JPS59212740A - Method and apparatus for measuring concentration of plating solution - Google Patents

Method and apparatus for measuring concentration of plating solution

Info

Publication number
JPS59212740A
JPS59212740A JP8667783A JP8667783A JPS59212740A JP S59212740 A JPS59212740 A JP S59212740A JP 8667783 A JP8667783 A JP 8667783A JP 8667783 A JP8667783 A JP 8667783A JP S59212740 A JPS59212740 A JP S59212740A
Authority
JP
Japan
Prior art keywords
solution
soln
reaction
sample
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8667783A
Other languages
Japanese (ja)
Inventor
Takashi Ochiai
崇 落合
Yasuo Iguma
康夫 猪熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8667783A priority Critical patent/JPS59212740A/en
Publication of JPS59212740A publication Critical patent/JPS59212740A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To detect rapidly and precisely the concn. of Fe<3+> with a simple apparatus by injecting a fixed amt. of a plating soln. into the stream of a reaction soln. contg. a reaction reagent, allowing to pass the soln. through a small-sized tube, and measuring the change in the absorbance of the reaction soln. CONSTITUTION:A sample of a plating soln. from a sample supply source 1 is sent to an injector 3 through one solenoid valve selected from solenoid valves 2. Meanwhile, a reaction soln. 4 is sent to the injector 3 by a proportioning pump 5. After passing through the injector 3, the reaction soln. which is injected with a sample soln. passes through a small-sized tube 6, and flows into a measuring cell 7. By measuring the absorbance with an absorptiometer consisting of the cell 7, a light source 8, an interference filter 9, and a photodetector 10, the concn. of Fe<3+> can be measured rapidly and precisely with the simple apparatus.

Description

【発明の詳細な説明】 (発明の分野) 本発明は、電気メッキ液中のFe3+濃度を簡単迅速に
測定する方法及びそのために使用する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for simply and quickly measuring the Fe3+ concentration in an electroplating solution and an apparatus used therefor.

電気メッキ液は、鋼板がメッキ液に溶解するか、あるい
は鉄を含む合金メッキを行う場合のように積極的に鉄源
を添加することなどにより、鉄イオンを含む。鉄イオン
にはFe2+とFeがあるが、Fe2+は陽極において
酸化されてFe3+になる。このFe”は、メッキ効率
やメッキ被膜性状に影響を及ぼすものであるから、所定
の濃度lこ維持する必要がある。
The electroplating solution contains iron ions, either by dissolving the steel sheet in the plating solution or by actively adding an iron source as in the case of alloy plating containing iron. Iron ions include Fe2+ and Fe, and Fe2+ is oxidized to Fe3+ at the anode. Since this Fe'' affects the plating efficiency and the properties of the plating film, it is necessary to maintain a predetermined concentration.

(従来技術) このFe3+を所定の濃度に制御するために、Fe3+
儂度が測定されるのであるが、その測定方法としては、
吸光光度法や還元滴定法などが従来採用されていた。し
かし、これらの測定方法3こは、以下に述べるような欠
点があった。
(Prior art) In order to control this Fe3+ to a predetermined concentration,
Self-reliance is measured, and the method of measurement is as follows:
Conventionally, methods such as spectrophotometry and reductive titration have been used. However, these three measurement methods had drawbacks as described below.

1.吸光元度法 (at連続希釈方式 Fe3+と選択的に反応する発色試薬を含む反応液をメ
ッキ液とともに、それぞれ定流量ポンプで採取して混合
する方法である。混合比が分析精度を決定する要因とな
るので、長時間(こ渡って混合比、すなわち流量比を一
定Cこ保つ必要がある。このため、高価な定流量ポンプ
を必要とし、才だその保守・点検を頻繁(こ行う必要が
あった。さらζこ、高精度に試料溶液を採取するには少
くとも数d/分の流量を流すポンプを使用し、他方、反
応溶液をそれCこ見合う10倍以上の流量で流すため、
反応液の使用量が多い。
1. Absorbance method (at continuous dilution method) A method in which a reaction solution containing a coloring reagent that selectively reacts with Fe3+ is collected and mixed together with a plating solution using a constant flow pump. The mixing ratio is a factor that determines analysis accuracy. Therefore, it is necessary to maintain a constant mixing ratio, that is, the flow rate ratio, for a long period of time.This requires an expensive constant flow pump, and requires frequent maintenance and inspection. In addition, in order to collect the sample solution with high precision, a pump with a flow rate of at least several d/min is used, and on the other hand, in order to flow the reaction solution at a flow rate of at least 10 times the corresponding flow rate,
Too much reaction solution is used.

