JPH05223744A - Trace component analyzer - Google Patents

Trace component analyzer

Info

Publication number
JPH05223744A
JPH05223744A JP5688092A JP5688092A JPH05223744A JP H05223744 A JPH05223744 A JP H05223744A JP 5688092 A JP5688092 A JP 5688092A JP 5688092 A JP5688092 A JP 5688092A JP H05223744 A JPH05223744 A JP H05223744A
Authority
JP
Japan
Prior art keywords
sample
reaction reagent
liquid
poured
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5688092A
Other languages
Japanese (ja)
Other versions
JP3046675B2 (en
Inventor
Noboru Yajima
昇 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP4056880A priority Critical patent/JP3046675B2/en
Publication of JPH05223744A publication Critical patent/JPH05223744A/en
Application granted granted Critical
Publication of JP3046675B2 publication Critical patent/JP3046675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To obtain a device for analyzing a trace of constituents which can perform measurement accurately and highly sensitively even if a great amount of a sample liquid is poured by continuously mixing the sample liquid which is poured into a reaction reagent and the reaction reagent which bypasses a sample-pouring part at an exit of the sample-pouring part. CONSTITUTION:At an exit of a sample-pouring part 1, a pure water which is poured into a reaction reagent and a reaction reagent which bypasses 19 the pouring part 1 are mixed continuously. The mixed liquid is introduced to a reaction machine 4 and is subjected to mixing and reaction. Then, the liquid is cooled by a cooling coil 13 and is introduced to an absorbance meter which is used as a detector 14 for measuring absorbance, thus obtaining silicic acid ion concentration according to the peak value. Since all of the pure water which is poured in great quantity are mixed with a color-developing liquid, all of the silicic acid ion within the pure water develop color, thus achieving a normal measurement without causing a peak to be buried under a base line at a low-concentration region of the silicic acid ion or the peak to be split.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は、例えば化学反応を伴う単一流路
方式のFIA(フローインジェクション分析法)を用い
て、水中の微量成分を高感度に定量分析する装置に関す
る。
The present invention relates to an apparatus for quantitatively analyzing trace components in water with high sensitivity by using, for example, a single-channel FIA (flow injection analysis method) involving a chemical reaction.

【0002】[0002]

【従来の技術】図3は、前記微量成分分析装置を示すも
ので、この図において、1は試料注入部で、例えば6個
のポート1a〜1fを備えた6方試料注入部よりなる。この
試料注入部1には、サンプル液供給ライン2と反応試薬
供給ライン3と反応器4とが接続されている。
2. Description of the Related Art FIG. 3 shows the above-mentioned trace component analyzer. In this figure, 1 is a sample injection part, which is composed of, for example, a 6-way sample injection part having 6 ports 1a to 1f. A sample liquid supply line 2, a reaction reagent supply line 3 and a reactor 4 are connected to the sample injection unit 1.

【0003】すなわち、サンプル液供給ライン2は、ポ
ート1aに接続されると共に、その上流側はポンプ(図
外)を介してサンプル液供給源(図外)に接続されてい
る。そして、反応試薬供給ライン3は、ポート1dに接続
されると共に、ポンプ5と脱気器6を備え、さらに、そ
の上流側は、反応試薬タンク7に接続されている。ま
た、反応器4は、流路8を介してポート1cに接続されて
いる。なお、9はポート1b, 1e間を接続するサンプルル
ープ、10はポート1fに接続されると共に、廃液タンク11
を備えたサンプル液排出ラインである。また、12は脱気
器6に接続されたポンプである。
That is, the sample liquid supply line 2 is connected to the port 1a, and its upstream side is connected to a sample liquid supply source (not shown) via a pump (not shown). The reaction reagent supply line 3 is connected to the port 1d, includes a pump 5 and a deaerator 6, and the upstream side thereof is connected to the reaction reagent tank 7. Further, the reactor 4 is connected to the port 1c via the flow path 8. In addition, 9 is a sample loop connecting between the ports 1b and 1e, 10 is connected to the port 1f, and the waste liquid tank 11
It is a sample liquid discharge line equipped with. Further, 12 is a pump connected to the deaerator 6.

【0004】13は前記反応器4の出口側に設けられる冷
却コイル、14は例えば吸光光度計などの検出器である。
また、15は背圧コイル16を介して検出器14に接続された
廃液タンク、17はレコーダ、18はデータ処理装置であ
る。なお、前記反応器4、冷却コイル13は、適宜の恒温
槽にそれぞれ収容されている。
Reference numeral 13 is a cooling coil provided on the outlet side of the reactor 4, and 14 is a detector such as an absorptiometer.
Further, 15 is a waste liquid tank connected to the detector 14 via a back pressure coil 16, 17 is a recorder, and 18 is a data processing device. The reactor 4 and the cooling coil 13 are housed in appropriate thermostats.

