JPH02183146A - Measurement of iron ion concentration - Google Patents

Measurement of iron ion concentration

Info

Publication number
JPH02183146A
JPH02183146A JP892489A JP248989A JPH02183146A JP H02183146 A JPH02183146 A JP H02183146A JP 892489 A JP892489 A JP 892489A JP 248989 A JP248989 A JP 248989A JP H02183146 A JPH02183146 A JP H02183146A
Authority
JP
Japan
Prior art keywords
measured
concentration
liquid
solution
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP892489A
Other languages
Japanese (ja)
Inventor
Hiroto Naka
中 啓人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP892489A priority Critical patent/JPH02183146A/en
Publication of JPH02183146A publication Critical patent/JPH02183146A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To enable measurement of concns. of bivalent and trivalent iron ions by injecting a liquid to be measured and an oxidizing agent into a passage of a color identification reagent solution to measure an absorbance. CONSTITUTION:A color identification reagent solution 1 is sent to an injector 5 to be measured with a constant amount pump 2 through an oxidizing agent injector 3 and a valve of the injector 5 is changed over to a valve 52 to inject a liquid 6 to be measured stored in a fixed amount into a spiral tube 53 into the solution 1 with a constant amount pump 8 so that it is fed into an absorptiometric cell 11 via a fluororesin tube 9 and a thermostatic cell 10 to determine Fe<3+> form a color in the cell 11. Then, the solution 1 is sent to an oxidizing agent injector 3 with the pump 2 and a valve of the injector 3 is changed over to a valve 32 to inject an oxidizing agent 4 stored in a fixed amount in a tube 33 into the solution 1 with a constant amount pump 7 and then the solution is sent to the injector 5, with which 5 a fixed amount of the liquid 6 to be measured to make Fe form a color in total with the oxidation of Fe<2+> in the liquid 6 to be measured to the Fe<3+>. Then, the total Fe is determined in the cell 11. Thus, a density of Fe<2+> can be obtained in the liquid 6 to be measured by subtracting the concn. of the Fe<3+> from the concn. of the total Fe thus obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、Ni−Fe等の合金めっき俗に含まれる鉄イ
オン濃度測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the concentration of iron ions contained in alloy plating such as Ni-Fe.

〔従来の技術〕[Conventional technology]

現在、優れた磁性材料として合金めっき膜が、中でもN
i−Feの合金であるパーマロイめっき膜が多用されて
いる。このパーマロイめっき膜は0.1%オーダーの組
成変動が磁性膜としての機能の良否を著しく左右する。
Currently, alloy plating films are used as excellent magnetic materials, especially N
Permalloy plating film, which is an alloy of i-Fe, is often used. In this permalloy plating film, compositional fluctuations on the order of 0.1% significantly affect the quality of its function as a magnetic film.

従って、良好な機能を有するパーマロイ磁性膜を得るに
は、めっき浴中のFe””Pe3+等の鉄イオン濃度を
高精度にしかも迅速に制御する必要がある。
Therefore, in order to obtain a permalloy magnetic film with good functionality, it is necessary to control the concentration of iron ions such as Fe""Pe3+ in the plating bath with high precision and quickly.

ところで従来の2価及び3価の鉄イオンの分析方法とし
ては、イオン交換クロマト法、フローインジェクション
法が挙げられる。イオン交換クロマト法は、イオン交換
樹脂、その他のイオン交換体のカラムの上端に試料の混
合溶液を入れ、適当な電解質溶液で展開し、樹脂に対す
る成分イオンの交換吸着性の差異により分離して夫々の
成分を順に溶出9分析する方法であり、フローインジェ
クシラン法は定量ポンプを用いて制御された連続の流れ
をつくり出し、その流れの中で呈色反応等の種々の反応
または分離を行い、末端に設置した検出器を用いて溶液
の成分を分析する方法である。
By the way, conventional methods for analyzing divalent and trivalent iron ions include ion exchange chromatography and flow injection. In the ion-exchange chromatography method, a mixed solution of the sample is placed at the top of a column made of ion-exchange resin or other ion-exchange material, developed with an appropriate electrolyte solution, and the component ions are separated based on the differences in their exchange adsorption properties to the resin. The flow injection silane method uses a metering pump to create a controlled continuous flow, and performs various reactions such as color reactions or separations in this flow, and This method analyzes the components of a solution using a detector installed at the

しかし、上述したイオンクロマト法は測定に長時間を有
し、また分析精度に問題があることから、最近ではフロ
ーインジェクション法が多く使われる傾向にある。
However, since the above-mentioned ion chromatography method requires a long time for measurement and has problems with analysis accuracy, recently there has been a tendency for flow injection method to be used more frequently.