{l1}間歇希釈方式 一定容量の試料溶液と反応試薬を含む希釈溶液とを混合
容器に採取し均質(こ混合した後、その溶液を吸光光度
計に導き吸光度を測定する方法である。1試料当りの分
析所要時間が長いため、濃度変化が大きく頻繁な分析が
要求される場合、複数個所の分析を一台の装置で行う場
合等には適さない。
{l1} Intermittent dilution method This is a method in which a fixed volume of sample solution and a diluted solution containing a reaction reagent are collected in a mixing container and mixed until homogeneous.Then, the solution is introduced into an absorptiometer and the absorbance is measured.One sample Since the time required for each analysis is long, it is not suitable when frequent analyzes are required due to large concentration changes, or when analyzing multiple locations with one device.

2.還元滴定法 一定容量の試料溶液を反応容器に採取し、濃度が知られ
ている衛元試薬を逐次滴下し、当量点に達するまでに要
した液量からFe3+の濃度を求める方法である。この
方法も、分析所要時間が長いという欠点を持つ。また、
還元試薬が不安定であるから、その入れ替えや点検を頻
繁に行う必要があり、長時間の無人運転には適さない。
2. Reductive titration method A fixed volume of sample solution is taken into a reaction vessel, a sanitary reagent of known concentration is sequentially added dropwise, and the concentration of Fe3+ is determined from the amount of liquid required to reach the equivalence point. This method also has the disadvantage of requiring a long analysis time. Also,
Since the reducing reagent is unstable, it must be replaced and inspected frequently, making it unsuitable for long-term unattended operation.

(発明の目的) 本発明は、従来技術におけるこのような欠点を解消し、
簡単な装置で迅速に且つ精度よ(Fe”+濃度を測定す
ることを目的Cこしたものである。
(Object of the invention) The present invention overcomes these drawbacks in the prior art and
The purpose of this method is to quickly and accurately measure the (Fe''+ concentration) using a simple device.

(発明の構成) 本発明(こおいては、反応溶液と試料溶液との混合を完
全Cこ行わせることに代え、細いチューブの中を一定流
速で流れる過渡的な状態の下にFe炭度を測定すること
(こより再現性を確保した。一定流速で流れる反応溶液
の流れの中に一定容量の試料溶液を瞬間的に注入し一様
な内径の細いチューブの中を流すとき、その試料溶液は
、流れて行くCこ従って次第に反応溶液ζこ分散し希釈
される。このようにして、一定条件の下で混合された溶
液の吸光度を連続的(こ測定することにより、少ない試
薬使用量で短時間(こしかも高い精度でFe3+濃度力
弐測定される。
(Structure of the Invention) In the present invention, instead of completely mixing the reaction solution and sample solution, the reaction solution and the sample solution are mixed with Fe carbon under a transient state of flowing at a constant flow rate in a thin tube. (This ensured reproducibility. When a fixed volume of sample solution is instantaneously injected into a reaction solution flowing at a constant flow rate and flows through a narrow tube with a uniform inner diameter, the sample solution The flowing C gradually disperses and dilutes the reaction solution ζ.In this way, by continuously measuring the absorbance of the mixed solution under certain conditions, it is possible to use a small amount of reagents. The Fe3+ concentration can be measured in a short time (and with high precision).

すなわち、本発明の方法は、発色試薬を含む反WhM液
の流れの中(こ一定量のメッキ液を注入し、細いチュー
ブの中を通した後に、反応溶液の吸光度の変化を測定す
ることにより、電気メ゛ンキ液中のFe.”![を測定
するものである。
That is, the method of the present invention involves injecting a certain amount of plating solution into a flow of anti-WhM solution containing a coloring reagent and measuring the change in absorbance of the reaction solution after passing through a thin tube. , to measure Fe.''! in the electrical paint solution.

