer of the recording layer are preferably made of a rare earth transition metal alloy. Equation (I
) And (II), the magnetizations of the reproduction layer and the reproduction auxiliary layer at room temperature are preferably 50 emu / cc or less.

【0023】再生層、再生補助層はGdFeCoを主体
とした希土類遷移金属合金が好ましい。また、切断層、
記録層はTbFeCoやDyFeCoを主体とした希土
類遷移金属合金が好ましい。再生層、再生補助層のキュ
リー温度は再生中でも高いカー回転角を保持するため3
00℃以上が好ましい。記録層のキュリー温度は記録感
度と再生安定性から200℃以上300℃以下が好まし
い。切断層のキュリー温度は100℃以上200℃以下
が好ましく、特に記録層のキュリー温度より50℃以上
低くなることが好ましい。
The reproduction layer and the reproduction auxiliary layer are preferably rare earth-transition metal alloys mainly containing GdFeCo. Also a cutting layer,
The recording layer is preferably a rare earth transition metal alloy mainly containing TbFeCo or DyFeCo. The Curie temperature of the regeneration layer and regeneration auxiliary layer is 3 to maintain a high Kerr rotation angle during regeneration.
It is preferably at least 00 ° C. The Curie temperature of the recording layer is preferably 200 ° C. or higher and 300 ° C. or lower in view of recording sensitivity and reproduction stability. The Curie temperature of the cutting layer is preferably 100 ° C. or more and 200 ° C. or less, and particularly preferably 50 ° C. or more lower than the Curie temperature of the recording layer.

【0024】再生層の膜厚はマスクとなるために10nm
以上必要であり、再生補助層からの漏れ磁界により再生
層が反転し、逆に再生補助層には過度の影響を与えない
ためには50nm以下が好ましい。
The thickness of the reproducing layer is 10 nm because it serves as a mask.
The above is necessary, and 50 nm or less is preferable in order to prevent the reproducing layer from being inverted due to the leakage magnetic field from the reproducing auxiliary layer, and conversely not excessively affecting the reproducing auxiliary layer.

【0025】再生補助層から再生層へ容易に転写がおこ
るためには再生補助層の膜厚は10nm以上が好ましく、
記録層から再生補助層への転写が容易に起こるためには
60nm以下が好ましい。再生補助層からの漏れ磁界によ
り再生層が反転し、逆に再生補助層には過度の影響を与
えないためには再生補助層の膜厚が再生層の膜厚以上で
あることが好ましい。
In order to easily transfer from the reproduction auxiliary layer to the reproduction layer, the thickness of the reproduction auxiliary layer is preferably 10 nm or more,
The thickness is preferably 60 nm or less so that transfer from the recording layer to the auxiliary reproduction layer easily occurs. It is preferable that the thickness of the reproduction auxiliary layer is equal to or larger than that of the reproduction layer in order to prevent the reproduction auxiliary layer from being inverted due to the leakage magnetic field from the reproduction auxiliary layer and adversely affecting the reproduction auxiliary layer excessively.

【0026】切断層の膜厚は5nm以上50nm以下が好ま
しい。5nmより薄いとキュリー温度Tc3での交換結合の
切断が難しくなり、50nmより厚いと記録層から再生補
助層への室温付近での転写が不安定になる可能性があ
り、記録感度も悪くなるので好ましくない。記録層の膜
厚は厚いほど再生安定性が増すが、記録感度とのかねあ
いから15nm以上60nm以下が好ましい。
The thickness of the cutting layer is preferably 5 nm or more and 50 nm or less. If it is thinner than 5 nm, it becomes difficult to break the exchange bond at the Curie temperature T c3 , and if it is thicker than 50 nm, the transfer from the recording layer to the reproduction assisting layer near room temperature may become unstable and the recording sensitivity may be deteriorated. It is not preferable. The reproduction stability increases as the thickness of the recording layer increases, but it is preferably 15 nm or more and 60 nm or less in consideration of recording sensitivity.

【0027】非磁性中間層については室温付近以上の温
度で非磁性の物質であれば基本的には動作する。非磁性
中間層の膜厚は交換結合を切るために1nm以上必要で再
生補助層と再生層が静磁的に結合するためには30nm以
下である必要がある。
The non-magnetic intermediate layer basically operates if it is a non-magnetic substance at a temperature of around room temperature or higher. The thickness of the non-magnetic intermediate layer is required to be 1 nm or more in order to break the exchange coupling, and 30 nm or less in order to magnetostatically couple the reproduction auxiliary layer and the reproduction layer.