一般にフローインジェクション法の検出器としては、吸
光度または原子吸光を検出するものと電気的に検出する
ものとがあるが、めっき浴における高濃度域での分析を
高精度に行うためには、吸光度検出器が有効であると考
えられる。吸光度検出器を用いたフローインジェクショ
ン法により合金中のFe”及びFe”の濃度を同一系内
で迅速に測定する方法としては、「分析化学、第369
−、 PP515゜(19B?) 」で以下に述べる例
が報告されている。まず一方で4,7−ジフェニル−1
,10−フェナントロリンスルホン酸を呈色試薬として
Fe2+濃度を測定し、他方でアスコルビン酸を還元剤
としてFe3゜をFe3+に還元し、全Feの濃度を測
定する。そして、全Feの濃度と先に測定したFe”濃
度との差を求めることによりFe”の濃度を得ている。
In general, there are two types of flow injection method detectors: those that detect absorbance or atomic absorption, and those that detect electrically.In order to perform high-precision analysis in the high concentration range of plating baths, absorbance detection is required. It is considered that the device is effective. A method for quickly measuring the concentrations of Fe'' and Fe'' in an alloy in the same system by flow injection using an absorbance detector is described in "Analytical Chemistry, No. 369.
-, PP515° (19B?)'', the example described below has been reported. First of all, 4,7-diphenyl-1
, 10-phenanthrolinesulfonic acid is used as a coloring reagent to measure the Fe2+ concentration, and on the other hand, ascorbic acid is used as a reducing agent to reduce Fe3° to Fe3+, and the total Fe concentration is measured. Then, the Fe'' concentration is obtained by determining the difference between the total Fe concentration and the previously measured Fe'' concentration.

また、吸光度検出器を用いたフローインジェクション法
で合金めっき浴中のFe″パ濃度を定量する方法として
は、チオシアン酸アンモニウムまたはスルホサリチル酸
を呈色試薬とする例が報告されている。
Further, as a method for quantifying the Fe'' concentration in an alloy plating bath by a flow injection method using an absorbance detector, an example using ammonium thiocyanate or sulfosalicylic acid as a coloring reagent has been reported.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した4、7−ジフェニル−1,10
−フェナントロリンスルホン酸及びアスコルビン酸を組
み合わせて合金中のFe”°及びFe”の夫々の濃度を
定量する方法では、合金中のFe3+の濃度が0.5〜
1.5mg/42であり、低濃度域の分析を対象として
いるため、Fe3”の濃度が100mg /1以上であ
るめっき浴中での高濃度域の分析を行うには、被測定液
の希釈が必要となってくる。そしてこれに伴って分析操
作が繁雑化する、分析時間が長時間となる、分析精度が
劣化する等の問題が住じる。従って、めっき浴中でのF
e3+の分析を行うためには、スルホサリチル酸を呈色
試薬とじた方法が有効と考えられる。しかし、スルホサ
リチル酸自身はFe”と反応しないため、スルホサリチ
ル酸を用いてFe”を定量するにはFe”をFe34に
酸化することが必要である。また、合金めっき浴中のF
e”は比較的不安定であるためFe”“、 Fe”の濃
度測定は可能な限り短時間で、高精度に行う必要がある
However, the above-mentioned 4,7-diphenyl-1,10
- In the method of quantifying the respective concentrations of Fe"° and Fe" in the alloy by combining phenanthroline sulfonic acid and ascorbic acid, the concentration of Fe3+ in the alloy is from 0.5 to
1.5mg/42, and is intended for analysis in the low concentration range. Therefore, in order to analyze the high concentration range in a plating bath where the concentration of Fe3" is 100mg/1 or more, it is necessary to dilute the liquid to be measured. This results in problems such as complicated analysis operations, long analysis times, and deterioration of analysis accuracy.
In order to analyze e3+, a method using sulfosalicylic acid as a coloring reagent is considered effective. However, since sulfosalicylic acid itself does not react with Fe'', it is necessary to oxidize Fe'' to Fe34 in order to quantify Fe'' using sulfosalicylic acid.
Since e'' is relatively unstable, it is necessary to measure the concentration of Fe'', Fe'' in as short a time as possible and with high precision.