【0005】このように構成された微量成分分析装置に
おいては、試料注入部1によって反応試薬中にサンプル
液を注入し、これら両者を反応器4において混合反応さ
せたものを、検出器14において定量することにより、サ
ンプル液に含まれる微量成分を定量分析することができ
る。
In the trace component analyzer thus constructed, the sample injection unit 1 injects the sample solution into the reaction reagent, and both of them are mixed and reacted in the reactor 4, and a quantity is quantified in the detector 14. By doing so, it is possible to quantitatively analyze the trace components contained in the sample liquid.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記微
量成分分析装置に、サンプル液を多量(例えば 500μ
l)に注入して分析した場合、注入したサンプル液の一
部が反応試薬と混合されないために、未反応部分が形成
される。その結果得られるクラマトグラムは、目的成分
の低濃度域においてピークがベースラインに埋没した
り、ピークが割れてしまい、正常な測定を行えなくなる
ことがあった。
However, a large amount of sample liquid (for example, 500 μm) is added to the above trace component analyzer.
When the sample is injected into l) for analysis, an unreacted part is formed because a part of the injected sample liquid is not mixed with the reaction reagent. In the resulting chromatogram, the peak may be buried in the baseline or the peak might be broken in the low concentration region of the target component, and normal measurement could not be performed.

【0007】本発明は、上述の事柄に留意してなされた
もので、その目的とするところは、簡単な工夫により、
サンプル液を多量に注入しても正常に測定が行え、ひい
ては高感度に測定することができる微量成分分析装置を
提供することにある。
The present invention has been made with the above matters in mind, and the purpose of the invention is
An object of the present invention is to provide a trace component analyzer that can perform normal measurement even when a large amount of sample liquid is injected, and can measure with high sensitivity.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明においては、サンプル液を反応試薬に注入す
るための試料注入部の出口側において、前記反応試薬中
に注入されたサンプル液と、試料注入部をバイパスした
反応試薬とを連続的に混合するように構成している。
In order to achieve the above object, in the present invention, at the outlet side of a sample injection part for injecting a sample solution into a reaction reagent, a sample solution injected into the reaction reagent is used. , And the reaction reagent bypassing the sample injection part are continuously mixed.

【0009】[0009]

【作用】上記構成によれば、多量に注入されたサンプル
液の全てが反応試薬と混合されるので、未反応部分がな
くなる。その結果、目的成分の低濃度域においてピーク
がベースラインに埋没したり、ピークが割れるといった
ことがなくなり、正常に測定を行うことができる。
According to the above construction, all of the sample liquid injected in large quantity is mixed with the reaction reagent, so that there is no unreacted portion. As a result, in the low concentration range of the target component, the peak is not buried in the baseline and the peak is not broken, and normal measurement can be performed.

【0010】[0010]

【実施例】以下、本発明の実施例を、図面を参照しなが
ら説明する。なお、以下の説明において、図3に示した
符号と同一のものは同一物である。
Embodiments of the present invention will be described below with reference to the drawings. In the following description, the same parts as those shown in FIG. 3 are the same parts.

【0011】図1は、本発明に係る微量成分分析装置の
一例を示し、この微量成分分析装置が図3に示した従来
のものと大きく異なる点は、試料注入部1をバイパスす
るように、反応試薬供給ライン3と、試料注入部1の下
流側の流路8とをバイパスライン19によって接続したこ
とである。
FIG. 1 shows an example of a trace component analyzer according to the present invention. The difference between this trace component analyzer and the conventional one shown in FIG. 3 is that the sample injection part 1 is bypassed. The reaction reagent supply line 3 and the flow path 8 on the downstream side of the sample injection part 1 are connected by a bypass line 19.

【0012】次に、このように構成した微量成分分析装
置において、例えば超純水中のケイ酸イオンを定量する
場合について説明する。この場合、反応試薬としてモリ
ブデン酸アンモニウムを含む硫酸酸性の発色液を用い
る。そして、この反応試薬を脱気器6で脱気した後、ポ
ンプ5によって反応試薬供給ライン3に一定流量流して
おく。
Next, the case of quantifying silicate ions in, for example, ultrapure water in the trace component analyzer thus constructed will be described. In this case, a sulfuric acid-acidifying color developing solution containing ammonium molybdate is used as a reaction reagent. Then, the reaction reagent is degassed by the deaerator 6, and then a constant flow rate is supplied to the reaction reagent supply line 3 by the pump 5.