また、定量範囲を拡大するために、発色試薬の最大吸収
波長ではなくピーク位置からずらした波長で測定するこ
ととし、これに適した試薬としてスルホサリチル酸又は
チオシアン酸塩を使用することが望ましい。
In addition, in order to expand the quantitative range, measurements should be performed at a wavelength shifted from the peak position of the coloring reagent rather than at its maximum absorption wavelength, and it is desirable to use sulfosalicylic acid or thiocyanate as a suitable reagent for this purpose.

そして、この方法を実施するための装置は、発色試薬を
含む反応溶液を吸光光度計ζこ送る経路の途中に、一定
量のメッキ液を注入する注入器及び注入されたメッキ液
と共に前記反応溶液が貫流する細いチューブを設けたも
のである。
The apparatus for carrying out this method includes a syringe for injecting a certain amount of plating solution into a path along which a reaction solution containing a coloring reagent is sent to the spectrophotometer, and a syringe for injecting a certain amount of the plating solution, and the reaction solution together with the injected plating solution. It is equipped with a thin tube through which water flows.

第1図は、その装置を示したものである。試料供給源1
から送り込まれる試科浴液は、電磁弁2を介して供給ラ
インの1つが選択されることにより、注入器乙に送られ
る。他方、反応溶液4は、定流量ポンプ5で注入器乙に
送られる。注入器6は、試料溶液を流す流路と反応溶液
を流す流路とを備えており、この流路を互いに切り替え
ることにより試料票液の流路に溜った試料済液を反応溶
液の流路中ζこ注入する。試料俗液が注入された反応m
液は5注入器6を出た後、細いチューブ6を通り、吸光
度測定セルフに流れ込む。吸光光度計は、吸光反測定セ
ル7、タングステンランプのような光源8、干渉フィル
ター9及び光量を電気信号に変換する検出器10で構成
する。
FIG. 1 shows the device. Sample source 1
By selecting one of the supply lines via the solenoid valve 2, the test bath liquid is sent to the syringe B. On the other hand, the reaction solution 4 is sent to the syringe B by a constant flow pump 5. The injector 6 is equipped with a flow path for flowing the sample solution and a flow path for flowing the reaction solution, and by switching these flow paths to each other, the sampled liquid accumulated in the flow path for the sample slip liquid can be transferred to the flow path for the reaction solution. Inject the medium. Reaction m in which sample liquid was injected
After the liquid leaves the 5 syringe 6, it passes through a thin tube 6 and flows into the absorbance measuring cell. The spectrophotometer comprises an absorption countermeasure cell 7, a light source 8 such as a tungsten lamp, an interference filter 9, and a detector 10 that converts the amount of light into an electrical signal.

試料注入量は,希釈率を上げるためには出来る限り少な
い方が良いが、再現性の点から5μノ以上が必要である
。注入方式は、切替コックの内部又は外部に付設した一
定容量のチューブ6中に試料溶液を満たし、流路を切り
替えてこの部分(こ反応G液を入れて流し出す方式であ
る。このため、採取量はポンプの流量等に影響されない
The amount of sample to be injected should be as small as possible in order to increase the dilution rate, but from the viewpoint of reproducibility it is required to be 5 μm or more. The injection method is to fill a fixed volume tube 6 attached to the inside or outside of the switching cock with the sample solution, and then switch the flow path to pour the reaction G solution into this part and drain it out. The amount is not affected by pump flow rate, etc.