本発明は斯かる事情に鑑みてなされたものであり、呈色
試薬を含む溶液を吸光光度計に送る経路の途中に被測定
液注入器の他にFe”の酸化剤注入器を設け、呈色試薬
を含む溶液の流路内にFe”°及びFe”を含む合金め
っきの被測定液と酸化剤とを試料注入器、酸化剤注入器
で夫々一定量注入し、前記pe3+の吸光度及び前記F
e1が酸化されて発色した被測定液中の全Feの吸光度
を夫々測定して濃度を求め、全Fe?a度とp e 3
 +濃度゛との差を演算してp e ! +濃度を求め
ることにより迅速にしかも高精度に被測定液中の2価お
よび3価の夫々の鉄イオン濃度を測定する方法の提供を
目的とする。
The present invention has been made in view of the above circumstances, and includes an oxidizing agent injector of "Fe" in addition to the liquid to be measured injector in the middle of the route for sending a solution containing a coloring reagent to an absorptiometer. Into the flow path of the solution containing the color reagent, a fixed amount of the sample liquid for alloy plating containing Fe"° and Fe" and the oxidizing agent are injected using a sample injector and an oxidizing agent injector, and the absorbance of the PE3+ and the F
The absorbance of total Fe in the liquid to be measured, which has been colored due to oxidation of e1, is measured to determine the concentration, and the total Fe? a degree and p e 3
+Concentration ゛Calculate the difference between p e! It is an object of the present invention to provide a method for quickly and highly accurately measuring the respective divalent and trivalent iron ion concentrations in a liquid to be measured by determining the + concentration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る合金めっき浴中の鉄イオン濃度測定方法は
、呈色試薬を含む溶液を吸光光度セルに送る経路の途中
に設けてある被測定液注入器で、前記溶液の流路内にF
e”及びFe”を含む被測定液を一定量注入して鉄イオ
ンを発色させ、その吸光度を検出することにより被測定
液の鉄イオン濃度を測定する方法において、前記p e
 3 *を発色させ、その濃度を測定する過程と、前記
経路の途中にFe”の酸化剤注入器を設け、該酸化剤注
入器で前記溶液の流路内に酸化剤を注入し、Fe”をF
e3+に酸化する過程と、被測定液中の全Feを発色さ
せ、その濃度を測定する過程と、前記全Feの濃度と前
記Fe32+の濃度との差を演算して前記Fe”の濃度
を求める過程とを有することを特徴とする。
The iron ion concentration measurement method in an alloy plating bath according to the present invention uses a liquid to be measured injector installed in the middle of a path for sending a solution containing a coloring reagent to an absorbance cell, and injects F into the flow path of the solution.
In the method of measuring the iron ion concentration of the liquid to be measured by injecting a certain amount of the liquid to be measured containing e'' and Fe'', causing the iron ions to develop color, and detecting the absorbance, the
3. A process of developing color and measuring its concentration, and installing an oxidizing agent injector for Fe'' in the middle of the path, injecting the oxidizing agent into the flow path of the solution with the oxidizing agent injector, F
A process of oxidizing to e3+, a process of coloring the total Fe in the liquid to be measured and measuring its concentration, and calculating the difference between the total Fe concentration and the Fe32+ concentration to determine the Fe'' concentration. It is characterized by having a process.

〔作用〕[Effect]

本発明の鉄イオン濃度測定方法にあっては、呈色試薬を
含む溶液を吸光光度セルに送る経路の途中に置設しであ
る試料注入器の他にFe”の酸化剤注入器を設け、呈色
試薬を含む溶液の流路内にFe”及びp e 2 *を
含む被測定液及び酸化剤を被測定注入器、酸化剤注入器
で夫々注入し、発色したFe’+の吸光度及びpe2+
がFe’°に酸化されて発色した被測定液中の全Feの
吸光度を夫々測定して濃度を求める。そして全Fe濃度
とFe’″″濃度との差を演算して被測定液中のFe 
2 +濃度を求めるので迅速にしかも高晴度に被測定液
中の2価及び3価の夫々の鉄イオン濃度を測定すること
ができる。
In the iron ion concentration measuring method of the present invention, in addition to the sample injector placed in the middle of the path for sending the solution containing the coloring reagent to the spectrophotometric cell, an oxidizing agent injector of "Fe" is provided, A liquid to be measured containing Fe'' and p e 2 * and an oxidizing agent are injected into the flow path of a solution containing a coloring reagent using a measuring injector and an oxidizing agent injector, and the absorbance of colored Fe'+ and pe2+ are measured.
The concentration is determined by measuring the absorbance of all Fe in the liquid to be measured, which is oxidized to Fe'° and colored. Then, calculate the difference between the total Fe concentration and the Fe''''' concentration to calculate the Fe concentration in the liquid to be measured.
Since the 2+ concentration is determined, the divalent and trivalent iron ion concentrations in the liquid to be measured can be measured quickly and with high clarity.

〔実施例〕〔Example〕

以下本発明方法をその実施例を示す図面に基づき具体的
に説明する。第1図は本発明方法を実施するための装置
の構成を示す模式図であり、図中1はスルホサリチル酸
等の呈色試薬を示している。
The method of the present invention will be specifically explained below based on drawings showing examples thereof. FIG. 1 is a schematic diagram showing the configuration of an apparatus for carrying out the method of the present invention, and 1 in the figure indicates a coloring reagent such as sulfosalicylic acid.

まず呈色試薬溶液1では定量ポンプ2で酸化剤注入器3
へ送られる。酸化剤注入器3は呈色試薬溶液lを流す弁
31と酸化剤4を流す弁32とを備えており、呈色試薬
2+の流路中に酸化剤4を注入するときは、酸化剤4を
流す弁32に自動的に切り替えることが可能となってい
る。またこの酸化剤注入器3の内部または外部には、酸
化剤を一定量溜めるらせん状のチューブ33が設けられ
ており、前記酸化剤注入器3を酸化剤4を流す弁32に
切り替えることにより、酸化剤4がらせん状のチューブ
33に一定量溜められ、さらに定量ポンプ7で呈色試薬
溶液2+の流路に注入される機構になっている。
First, for the coloring reagent solution 1, use the metering pump 2 and the oxidizing agent injector 3.
sent to. The oxidizing agent injector 3 is equipped with a valve 31 for flowing the coloring reagent solution l and a valve 32 for flowing the oxidizing agent 4. When injecting the oxidizing agent 4 into the flow path of the coloring reagent 2+, the oxidizing agent 4 is It is possible to automatically switch to the valve 32 that allows the flow of water. Further, a spiral tube 33 for storing a certain amount of oxidant is provided inside or outside of the oxidizing agent injector 3, and by switching the oxidizing agent 3 to a valve 32 for flowing the oxidizing agent 4, The oxidizing agent 4 is stored in a fixed amount in a spiral tube 33, and is further injected into the flow path of the coloring reagent solution 2+ by a metering pump 7.

試薬溶液6中のFe”を測定する場合は、前述の酸化剤
注入器3へ送られた呈色試薬溶液1は酸化剤4を注入す
ることなくそのまま呈色試薬lを流す弁31を通過し、
被測定注入器5へ送られる。一方、被測定液6中の全F
eを測定する場合は、酸化剤注入器3の弁を酸化剤4が
流れる弁32に切り換え、チューブ33に一定量溜った
酸化剤4を定量ポンプ7で呈色試薬溶液2+の流路に注
入し、被測定注入器5へ送られる。
When measuring "Fe" in the reagent solution 6, the coloring reagent solution 1 sent to the oxidizing agent injector 3 is passed through the valve 31 through which the coloring reagent 1 is passed without injecting the oxidizing agent 4. ,
It is sent to the injector 5 to be measured. On the other hand, the total F in the liquid to be measured 6
When measuring e, switch the valve of the oxidizing agent injector 3 to the valve 32 through which the oxidizing agent 4 flows, and inject a certain amount of the oxidizing agent 4 accumulated in the tube 33 into the flow path of the coloring reagent solution 2+ using the metering pump 7. and is sent to the injector 5 to be measured.

被測定注入器5は呈色試薬溶液1を流す弁51と被測定
液6を流す弁52とを備えており、呈色試薬溶液2+の
流路中に被測定液6を注入するときは、被測定液6を流
す弁52に自動的に切り替えることが可能となっている
。また、この被測定注入器5の内部または外部には、被
測定液6を一定量溜めるらせん状のチューブ53が設け
られており、前記被測定注入器5を被測定液6を流す弁
52に切り換えることにより、被測定液6がらせん状の
チューブ53に一定量溜められ、さらに定量ポンプ8で
呈色試薬溶液lの流路中に注入される機構になっている
。つまり、被測定注入器5へ送られたFe3”の濃度を
測定する場合の呈色試薬溶液1及び全Feの濃度を測定
する場合の酸化剤4を含む呈色試薬溶液Iのいずれにも
、被測定注入器5の弁を被測定液6が流れる弁52に切
り換えられることによりチューブ53に溜まった一定量
の被測定液6が定量ポンプ8で注入される。被測定液6
が注入された呈色試薬溶液1及び酸化剤4を含む呈色試
薬溶液1は夫々被測定注入器5を出て、チューブ9中を
通り±0.5°C以内に制御した恒温槽10を経て、吸
光度測定セル11に流れ込み、図示しない吸光度検出器
で、発色した溶液中のFe”及びFe”がFe3+に酸
化されることにより発色した溶液中の全Feの吸光度が
夫々検出され、濃度が測定される。従って溶液中の全F
e濃度からFe”濃度を減算することにより、溶液中の
Fe”濃度が求められる。以上述べたようにFe”及び
Feおの濃度の測定は呈色試薬溶液l中に酸化剤注入器
3と被測定注入器5とを用いて酸化剤4と被測定液6と
を夫々断続的に注入することにより、被測定液6中のF
e”、 Fe”濃度が交互に自動測定される。なお本発
明方法に用いる酸化剤4には、Fe”を迅速にしかも完
全に酸化でき、スルホサリチル酸等の呈色試薬と反応し
ないものであれば良く、例えばチューブ内で気泡を発生
させない過酸化水素が用いられる。また、酸化剤4及び
被測定液6の注入量は酸化反応の迅速化及び分析の高精
度化のため好ましくは夫々10uff以上であれば良い
The measuring injector 5 is equipped with a valve 51 for flowing the coloring reagent solution 1 and a valve 52 for flowing the measuring liquid 6. When injecting the measuring liquid 6 into the flow path of the coloring reagent solution 2+, It is possible to automatically switch to the valve 52 that allows the liquid to be measured 6 to flow. Further, a spiral tube 53 for storing a certain amount of the liquid to be measured 6 is provided inside or outside of the syringe to be measured 5, and the syringe to be measured 5 is connected to a valve 52 through which the liquid to be measured 6 flows. By switching, a certain amount of the liquid to be measured 6 is stored in the spiral tube 53, and is further injected into the flow path of the coloring reagent solution 1 by the metering pump 8. In other words, in both the coloring reagent solution 1 for measuring the concentration of Fe3'' sent to the syringe to be measured 5 and the coloring reagent solution I containing the oxidizing agent 4 for measuring the concentration of total Fe, By switching the valve of the injector 5 to be measured to the valve 52 through which the liquid to be measured 6 flows, a fixed amount of the liquid to be measured 6 accumulated in the tube 53 is injected by the metering pump 8.The liquid to be measured 6
The injected coloring reagent solution 1 and the coloring reagent solution 1 containing the oxidizing agent 4 exit the syringe 5 to be measured and pass through a tube 9 into a constant temperature bath 10 controlled within ±0.5°C. After that, it flows into the absorbance measurement cell 11, and an absorbance detector (not shown) detects the absorbance of all Fe in the colored solution by oxidizing Fe" and Fe" in the colored solution to Fe3+, and determines the concentration. be measured. Therefore, the total F in the solution
The Fe'' concentration in the solution is determined by subtracting the Fe'' concentration from the e concentration. As mentioned above, the concentration of Fe'' and Fe2 is measured by intermittently injecting the oxidizing agent 4 and the liquid to be measured 6 into the coloring reagent solution l using the oxidizing agent syringe 3 and the measuring syringe 5, respectively. By injecting F into the liquid to be measured 6,
e” and Fe” concentrations are automatically measured alternately. The oxidizing agent 4 used in the method of the present invention may be one that can quickly and completely oxidize Fe'' and does not react with coloring reagents such as sulfosalicylic acid, such as hydrogen peroxide that does not generate bubbles in the tube. In addition, the injection amounts of the oxidizing agent 4 and the liquid to be measured 6 may preferably be 10 uff or more each in order to speed up the oxidation reaction and improve the precision of analysis.

さらに、酸化剤4及び被測定液6を夫々呈色試薬溶液1
に注入するときに用いる定量ポンプ7゜8は厳密に流速
を規定して得られる鉄イオン濃度の再現性をさらに向上
させるために使用したものであり、定量ポンプ7.8を
用いなくても、所望の鉄イオン濃度が得られる。
Furthermore, the oxidizing agent 4 and the liquid to be measured 6 are added to the coloring reagent solution 1, respectively.
The metering pump 7.8 used when injecting the iron ions was used to further improve the reproducibility of the iron ion concentration obtained by strictly regulating the flow rate. The desired iron ion concentration is obtained.

次に、上述した方法を用いてNi’−Fe合金めっき浴
中のpeZ+、 pe++の濃度を測定する例について
述ベる。呈色試薬溶液1として1%濃度のスルホサリチ
ル酸溶液を、酸化剤4として5%濃度の過酸化水素溶液
を夫々用い、まずNi−Fe合金めっき浴中のFe3°
濃度を測定する。スルホサリチル酸溶液を定量ポンプ2
により2mj!/分の流速で酸化剤注入器3を通って被
測定注入器5へ送る。被測定注入器5では弁をNi−F
e合金めっき溶液である被測定液6を流す弁52に切り
換え、20μlの被測定液6をスルホサリチル酸溶液中
に定量ポンプで注入する。そして被測定液6が注入され
たスルホサリチル酸溶液を内径0.5mm、長さ3mの
フッ素樹脂のチューブ9に通過させ、22±0.5°C
に保った恒温槽10を経由させた後光路長10IIII
Ilの吸光光度セル11に流し込む。図示しない吸光度
検出器で波長500nmにおける吸光光度セル11中の
発色したFe”°の定量を行う。次にNi−Fe合金め
っき浴中の全Fe濃度を測定する。
Next, an example will be described in which the concentration of peZ+ and pe++ in a Ni'-Fe alloy plating bath is measured using the method described above. Using a 1% concentration sulfosalicylic acid solution as the coloring reagent solution 1 and a 5% concentration hydrogen peroxide solution as the oxidizing agent 4, Fe3° in the Ni-Fe alloy plating bath was first used.
Measure concentration. Metering pump 2 for sulfosalicylic acid solution
By 2mj! The oxidizer is sent through the oxidizer syringe 3 to the syringe to be measured 5 at a flow rate of /min. In the syringe to be measured 5, the valve is made of Ni-F.
The valve 52 is switched to flow the liquid to be measured 6, which is the e-alloy plating solution, and 20 μl of the liquid to be measured 6 is injected into the sulfosalicylic acid solution using a metering pump. Then, the sulfosalicylic acid solution containing the liquid to be measured 6 was passed through a fluororesin tube 9 with an inner diameter of 0.5 mm and a length of 3 m, and heated to a temperature of 22 ± 0.5°C.
The optical path length after passing through a constant temperature bath 10 maintained at
The sample is poured into the Il absorbance cell 11. An absorbance detector (not shown) is used to quantify the colored Fe"° in the absorbance cell 11 at a wavelength of 500 nm. Next, the total Fe concentration in the Ni--Fe alloy plating bath is measured.

呈色試薬溶液lであるスルホサリチル酸溶液を定量ポン
プ2により2m!/分の流速で酸化剤注入器3へ送る。
A sulfosalicylic acid solution, which is a coloring reagent solution, was pumped to 2 m by metering pump 2! to oxidant injector 3 at a flow rate of /min.

酸化剤注入器3では弁を過酸化水素溶液である酸化剤4
を流す弁に切り換え、50μ2の酸化剤4を注入し、被
測定注入器5へ送る。被測定注入器5では上述した方法
と同様にして、20μ2の被測定液6を注入し、被測定
液6中のFe”をFe3+に酸化して全Feを発色させ
る。酸化剤4及び被測定液6が注入されたスルホサリチ
ル酸溶液はやはり上述と同様の条件のチューブ9に通過
させ、22±0.5°Cに保った恒温槽lOを経由させ
た後、光路長1101aの吸光光度セル11に流し込む
。そして、図示しない吸光度検出器で波長500nmに
おける吸光光度セル11中の全Feの定量を行う。
In the oxidizing agent injector 3, the valve is injected with the oxidizing agent 4, which is a hydrogen peroxide solution.
50 μ2 of oxidizing agent 4 is injected and sent to the syringe 5 to be measured. In the measuring injector 5, in the same manner as described above, 20 μ2 of the liquid to be measured 6 is injected, and Fe'' in the liquid to be measured 6 is oxidized to Fe3+, so that all Fe is colored.The oxidizing agent 4 and the liquid to be measured are The sulfosalicylic acid solution into which the liquid 6 was injected is passed through the tube 9 under the same conditions as above, and after passing through the constant temperature bath lO kept at 22±0.5°C, it is passed through the absorbance cell 11 with the optical path length 1101a. Then, the total Fe in the absorbance cell 11 is quantified at a wavelength of 500 nm using an absorbance detector (not shown).

従って全Feの濃度から先に得たFe”の濃度を減算す
ることによりNi−Fe合金めっき溶液中のFe”濃度
が得られる。
Therefore, by subtracting the previously obtained Fe'' concentration from the total Fe concentration, the Fe'' concentration in the Ni--Fe alloy plating solution can be obtained.

第2図は本発明方法によって溶液中のFe”をFe’。Figure 2 shows how Fe' in a solution is removed by the method of the present invention.

に酸化した場合の検出ピークのピーク面積値と測定時間
との関係を示すグラフであり、縦軸にはピーク面積値(
a、u、)が、横軸には時間(秒)が夫々とっである。
This is a graph showing the relationship between the peak area value of the detected peak and the measurement time when oxidized to
a, u,), and time (seconds) is shown on the horizontal axis.

第2図において夫々のピークは3回測定したときに夫々
得られたピークであり、いずれも測定時間は5分以内で
終了していることがわかる。
In FIG. 2, it can be seen that each peak was obtained when measurements were performed three times, and that all measurements were completed within 5 minutes.

つまり、溶液中のFe”、 Fe”の両方の濃度を本発
明方法で測定する場合でも、10分以内の測定時間で測
定することが可能であり、極めて迅速な分析ができる。
In other words, even when measuring the concentrations of both "Fe" and "Fe" in a solution using the method of the present invention, it is possible to perform the measurement within 10 minutes, allowing extremely rapid analysis.