【0013】一方、試料注入部1としての6方切換え弁
を切換え動作することにより、サンプル液供給ライン2
によって供給される純水は、反応試薬供給ライン3によ
って供給される反応試薬中に注入される。このとき、試
料注入部1の出口側には、反応試薬供給ライン3を流れ
る反応試薬が、バイパスライン19を経て連続的に流れて
いる。
On the other hand, the sample liquid supply line 2 is operated by switching the 6-way switching valve as the sample injection unit 1.
Pure water supplied by is injected into the reaction reagent supplied by the reaction reagent supply line 3. At this time, the reaction reagent flowing through the reaction reagent supply line 3 continuously flows through the bypass line 19 on the outlet side of the sample injection unit 1.

【0014】従って、試料注入部1の出口側において
は、前記反応試薬中に注入された純水と、試料注入部1
をバイパスした反応試薬とが連続的に混合される。この
混合された液体は反応器4に導入され、混合・反応す
る。そして、この液体は、冷却コイル13で冷却された
後、検出器14としての吸光光度計に導入されて吸光度が
測定され、そのピーク値からケイ酸イオン濃度が得られ
る。
Therefore, on the outlet side of the sample injection part 1, the pure water injected into the reaction reagent and the sample injection part 1
Is continuously mixed with the reaction reagent bypassed. The mixed liquid is introduced into the reactor 4 and mixed / reacted. Then, after being cooled by the cooling coil 13, this liquid is introduced into an absorptiometer as a detector 14 to measure the absorbance, and the silicate ion concentration is obtained from the peak value.

【0015】上記実施例によれば、多量に注入された純
水の全てが発色液と混合されるので、純水中のケイ酸イ
オンは全て発色する。その結果、ケイ酸イオンの低濃度
域においてピークがベースラインに埋没したり、ピーク
が割れるといったことがなくなり、正常に測定を行うこ
とができる。従って、サンプル液を多量に注入してやれ
ば、高感度に測定することができる。発明者の実験によ
れば、従来のほぼ10倍(5ml)ものサンプル液を注入
しても正常に測定することができることが判った。
According to the above-described embodiment, since a large amount of pure water injected is mixed with the color-developing liquid, all silicate ions in the pure water develop color. As a result, the peak is not buried in the baseline or the peak is not broken in the low concentration region of silicate ions, and the measurement can be normally performed. Therefore, if a large amount of sample liquid is injected, highly sensitive measurement can be performed. According to an experiment conducted by the inventor, it was found that the measurement can be normally performed even if a sample solution of about 10 times (5 ml) as compared with the conventional one is injected.

【0016】図2は、本発明の他の実施例を示すもの
で、この実施例においては、バイパスライン19の代わり
に、反応試薬供給ライン3を、脱気器6の上流側におい
て分岐して、反応試薬供給ライン3と並列的に第2の反
応試薬供給ライン20を設け、これにその上流側から順
次、脱気器21、ポンプ22、混合ジョイント23を設けると
共に、試料注入部1のポート1cを混合ジョイント23の入
口側に接続している。このように構成した場合において
も、前記実施例と同様の効果が得られることは云うまで
もない。
FIG. 2 shows another embodiment of the present invention. In this embodiment, instead of the bypass line 19, the reaction reagent supply line 3 is branched on the upstream side of the deaerator 6. A second reaction reagent supply line 20 is provided in parallel with the reaction reagent supply line 3, and a deaerator 21, a pump 22, and a mixing joint 23 are sequentially provided from the upstream side of the second reaction reagent supply line 20, and the port of the sample injection unit 1 is provided. 1c is connected to the inlet side of the mixing joint 23. It is needless to say that the same effect as that of the above embodiment can be obtained even in the case of such a configuration.

【0017】また、本発明は、純水中に含まれるケイ酸
イオンの定量分析以外にも広く適用できることは云うま
でもない。
Needless to say, the present invention can be widely applied to other than the quantitative analysis of silicate ions contained in pure water.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
サンプル液を多量に注入しても目的成分の低濃度域にお
いてピークがベースラインに埋没したり、ピークが割れ
るといったことがなくなり、正常に測定を行うことがで
き、高感度に測定することができるようになった。
As described above, according to the present invention,
Even if a large amount of sample solution is injected, the peak will not be buried in the baseline or the peak will not be broken in the low concentration range of the target component, and normal measurement can be performed and highly sensitive measurement can be performed. It became so.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る微量成分分析装置の一構成例を概
略的に示す図である。
FIG. 1 is a diagram schematically showing a configuration example of a trace component analyzer according to the present invention.