注入した試料溶液と反応溶液を混合するチューブの内径
は02〜1−Qmmが適しており、チューブの径がこの
値より大きくなると再現性が悪くなり、逆に小さくなる
吉内圧が上がりポンプ等の故障率が上がる。また、注入
器6から検出器ioIこ至るチューブの長さは、希釈率
を上げるためには長い方が好ましいが、あまり長くする
と内圧が上がりすぎること、分析時間が長くなること等
から05〜5mが良い。また、注入器64こ設ける試料
溶液を流す流路及び反応溶液を流す流路の容量は、通常
約15μノとする。
A suitable inner diameter of the tube used to mix the injected sample solution and reaction solution is 02 to 1-Qmm.If the tube diameter is larger than this value, reproducibility will deteriorate, and conversely, the Yoshinai pressure will decrease and the pump, etc. Failure rate increases. In addition, the length of the tube from the injector 6 to the detector ioI is preferably long in order to increase the dilution rate, but if it is too long, the internal pressure will rise too much and the analysis time will become long, so it is 0.5 to 5 m. is good. Further, the capacity of the flow path through which the sample solution flows and the flow path through which the reaction solution flows, which are provided with 64 injectors, is usually about 15 μm.

試料注入量を15μノ、反応チューブの内径を0.5m
mとし長さを3mとした場合、希釈率は検出ピーク位置
で1/10程度である。他方、Fe3+を発色させる試
薬の感度は、一般に用いられる10mmの光路長をもつ
吸光度測定セルを用いた場合数10pr)m以下であり
、このままで測定できるFee3+の濃度範囲は数10
0ppm以下tこ限られてしまう。
The sample injection volume was 15μ, and the inner diameter of the reaction tube was 0.5m.
m and the length is 3 m, the dilution rate is about 1/10 at the detection peak position. On the other hand, the sensitivity of the reagent that develops the color of Fe3+ is several tens of pr) m or less when using a commonly used absorbance measurement cell with an optical path length of 10 mm, and the concentration range of Fe3+ that can be measured as is is several tens of pr).
It is limited to 0 ppm or less.

そこで、測定範囲を拡大する目的で吸収セルを2mmと
し、更に吸光度を測定する波長をピーク位置からずらし
て感度を下げた。一般(こ吸収スペクトルのピーク位置
以外で吸光度を測定する楊合はBeerの法則に従わな
いことが多し)が、チオシアン酸塩又はスル妹サリチル
酸を発色試薬Cこ用(/)た場合には、ピーク位置の吸
光度の1/10以下となる波長でもBeerの法則から
のすれが少なl/′1ことを確認した。
Therefore, in order to expand the measurement range, the absorption cell was set to 2 mm, and the wavelength at which the absorbance was measured was shifted from the peak position to lower the sensitivity. In general (the method of measuring absorbance at a position other than the peak position of the absorption spectrum often does not follow Beer's law), when thiocyanate or salicylic acid is used as a coloring reagent, It was confirmed that even at a wavelength that is 1/10 or less of the absorbance at the peak position, the deviation from Beer's law is small l/'1.

次いで、本発明の特徴を災施例に基づき具体的に説明す
る。
Next, the features of the present invention will be specifically explained based on a disaster example.

(実施例) 1%濃度のチオシアン酸アンモニウム溶’lfi−4を
定量ボンブ5で注入器6(こ送った。定量ボンプ5とし
て、長期安定性ζこ優れたブランジャー式ポンプを使用
し、流速を2mt/分さした。注入器6を出たチオシア
ン酸アンモニウム溶液4の流れζま、内径0.5mm,
長さ6mのテフロンチューブ6を通過した後、光路長υ
nmの吸元度測定セノレ7(こがt人した。
(Example) Ammonium thiocyanate solution 'lfi-4 with a concentration of 1% was sent through a metering bomb 5 to a syringe 6.As a metering bomb 5, a plunger type pump with excellent long-term stability was used, and the flow rate was adjusted. The flow rate of ammonium thiocyanate solution 4 leaving the syringe 6 was 2 mt/min.
After passing through the Teflon tube 6 with a length of 6 m, the optical path length υ
nm absorbance measurement sensor 7

この場合、干渉フィルター9として640nmのものを
使用し、この波長Cこ2ける吸光を測定した。
In this case, a 640 nm interference filter 9 was used, and the absorption at this wavelength C2 was measured.