。 第3図は本発明方法により溶液中のPe”をFel+に
酸化させた場合の検出ピークのピーク面積値とFez+
濃度との関係を示したグラフであり、縦軸にはピーク面
積値(a、u、)が、横軸には濃度(g/ I!、 )
が夫々とっである。第3図から明らかな如く、得られた
直線は優れた直線性を示し、このことは本発明方法の優
れた再現性を表わしている。また、本発明方法における
Fe3°の定量精度は±0.1%以内であり、Fe”″
を酸化した場合のPa3+の定量精度・も±0.1%以
内であるので、Fe”−の定量精度は±0.2%以内に
保たれ、このことからも本発明方法は高精度であり再現
性に優れていることがわかる。
. Figure 3 shows the peak area value of the detected peak and Fez+ when Pe'' in the solution is oxidized to Fel+ by the method of the present invention.
This is a graph showing the relationship with concentration, where the vertical axis shows the peak area value (a, u,) and the horizontal axis shows the concentration (g/I!, ).
are each other. As is clear from FIG. 3, the straight line obtained exhibits excellent linearity, indicating the excellent reproducibility of the method of the invention. In addition, the quantitative accuracy of Fe3° in the method of the present invention is within ±0.1%, and Fe""
Since the quantitative accuracy of Pa3+ when oxidizing Fe is also within ±0.1%, the quantitative accuracy of Fe''- is maintained within ±0.2%, and from this, the method of the present invention is highly accurate. It can be seen that the reproducibility is excellent.

〔効果〕〔effect〕

以上詳述した如く、本発明に係る鉄イオン濃度測定方法
では、呈色試薬を含む溶液を吸光光度セルに送る経路の
途中に置設しである被測定注入器の他にFe”、の酸化
剤注入器を設け、呈色試薬を含む溶液の流路内にFe”
+ Fe’+を含む被測定液及び酸化剤を上述した夫々
の注入器で注入し、発色したFe3+の吸光度及びFe
1がFe3″″に酸化されることにより発色した被測定
液中の全Feの吸光度を夫々測定して濃度を求める。そ
して全Fe濃度とpeIs濃度との差を演算してFeト
濃度を求めているので、迅速にしかも高精度で再現性良
くめっき浴中のFe”Fe”の夫々の濃度が測定でき、
めっき操業の安定化及び高品位なめっき膜の開発に寄与
する等本発明は優れた効果を奏する。
As detailed above, in the method for measuring iron ion concentration according to the present invention, in addition to the syringe to be measured, which is installed in the middle of the route for sending a solution containing a coloring reagent to an absorbance cell, A reagent injector is installed, and Fe" is placed in the flow path of the solution containing the coloring reagent.
+ A liquid to be measured containing Fe'+ and an oxidizing agent were injected using the respective syringes mentioned above, and the absorbance of colored Fe3+ and Fe
The concentration is determined by measuring the absorbance of all Fe in the liquid to be measured, which is colored by oxidation of 1 to Fe3''. Since the Fe concentration is calculated by calculating the difference between the total Fe concentration and the PeIs concentration, the concentration of each Fe in the plating bath can be measured quickly, with high precision, and with good reproducibility.
The present invention has excellent effects, such as contributing to the stabilization of plating operations and the development of high-quality plating films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の構成を示す
模式図であり、第2図は本発明方法によるFe”をFe
3+に酸化した場合の検出ピークのピーク面積値と測定
時間との関係を示すグラフであり、第3図は本発明方法
によるFe”をFe’+に酸化した場合の検出ピークの
ピーク面積値とFe”の濃度との関係を示すグラフであ
る。 l・・・呈色試薬溶液 2・・・定量ポンプ 3・・・
酸化剤注入器 4・・・酸化剤 5・・・被測定注入器
6・・・被測定液 7,8・・・定量ポンプ 9・・・
チューブ 11・・・吸光光度セル 特 許 出願人  住友金属工業株式会社代理人 弁理
士  河  野  登  夫+20 時 間 (秒) 図 1.0 2.0 Fe  濃度 (q/α) 図
FIG. 1 is a schematic diagram showing the configuration of an apparatus for carrying out the method of the present invention, and FIG. 2 is a schematic diagram showing the structure of an apparatus for carrying out the method of the present invention.
FIG. 3 is a graph showing the relationship between the peak area value of the detected peak when oxidized to 3+ and the measurement time, and FIG. It is a graph showing the relationship with the concentration of "Fe". l... Coloring reagent solution 2... Metering pump 3...
Oxidizing agent injector 4... Oxidizing agent 5... Injector to be measured 6... Liquid to be measured 7, 8... Metering pump 9...
Tube 11... Absorbance cell patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono +20 Time (seconds) Figure 1.0 2.0 Fe concentration (q/α) Figure

Claims (1)