【0028】非磁性中間層は薄膜の安定性、緻密さなど
から特に、Si、Al、Ti、Taの窒化物から選択さ
れた1種又は2種以上の窒化物で構成されていることが
好ましい。
The non-magnetic intermediate layer is preferably composed of one or more nitrides selected from nitrides of Si, Al, Ti and Ta, in view of stability and denseness of the thin film. .

【0029】また、非磁性中間層をAl、Au、Ag、
Pt、Pdからなる群から選択された1種又は2種以上
の金属元素を主体として構成することで非磁性中間層か
らの光の反射を高めて再生層の膜厚を薄くすることが可
能であり、再生層から再生補助層への影響を減らし、再
生磁界のマージンを高めることが期待される。
The nonmagnetic intermediate layer is made of Al, Au, Ag,
By mainly composing one or more metal elements selected from the group consisting of Pt and Pd, it is possible to enhance the reflection of light from the non-magnetic intermediate layer and reduce the thickness of the reproducing layer. Therefore, it is expected to reduce the influence from the reproduction layer to the reproduction auxiliary layer and increase the margin of the reproduction magnetic field.

【0030】また、非磁性中間層を希土類元素から選択
された1種又は2種以上の元素で構成することで記録感
度に影響を与えることなく非磁性中間層からの光の反射
を高めて再生層の膜厚を薄くすることが可能である。
Further, by constructing the non-magnetic intermediate layer from one or more elements selected from rare earth elements, the reflection of light from the non-magnetic intermediate layer is enhanced without affecting the recording sensitivity for reproduction. It is possible to reduce the layer thickness.

【0031】基板の材料としては、ポリカーボネート、
アモルファスポリオレフィン等の樹脂またはガラス等が
好ましい。
The material of the substrate is polycarbonate,
A resin such as amorphous polyolefin or glass is preferable.

【0032】再生層よりもレーザー光の入射側にカー回
転角を増大させることを目的としてSiN、ZnS、A
lN等からなる厚さ70nm程度の第1誘電体層を設け
ることも有効である。この厚さは媒体の反射率や再生信
号強度を調整するために適宜厚さを変えることもでき
る。更に記録レーザーパワー等の調整のためにレーザー
光の入射側と反対側に、例えば厚さ20nm程度のAl
合金膜等の熱拡散層を設けたり、薄膜の保護のために第
2誘電体層、さらにアクリル系の紫外線硬化樹脂などか
らなる保護コートなどの保護膜を設けることもすでに説
明したように可能である。
SiN, ZnS, A for the purpose of increasing the Kerr rotation angle on the laser beam incident side of the reproducing layer.
It is also effective to provide a first dielectric layer made of 1N or the like and having a thickness of about 70 nm. This thickness can be appropriately changed in order to adjust the reflectance of the medium and the reproduction signal strength. Further, in order to adjust the recording laser power and the like, on the side opposite to the laser light incident side, for example, Al having a thickness of about 20 nm is used.
It is also possible to provide a heat diffusion layer such as an alloy film, or to provide a second dielectric layer for protecting the thin film, and a protective film such as a protective coat made of an acrylic UV-curable resin as described above. is there.

【0033】また、耐蝕性向上等のために磁性層にC
r、Ti、Ta等の元素を添加することも考えられるが
特に限定されない。
Further, C is added to the magnetic layer to improve the corrosion resistance.
It is possible to add an element such as r, Ti, or Ta, but it is not particularly limited.

【0034】[0034]

【実施例】以下に実施例を用いて更に詳述する。The present invention will be described below in more detail with reference to examples.

【0035】(実施例1、比較例1及び比較例2)図1
に示すような光磁気記録媒体を作製した。マグネトロン
スパッタ法によりトラックピッチ1.1ミクロンのポリ
カーボネート(PC)基板11上にSiNからなる第1
誘電体層12を70nm成膜し、その上に室温での磁化
が0emu/cc(補償組成)でキュリー温度が350℃以上
のGd0.26(Fe0.70Co0.300.74の再生層13を2
0nmあるいは26nm、SiNからなる非磁性中間層
14を5nm、Gd0.25(Fe0.70Co0.300.75の再
生補助層15を30nm、キュリー温度が160℃のT
0.21(Fe0.97Co0.030.79の切断層16を10n
m、キュリー温度が270℃のTb0.22(Fe0.85Co
0.150.78の記録層17を40nm、SiNからなる第
2誘電体層18を30nmの順に薄膜を積層した。第2
誘電体層18の上には紫外線硬化樹脂からなる保護コー
ト19を施した。
(Example 1, Comparative Example 1 and Comparative Example 2) FIG.
A magneto-optical recording medium as shown in was prepared. First made of SiN on a polycarbonate (PC) substrate 11 with a track pitch of 1.1 μm by magnetron sputtering.
A dielectric layer 12 is formed to a thickness of 70 nm, and a reproducing layer 13 of Gd 0.26 (Fe 0.70 Co 0.30 ) 0.74 having a magnetization of 0 emu / cc (compensation composition) at room temperature and a Curie temperature of 350 ° C. or higher is formed on the dielectric layer 12.
0 nm or 26 nm, the nonmagnetic intermediate layer 14 made of SiN is 5 nm, the reproduction assisting layer 15 of Gd 0.25 (Fe 0.70 Co 0.30 ) 0.75 is 30 nm, and the Curie temperature is 160 ° C.
b 0.21 (Fe 0.97 Co 0.03 ) 0.79 with a cutting layer 16 of 10 n
m, Curie temperature of 270 ° C. Tb 0.22 (Fe 0.85 Co
0.15 ) 0.78 recording layer 17 having a thickness of 40 nm and a second dielectric layer 18 made of SiN having a thickness of 30 nm were laminated in this order. Second
A protective coat 19 made of an ultraviolet curable resin was applied on the dielectric layer 18.

【0036】比較例1として再生層13および非磁性中
間層14を省いたほかは実施例1と同様の光磁気記録媒
体を作製した。また、比較例2として再生補助層15お
よび切断層16を省いたほかは実施例1と同様の光磁気
記録媒体を作製した。
As Comparative Example 1, a magneto-optical recording medium similar to that of Example 1 was prepared except that the reproducing layer 13 and the nonmagnetic intermediate layer 14 were omitted. Further, as Comparative Example 2, a magneto-optical recording medium similar to that of Example 1 was prepared except that the reproduction assisting layer 15 and the cutting layer 16 were omitted.

【0037】製造した光磁気記録媒体に記録マーク長が
0.25ミクロン(マークピッチの半分とみなす)とな
るように線速7.5m/sとして記録周波数15MH
z、duty33%で680nmのレーザー光(対物レ
ンズのNA=0.55)を用いて記録を行った。同じ光
を用いて再生レーザーパワーを2.5mW、再生磁界を
150 Oeとしてキャリア対ノイズ比(C/N)をス
ペクトラムアナライザで測定した。また、再生波形の前
エッジ、後ろエッジのジッタ(時間軸の揺らぎ)をジッ
タアナライザで測定した。ジッタの測定結果は0.25
ミクロンのマークに対応する時間の33nsecを2T
として、ウインドウ幅(1T)に対する割合として示
す。これらの測定結果を表1に示す。
A recording frequency of 15 MH was set on the manufactured magneto-optical recording medium at a linear velocity of 7.5 m / s so that the recording mark length would be 0.25 μm (which is regarded as half of the mark pitch).
Recording was carried out using a laser beam of 680 nm (NA of objective lens = 0.55) with z and duty of 33%. Using the same light, the reproduction laser power was 2.5 mW, the reproduction magnetic field was 150 Oe, and the carrier-to-noise ratio (C / N) was measured with a spectrum analyzer. In addition, the jitter (fluctuations on the time axis) at the front and rear edges of the reproduced waveform was measured with a jitter analyzer. Jitter measurement result is 0.25
The time corresponding to the mark of micron is 33T for 2T
Is shown as a ratio to the window width (1T). Table 1 shows the measurement results.

【0038】[0038]

【表1】 [Table 1]

【0039】表1に示すようにC/Nについては消滅型
の超解像媒体である比較例1や従来型の静磁結合のみを
使った超解像媒体の比較例2に比べて、実施例1の再生
層が26nmの試料では3dB程度、再生層が20nm
の試料では2dB程度高い。これは表1のジッタの値か
らわかるように前後エッジで同様に急峻な立ち上がりが
得られたことが主な原因である。前後どちらのエッジジ
ッタも小さいことから実施例1では比較例1、比較例2
に比べて高い記録密度が可能である。
As shown in Table 1, as for C / N, compared with Comparative Example 1 which is an annihilation type super-resolution medium and Comparative Example 2 which is a conventional super-resolution medium using only magnetostatic coupling. The reproduction layer of Example 1 having a reproduction layer of 26 nm has a reproduction layer of about 3 dB and the reproduction layer of 20 nm
In the sample No. 2, it is about 2 dB higher. This is mainly because a steep rise was similarly obtained at the front and rear edges, as can be seen from the jitter values in Table 1. Since both the front and rear edge jitters are small, in Example 1, Comparative Example 1 and Comparative Example 2
Higher recording density is possible compared to.