その波長で測定した理由を、第2図を使用して説明する
。第2図は、ioppmのFe3+をチオシアン酸アン
モニウムとスルホサリチル酸で発色させた場合の10M
の吸光度測定セルCこよる吸収スペクトルを示す。前者
は470nm,後者は500nmGこそれぞれ吸収ピー
クを持っている。これらの吸収ピーク位置で吸光度を測
定すれば,それぞれ4001)I)m及び2000pp
m程度が測定可能な上限濃度となる。しかし、ピークの
裾にあたる64Onm付近の吸収を測定すれは10,0
00ppmまで定量範囲が広がる。
The reason for measuring at that wavelength will be explained using FIG. 2. Figure 2 shows 10M when ioppm Fe3+ is colored with ammonium thiocyanate and sulfosalicylic acid.
The absorption spectrum obtained by absorbance measurement cell C is shown. The former has an absorption peak at 470 nm, and the latter at 500 nm. If absorbance is measured at these absorption peak positions, 4001) I) m and 2000 pp, respectively.
The upper limit of the measurable concentration is about m. However, when measuring the absorption near 64 Onm, which is the tail of the peak, it is 10.0 nm.
The quantitative range extends to 00 ppm.

第6図は、第1図(こ示される装置により検出した測定
信号の一例であり、試料注入から25秒でピークが検出
され、長くとも50秒で次の試料が注入できる状態にな
っており、極めて迅速な分析方法であることを示してい
る。
Figure 6 is an example of a measurement signal detected by the apparatus shown in Figure 1.The peak is detected 25 seconds after sample injection, and the next sample can be injected in at most 50 seconds. , it has been shown that this is an extremely rapid analytical method.

第4図は、第1図(こ示した装置の検量線の一例である
。同図において、横軸はFe3+の濃度、縦軸は検出ピ
ークの吸光度であり、優れた直線性を示している。本分
析法の再現精度は、短期的Oこは05%以内であり、1
カ月の長期瘉こ渡っても2%以内の精度を保つことがで
きた。
Figure 4 is an example of the calibration curve for the device shown in Figure 1. In the figure, the horizontal axis is the concentration of Fe3+, and the vertical axis is the absorbance of the detected peak, indicating excellent linearity. The reproducibility accuracy of this analytical method is within 0.05% in the short term.
Even after a long period of several months, the accuracy was maintained within 2%.

以上に述べた実施例では発色試薬としてチオシアン酸ア
ンモニウムを使用したが、スルホサリチル酸を発色試薬
に用いた場合にあっても同様に高精度の測定を迅速に行
うことができた。
In the examples described above, ammonium thiocyanate was used as the coloring reagent, but even when sulfosalicylic acid was used as the coloring reagent, high-precision measurements could be made rapidly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明(こ3いて使用する装置を示すもので
あり、図中、1は試料供給源、6は注入器、4は反応溶
液、6は細いチューブ、7は吸光度測定セルを示す。 第2図は、10ppmのFe3+をチオシ了ン酸アンモ
ニウム及びスルホサリチル酸で発色させた場合の吸収ス
ペクトルを示す。 第3図は、第1図に示した装置(こより検出した測定信
号の一例を示す。 第4図は、同装置の検量線の一例を示す。 1試料源2電磁弁 6注入器4反応溶液 5ボンプ6チューブ 7吸光度測定セル8光源 9干渉フィルター10検出器 −266−
Figure 1 shows the apparatus used in the present invention. In the figure, 1 is a sample supply source, 6 is a syringe, 4 is a reaction solution, 6 is a thin tube, and 7 is an absorbance measurement cell. Figure 2 shows the absorption spectrum when 10 ppm Fe3+ is colored with ammonium thiosinophosphate and sulfosalicylic acid. Figure 3 shows an example of the measurement signal detected by the apparatus shown in Figure 1. Fig. 4 shows an example of the calibration curve of the same device. 1 Sample source 2 Solenoid valve 6 Injector 4 Reaction solution 5 Bump 6 Tube 7 Absorbance measurement cell 8 Light source 9 Interference filter 10 Detector -266-

Claims (1)