【特許請求の範囲】 1、呈色試薬を含む溶液を吸光光度セルに送る経路の途
中に設けてある被測定液注入器で、前記溶液の流路内に
Fe^2^+及びFe^3^+を含む被測定液を一定量
注入して鉄イオンを発色させ、その吸光度を検出するこ
とにより被測定液の鉄イオン濃度を測定する方法におい
て、 前記Fe^3^+を発色させ、その濃度を測定する過程
と、 前記経路の途中にFe^2^+の酸化剤注入器を設け、
該酸化剤注入器で前記溶液の流路内に酸化剤を注入し、
Fe^2^+をFe^3^+に酸化する過程と、被測定
液中の全Feを発色させ、その濃度を測定する過程と、 前記全Feの濃度と前記Fe^3^+の濃度との差を演
算して前記Fe^2^+の濃度を求める過程とを有する
ことを特徴とする鉄イオン濃度測定方法。
[Scope of Claims] 1. A liquid to be measured injector installed in the middle of a path for sending a solution containing a coloring reagent to an absorbance cell, which injects Fe^2^+ and Fe^3 into the flow path of the solution. In a method of measuring the iron ion concentration of a liquid to be measured by injecting a certain amount of a liquid to be measured containing Fe^3+, coloring the iron ions, and detecting the absorbance, The process of measuring the concentration, and installing an Fe^2^+ oxidizer injector in the middle of the path,
Injecting an oxidizing agent into the flow path of the solution with the oxidizing agent injector,
A process of oxidizing Fe^2^+ to Fe^3^+, a process of coloring the total Fe in the liquid to be measured and measuring its concentration, the concentration of the total Fe and the concentration of the Fe^3^+. A method for measuring iron ion concentration, comprising the step of determining the concentration of Fe^2^+ by calculating the difference between the two.
JP892489A 1989-01-09 1989-01-09 Measurement of iron ion concentration Pending JPH02183146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP892489A JPH02183146A (en) 1989-01-09 1989-01-09 Measurement of iron ion concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP892489A JPH02183146A (en) 1989-01-09 1989-01-09 Measurement of iron ion concentration

Publications (1)

Publication Number Publication Date
JPH02183146A true JPH02183146A (en) 1990-07-17

Family

ID=11530776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP892489A Pending JPH02183146A (en) 1989-01-09 1989-01-09 Measurement of iron ion concentration

Country Status (1)

Country Link
JP (1) JPH02183146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141521A (en) * 2010-12-29 2011-08-03 山西太钢不锈钢股份有限公司 Method for analyzing all iron in molten steel ingot
CN104034858A (en) * 2014-06-04 2014-09-10 同济大学 Method for simply measuring content of zero-valent iron in iron material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102141521A (en) * 2010-12-29 2011-08-03 山西太钢不锈钢股份有限公司 Method for analyzing all iron in molten steel ingot
CN104034858A (en) * 2014-06-04 2014-09-10 同济大学 Method for simply measuring content of zero-valent iron in iron material

Similar Documents

Publication Publication Date Title
Bakker et al. Peer Reviewed: The new wave of ion-selective electrodes
Durst Continuous determination of free cyanide by means of membrane diffusion of gaseous HCN and an electrode indicator technique
US4120657A (en) Process of and equipment for the analysis of liquid samples by titration
JPH02183146A (en) Measurement of iron ion concentration
Scolari et al. Multicomponent determinations in flow-injection systems with square-wave voltammetric detection using the Kalman filter
Yamane Flow injection determination of traces of cobalt by catalysis of the spadns—hydrogen peroxide reaction with spectrophotometric detection
Attari et al. Spectrophotometric determination of sulfur dioxide
JP2742128B2 (en) Method for adjusting plating solution concentration and plating method
Abicht Controlled dynamic titrator
Tan et al. An automatic back titration method for microchemical analysis
JP3329071B2 (en) Method and apparatus for analyzing nitrate and nitrite ions
Masadome et al. Flow injection determination of iodide ion in a photographic developing solution using iodide ion-selective electrode detector
JP2001124757A (en) Self diagnosis method of system in trimorphic nitrogen- analyzing system
JPH08304376A (en) Analyzing method and analyzing device of tree-type nitrogen in water
JPH06324018A (en) Method and device for continuously measuring hydrogen peroxide
Roy et al. Application of sparging to the automated ion selective electrode determination of Kjeldahl nitrogen
Nagy et al. A novel titration technique for the analysis of streamed samples—the triangle-programmed titration technique: Part 3. Titrations with Electrically Generated Bromine
JPH05179495A (en) Method for administrating nickel-iron plating bath
Reddy et al. Titrimetric determination of dissolved oxygen in waste water
JPS60236063A (en) Fractional measurement method using flow injection analyzing method
JPH05223744A (en) Trace component analyzer
JPH1010050A (en) Gasifying separator of three-form nitrometer
JPS59214755A (en) Concentration measurement using constant potential electrolysis
Whiteley Determination of chromium (III) in the presence of large amounts of chromium (VI)
JPS59212740A (en) Method and apparatus for measuring concentration of plating solution