【0040】また、記録周波数7MHzで記録した後ク
ロストークを測定したところ実施例1、比較例3では−
45dB以下であるのに対して比較例2では−30dB
であり、本発明は従来型の静磁結合のみを使った超解像
媒体と同程度にクロストークが良好であることが示され
た。
When the crosstalk was measured after recording at the recording frequency of 7 MHz, in Example 1 and Comparative Example 3,
45 dB or less, whereas in Comparative Example 2 -30 dB
Therefore, it was shown that the present invention has a crosstalk as good as that of the conventional super-resolution medium using only magnetostatic coupling.

【0041】(実施例2)Gd0.26(Fe0.70
0.300.74の再生層13を20nm、非磁性中間層1
4をAl0.98Cr0.02合金として10nmの厚みとした
ほかは実施例1と同じ構造の光磁気記録媒体を作製し、
実施例1と同様の測定を行った。測定結果を表1に示
す。
Example 2 Gd 0.26 (Fe 0.70 C
o 0.30 ) 0.74 reproducing layer 13 of 20 nm, non-magnetic intermediate layer 1
A magneto-optical recording medium having the same structure as in Example 1 was prepared except that 4 was Al 0.98 Cr 0.02 alloy and the thickness was 10 nm.
The same measurement as in Example 1 was performed. Table 1 shows the measurement results.

【0042】(実施例3)Gd0.26(Fe0.70
0.300.74の再生層13を20nm、非磁性中間層1
4をDyとして10nmの厚みとしたほかは実施例1と
同様の光磁気記録媒体を作製し、実施例1と同様の測定
を行った。測定結果を表1に示す。
Example 3 Gd 0.26 (Fe 0.70 C
o 0.30 ) 0.74 reproducing layer 13 of 20 nm, non-magnetic intermediate layer 1
A magneto-optical recording medium was manufactured in the same manner as in Example 1 except that Dy was 4 and the thickness was 10 nm, and the same measurement as in Example 1 was performed. Table 1 shows the measurement results.

【0043】表1に示すように実施例2、実施例3では
再生層の膜厚が20nmであっても実施例1で再生層が
26nmの試料と同等の高いC/N、小さなジッタが得
られた。これは非磁性中間層の反射率が高いために再生
層のカー回転角が増加することが主な原因である。ま
た、実施例2は実施例3よりわずかに再生特性は良好で
あるが、記録パワーが20%ほど高い。実施例3のよう
に熱伝導率が低い非磁性中間層を用いることでかなり高
い線速まで対応可能となり高いC/Nと転送速度を得る
ことができる。また、再生磁界については実施例1の再
生層の膜厚が26nmの試料については110〜220
Oeの範囲で、実施例1〜3までの再生層の膜厚が2
0nmの試料については100〜250 Oeの範囲で
良好なC/Nが得られ、再生層の膜厚を薄くすることで
再生磁界の余裕が広がることがわかった。
As shown in Table 1, in Examples 2 and 3, even if the thickness of the reproducing layer was 20 nm, a high C / N and small jitter similar to those of the sample having the reproducing layer of 26 nm in Example 1 were obtained. Was given. This is mainly due to the fact that the Kerr rotation angle of the reproducing layer increases due to the high reflectance of the non-magnetic intermediate layer. In addition, although the reproducing characteristic of Example 2 is slightly better than that of Example 3, the recording power is higher by about 20%. By using a non-magnetic intermediate layer having a low thermal conductivity as in Example 3, a considerably high linear velocity can be supported and a high C / N and transfer rate can be obtained. Further, regarding the reproducing magnetic field, 110 to 220 for the sample having the reproducing layer thickness of 26 nm in Example 1.
In the range of Oe, the thickness of the reproducing layer in Examples 1 to 3 is 2
It was found that for the sample of 0 nm, good C / N was obtained in the range of 100 to 250 Oe, and the margin of the reproducing magnetic field was expanded by reducing the thickness of the reproducing layer.

【0044】[0044]

【発明の効果】以上の説明から明らかなように、本発明
によれば、再生光の光学的回折限界をはるかに越えた大
きさで記録された情報を高いCNRで読み取ることがで
きる。また、本発明の光磁気記録媒体及びその再生方法
は、再生信号の立ち上がりと立ち下がりのどちらのエッ
ジのジッタも小さいのでエッジ記録に好適である。さら
にクロストークが小さいため従来のダブルマスク型の超
解像媒体を越える記録密度が可能である。
As is clear from the above description, according to the present invention, it is possible to read information recorded with a size far exceeding the optical diffraction limit of reproduction light with a high CNR. Further, the magneto-optical recording medium and the reproducing method thereof according to the present invention are suitable for edge recording because the jitter of both the rising edge and the falling edge of the reproduced signal is small. Further, since the crosstalk is small, a recording density exceeding that of the conventional double mask type super resolution medium is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光磁気記録媒体の積層構造の一例を示
す部分断面図である。
FIG. 1 is a partial cross-sectional view showing an example of a laminated structure of a magneto-optical recording medium of the present invention.

【図2】本発明の光磁気記録媒体の超解像再生の原理を
示す概念図である。
FIG. 2 is a conceptual diagram showing the principle of super-resolution reproduction of the magneto-optical recording medium of the present invention.

【図3】本発明の光磁気記録媒体の再生時の再生層上の
記録磁区の転写と消滅の時間的推移を示す概念図であ
る。
FIG. 3 is a conceptual diagram showing a temporal transition of transfer and disappearance of a recording magnetic domain on a reproducing layer during reproduction of the magneto-optical recording medium of the present invention.

【図4】従来のダブルマスク型の超解像光磁気記録媒体
の再生時の再生層上の記録磁区の転写と第2のマスクへ
の吸収の時間的推移を示す概念図である。
FIG. 4 is a conceptual diagram showing the temporal transition of the transfer of a recording magnetic domain on the reproducing layer and the absorption into the second mask during reproduction of a conventional double-mask type super-resolution magneto-optical recording medium.

【符号の説明】[Explanation of symbols]

11 透明な基板 12 第1誘電体層 13、21 再生層 14、22 非磁性中間層 15、23 再生補助層 16、24 切断層 17、25 記録層 18 第2誘電体層 19 保護コート 26 記録磁界 27 記録パルスレーザービーム 28 媒体移動方向 29 記録層がキュリー温度Tc4以上になった領域 30 再生磁界 31、41、51 再生レーザービームおよびビームス
ポット 32 切断層のキュリー温度Tc3付近の所定の温度Ts2
以上の部分 33、42、52 第1のマスク 34、43、53 再生層に磁区が転写する領域 35、44、54 第2のマスク 45、55 記録磁区
11 Transparent Substrate 12 First Dielectric Layer 13, 21 Reproducing Layer 14, 22 Non-Magnetic Intermediate Layer 15, 23 Reproducing Auxiliary Layer 16, 24 Cutting Layer 17, 25 Recording Layer 18 Second Dielectric Layer 19 Protective Coating 26 Recording Magnetic Field 27 recording pulse laser beam 28 medium moving direction 29 area where recording layer has reached Curie temperature T c4 or higher 30 reproducing magnetic field 31, 41, 51 reproducing laser beam and beam spot 32 predetermined temperature T near the Curie temperature T c3 of the cutting layer s2
The above parts 33, 42, 52 First masks 34, 43, 53 Regions where magnetic domains are transferred to the reproducing layer 35, 44, 54 Second masks 45, 55 Recording magnetic domains

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 透明な基板上に少なくとも再生層、非磁
性中間層、再生補助層、切断層、記録層がこの順に積層
された積層構造を有し、前記再生層、再生補助層、切断
層、記録層のキュリー温度を各々Tc1、Tc2、Tc3、T
c4としたとき、Tc3<Tc4、Tc2>Tc4、Tc1>Tc4
あることを特徴とする光磁気記録媒体。
1. A reproducing substrate, a non-magnetic intermediate layer, a reproduction auxiliary layer, a cutting layer, and a recording layer are laminated in this order on a transparent substrate, and the reproduction layer, the reproduction auxiliary layer, and the cutting layer. , The Curie temperatures of the recording layers are T c1 , T c2 , T c3 and T, respectively.
A magneto-optical recording medium, characterized in that when c4 , T c3 <T c4 , T c2 > T c4 , T c1 > T c4 .
【請求項2】 切断層のキュリー温度付近の所定の温度
s2未満では、記録層に記録された記録磁区が記録層か
ら再生補助層に転写されており、再生時に再生磁界を加
えることにより、再生補助層においては前記温度Ts2
上の温度の部分で再生補助層の磁区が消滅し、再生層に
おいては室温で磁化が再生磁界の方向に揃うために磁区
が存在しない状態であり、室温より高く前記温度Ts2
満の温度Ts1で、静磁的な結合により再生補助層から再
生層に記録磁区が転写し、前記温度Ts2で再生補助層の
磁区が消滅すると同時に再生層の磁区も消滅することを
特徴とする請求項1記載の光磁気記録媒体。
2. Below a predetermined temperature T s2 near the Curie temperature of the cutting layer, the recording magnetic domain recorded in the recording layer has been transferred from the recording layer to the reproduction auxiliary layer, and by applying a reproduction magnetic field during reproduction, In the reproducing auxiliary layer, the magnetic domain of the reproducing auxiliary layer disappears at the temperature above the temperature T s2 , and in the reproducing layer, the magnetization is aligned in the direction of the reproducing magnetic field at room temperature, so that there is no magnetic domain. At a temperature T s1 which is higher than the temperature T s2 , a recording magnetic domain is transferred from the reproduction auxiliary layer to the reproduction layer by magnetostatic coupling, and at the temperature T s2 , the magnetic domain of the reproduction auxiliary layer disappears and at the same time the magnetic domain of the reproduction layer also disappears. The magneto-optical recording medium according to claim 1, which is erased.
【請求項3】 再生層、再生補助層、切断層、記録層が
希土類遷移金属合金からなり、再生層および再生補助層
の室温での磁化が50emu/cc以下であることを特徴とす
る請求項1又は請求項2記載の光磁気記録媒体。
3. The reproducing layer, the reproducing auxiliary layer, the cutting layer and the recording layer are made of a rare earth transition metal alloy, and the magnetization of the reproducing layer and the reproducing auxiliary layer at room temperature is 50 emu / cc or less. The magneto-optical recording medium according to claim 1 or 2.
【請求項4】 再生層、再生補助層がGdFeCoを主
体とした希土類遷移金属合金からなることを特徴とする
請求項3記載の光磁気記録媒体。
4. The magneto-optical recording medium according to claim 3, wherein the reproduction layer and the reproduction auxiliary layer are made of a rare earth transition metal alloy mainly containing GdFeCo.
【請求項5】 非磁性中間層がSi、Al、Ti、Ta
の窒化物から選択された1種又は2種以上の窒化物で構
成されていることを特徴とする請求項1又は請求項2記
載の光磁気記録媒体。
5. The non-magnetic intermediate layer is Si, Al, Ti, Ta.
The magneto-optical recording medium according to claim 1 or 2, wherein the magneto-optical recording medium is composed of one or more nitrides selected from the above-mentioned nitrides.
【請求項6】 非磁性中間層がAl、Au、Ag、P
t、Pdからなる群から選択された1種又は2種以上の
金属元素を主体として構成されていることを特徴とする
請求項1又は請求項2記載の光磁気記録媒体。
6. The non-magnetic intermediate layer is made of Al, Au, Ag, P.
The magneto-optical recording medium according to claim 1 or 2, which is mainly composed of one or more metal elements selected from the group consisting of t and Pd.
【請求項7】 非磁性中間層が希土類元素から選択され
た1種又は2種以上の元素で構成されていることを特徴
とする請求項1又は請求項2記載の光磁気記録媒体。
7. The magneto-optical recording medium according to claim 1, wherein the non-magnetic intermediate layer is composed of one or more elements selected from rare earth elements.
【請求項8】 切断層のキュリー温度付近の所定の温度
s2未満で、記録層に記録された記録磁区を記録層から
再生補助層に転写させ、再生時に再生磁界を加えること
により、再生補助層においては前記温度Ts2以上の温度
の部分の再生補助層の磁区を消滅させ、再生層において
は室温では磁化を再生磁界の方向に揃えて磁区が存在し
ない状態とし、室温より高く前記温度Ts2未満の温度T
s1で、静磁的な結合により再生補助層から再生層に磁区
を転写させ、前記温度Ts2で再生補助層の磁区が消滅す
ると同時に再生層の磁区も消滅させることを特徴とする
請求項1〜7のいずれか1項に記載の光磁気記録媒体の
再生方法。
8. A reproducing auxiliary is performed by transferring a recording magnetic domain recorded in the recording layer from the recording layer to a reproducing auxiliary layer at a temperature lower than a predetermined temperature T s2 near the Curie temperature of the cutting layer and applying a reproducing magnetic field during reproducing. In the layer, the magnetic domain of the auxiliary reproduction layer at the temperature above the temperature T s2 is extinguished, and in the reproducing layer, the magnetization is aligned in the direction of the reproducing magnetic field at room temperature so that the magnetic domain does not exist. Temperature T less than s2
The magnetic domain is transferred from the reproduction auxiliary layer to the reproduction layer by magnetostatic coupling at s1 , and the magnetic domain of the reproduction auxiliary layer disappears at the same time as the magnetic domain of the reproduction auxiliary layer disappears at the temperature T s2. 8. A method of reproducing the magneto-optical recording medium according to any one of items 7 to 7.
JP12695996A 1996-05-22 1996-05-22 Magneto-optical recording medium and is production Pending JPH09312043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12695996A JPH09312043A (en) 1996-05-22 1996-05-22 Magneto-optical recording medium and is production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12695996A JPH09312043A (en) 1996-05-22 1996-05-22 Magneto-optical recording medium and is production

Publications (1)

Publication Number Publication Date
JPH09312043A true JPH09312043A (en) 1997-12-02

Family

ID=14948139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12695996A Pending JPH09312043A (en) 1996-05-22 1996-05-22 Magneto-optical recording medium and is production

Country Status (1)

Country Link
JP (1) JPH09312043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707767B2 (en) * 2000-11-15 2004-03-16 Canon Kabushiki Kaisha Domain wall displacement magneto-optical storage medium, and method for reproducing thereof
US7050361B2 (en) 2001-03-27 2006-05-23 Fujitsu Limited Magneto-optical storage medium and optical disk drive

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707767B2 (en) * 2000-11-15 2004-03-16 Canon Kabushiki Kaisha Domain wall displacement magneto-optical storage medium, and method for reproducing thereof
KR100442070B1 (en) * 2000-11-15 2004-07-30 캐논 가부시끼가이샤 Domain wall displacement magneto-optic recording medium, and reproducing method and apparatus for the same
US7050361B2 (en) 2001-03-27 2006-05-23 Fujitsu Limited Magneto-optical storage medium and optical disk drive
US7072250B2 (en) 2001-03-27 2006-07-04 Fujitsu Limited Magneto-optical storage medium and optical disk drive

Similar Documents

Publication Publication Date Title
JP3781823B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3474401B2 (en) Magneto-optical recording medium
JP3477384B2 (en) Magneto-optical recording medium
JP2000011475A (en) Magneto-optical recording medium
US5666346A (en) Super-resolution magnetooptical recording medium using magnetic phase transition material, and method for reproducing information from the medium
JPH07244876A (en) Magneto-optic recording medium and magneto-optically recording/reproducing method
JPS61196445A (en) Photomagnetic disk
JPH09312043A (en) Magneto-optical recording medium and is production
JP3474464B2 (en) Magneto-optical recording medium
KR100442070B1 (en) Domain wall displacement magneto-optic recording medium, and reproducing method and apparatus for the same
KR100691196B1 (en) Magneto-optical recording medium
JPH10255344A (en) Magneto-optical recording medium
JP3977238B2 (en) Magneto-optical recording medium
JP2002208193A (en) Magneto-optical recording medium and information reproducing method therefor
JP2001126327A (en) Magneto-optical recording medium
JPH11238264A (en) Magneto-optical record medium and its reproducing method
JP2886199B2 (en) Magneto-optical recording method and magneto-optical recording medium
JP2555891B2 (en) Magneto-optical recording medium
JP3162168B2 (en) Magneto-optical recording medium
JP2001331985A (en) Magneto-optical recording medium and method for manufacturing the same
JP3559206B2 (en) Magneto-optical recording medium
JP3075048B2 (en) Magneto-optical recording medium and reproducing method thereof
JP3328989B2 (en) Magneto-optical recording medium
JPH1092030A (en) Magneto-optical recording medium and reproducing method therefor
JP2000339788A (en) Magneto-optical recording medium and its reproducing method