【特許請求の範囲】 (1)発色試薬を含む反応溶液の流れの中ζこ一定量の
メッキ液を注入し、細いチューブの中を通した後ζこ、
反応溶液の吸光度の変化を測定することを%徴とする電
気メッキ液中のpes+gfffの測定方法。 {2}発色試薬としてスルホサリチル酸又はチオシアン
酸塩を使用することを特徴とする特許請求の範囲(11
記載の方法。 (3)発色試薬を含む反応溶液を吸光光朋計に送る経路
の途中に、一定量のメッキ液を注入する注入器及び注入
されたメッキ液と共に前記反応浴液が貫流する糾いチュ
ーブを設けたことを特徴とする電気メッキ液中のFe”
濃度の測定装置。
[Claims] (1) A certain amount of plating solution is injected into the flow of the reaction solution containing the coloring reagent, and after passing through a thin tube,
A method for measuring pes+gfff in an electroplating solution, which measures the change in absorbance of a reaction solution as a % indicator. {2} Claim (11) characterized in that sulfosalicylic acid or thiocyanate is used as a coloring reagent
Method described. (3) A syringe for injecting a certain amount of plating solution and a strainer tube through which the reaction bath solution flows together with the injected plating solution are installed in the middle of the path for sending the reaction solution containing the coloring reagent to the spectrophotometer. Fe in electroplating solution characterized by
Concentration measuring device.
JP8667783A 1983-05-19 1983-05-19 Method and apparatus for measuring concentration of plating solution Pending JPS59212740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8667783A JPS59212740A (en) 1983-05-19 1983-05-19 Method and apparatus for measuring concentration of plating solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8667783A JPS59212740A (en) 1983-05-19 1983-05-19 Method and apparatus for measuring concentration of plating solution

Publications (1)

Publication Number Publication Date
JPS59212740A true JPS59212740A (en) 1984-12-01

Family

ID=13893648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8667783A Pending JPS59212740A (en) 1983-05-19 1983-05-19 Method and apparatus for measuring concentration of plating solution

Country Status (1)

Country Link
JP (1) JPS59212740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792717A (en) * 2015-05-05 2015-07-22 梧州市产品质量检验所 Method of detecting iron content in metallic ores

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792717A (en) * 2015-05-05 2015-07-22 梧州市产品质量检验所 Method of detecting iron content in metallic ores

Similar Documents

Publication Publication Date Title
US5230863A (en) Method of calibrating an automatic chemical analyzer
JPH048736B2 (en)
US20170138917A1 (en) Titration method using a tracer to quantify the titrant
Van Staden et al. Determination of sulphate in natural waters and industrial effluents by sequential injection analysis
US4120657A (en) Process of and equipment for the analysis of liquid samples by titration
US20130206599A1 (en) Method for measuring the uranium concentration of an aqueous solution by spectrophotometry
USH1479H (en) Liquid composition analyzer and method
Růžička et al. Flow injection analyzer for students, teaching and research: Spectrophotometric methods
US3186799A (en) Apparatus for automatic analyzing
Betteridge et al. The application of ph gradients in flow-injection analysis: A Method for Simultaneous Determination of Binary Mixtures of Metal Ions in Solution
Malmstadt et al. Automatic Spectrophotometric Titrations: Determination of Milligram Quantities of Thorium
Lauwerys et al. Automated analysis of delta-aminolaevulinic acid in urine
US9011775B2 (en) Cation exchange capacity titration unit
JPS59212740A (en) Method and apparatus for measuring concentration of plating solution
Alexander et al. Rapid-flow continuous analysis with ion-selective electrodes
Herman et al. Serum carbon dioxide determination using a carbonate ion-selective membrane electrode
Cacho et al. Evaluation of color changes of indicators
CN208847651U (en) Detect the device of dissolved organic matter different molecular weight component ETC
Wilson The absorptiometric determination of silicon in water. Part V. Continuous automatic determination of “reactive” silicon
CN205562574U (en) Aquatic permanganate index autoanalyzer
JP3329071B2 (en) Method and apparatus for analyzing nitrate and nitrite ions
CN215598999U (en) Flow injection analysis device with multi-channel detector
Blakeley et al. Wet-chemistry and Autotitrator Analyzers
Tan et al. An automatic back titration method for microchemical analysis
Williams et al. Titration of spoilt beer samples by flow-injection analysis