【図2】本発明に係る微量成分分析装置の他の構成例を
概略的に示す図である。
FIG. 2 is a diagram schematically showing another configuration example of the trace component analysis device according to the present invention.

【図3】従来の微量成分分析装置の構成を概略的に示す
図である。
FIG. 3 is a diagram schematically showing a configuration of a conventional trace component analyzer.

【符号の説明】[Explanation of symbols]

1…試料注入部、3…反応試薬供給ライン、4…反応
器、14…検出器。
DESCRIPTION OF SYMBOLS 1 ... Sample injection part, 3 ... Reaction reagent supply line, 4 ... Reactor, 14 ... Detector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 試料注入部に対して反応試薬供給ライン
と反応器とを接続して、試料注入部より反応試薬中にサ
ンプル液を注入するように構成すると共に、前記反応器
の出口側に検出器を接続した微量成分分析装置におい
て、前記試料注入部の出口側において、前記反応試薬中
に注入されたサンプル液と、試料注入部をバイパスした
反応試薬とを連続的に混合するように構成したことを特
徴とする微量成分分析装置。
1. A reaction reagent supply line and a reactor are connected to a sample injection part so that a sample solution is injected into the reaction reagent from the sample injection part, and at the outlet side of the reactor. In a trace component analyzer connected to a detector, on the outlet side of the sample injection section, the sample solution injected into the reaction reagent and the reaction reagent bypassing the sample injection section are continuously mixed. A trace component analyzer characterized in that
JP4056880A 1992-02-08 1992-02-08 Trace component analyzer Expired - Fee Related JP3046675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4056880A JP3046675B2 (en) 1992-02-08 1992-02-08 Trace component analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4056880A JP3046675B2 (en) 1992-02-08 1992-02-08 Trace component analyzer

Publications (2)

Publication Number Publication Date
JPH05223744A true JPH05223744A (en) 1993-08-31
JP3046675B2 JP3046675B2 (en) 2000-05-29

Family

ID=13039733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4056880A Expired - Fee Related JP3046675B2 (en) 1992-02-08 1992-02-08 Trace component analyzer

Country Status (1)

Country Link
JP (1) JP3046675B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833285A (en) * 1987-11-24 1989-05-23 Imanishi Kinzoku Kogyo Kabushiki Kaisha High-frequency heating device having reflecting plates for distribution of high frequency microwaves

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006049239A1 (en) * 2004-11-04 2008-05-29 株式会社フィアモ Method and apparatus for detecting ultra-trace metal element in test solution in real time and in-line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833285A (en) * 1987-11-24 1989-05-23 Imanishi Kinzoku Kogyo Kabushiki Kaisha High-frequency heating device having reflecting plates for distribution of high frequency microwaves

Also Published As

Publication number Publication date
JP3046675B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
JPS6355458A (en) Method and instrument for gas chromatographic analysis
JPH09218204A (en) Minute component analyzer
JPH05223744A (en) Trace component analyzer
JP3786776B2 (en) Flow injection analyzer
JP3050684B2 (en) Trace ion analyzer
US5300441A (en) Method for measuring and determining nitrogen content in a sample and providing an output data of total nitrogen and selected constituent nitrogen compounds including nitrate and nitrite
JPH0560056B2 (en)
CN106053698A (en) Quantitative analysis method for ethylenediamine sulfate
JPH0231156A (en) System for analysis of metal component
JP3166140B2 (en) Free cyanometer
US3505021A (en) Method of amino acid chromatography analysis
JP2701760B2 (en) Chemical composition monitor
JPH08304376A (en) Analyzing method and analyzing device of tree-type nitrogen in water
JPH11326221A (en) Analysis device
US3678734A (en) Analysis of fluids
Roy et al. Application of sparging to the automated ion selective electrode determination of Kjeldahl nitrogen
JPH10142234A (en) Oil content measuring device
JPS60181656A (en) Flow injection analytical apparatus
JPS6067861A (en) Analysis of continuous stream
JP2613237B2 (en) Liquid chromatography and apparatus therefor
JPH0352910B2 (en)
JPH02183146A (en) Measurement of iron ion concentration
JPH0593718A (en) Process liquid chromatograph
JPS5965761A (en) Measurement method for concentration of liquid
JPS6311859A (en) Liquid chromatography analytical method and apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees