JPH0218307A - Production of alpha-silicon nitride powder - Google Patents
Production of alpha-silicon nitride powderInfo
- Publication number
- JPH0218307A JPH0218307A JP16773288A JP16773288A JPH0218307A JP H0218307 A JPH0218307 A JP H0218307A JP 16773288 A JP16773288 A JP 16773288A JP 16773288 A JP16773288 A JP 16773288A JP H0218307 A JPH0218307 A JP H0218307A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- si3n4
- alpha
- powder
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 63
- 239000000843 powder Substances 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 229910000077 silane Inorganic materials 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 27
- 239000002994 raw material Substances 0.000 claims description 9
- -1 nitrogen-containing silane compound Chemical class 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 3
- 238000002425 crystallisation Methods 0.000 abstract description 3
- 230000008025 crystallization Effects 0.000 abstract description 3
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 239000007858 starting material Substances 0.000 abstract 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000005245 sintering Methods 0.000 description 12
- 239000013078 crystal Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- 101100516554 Caenorhabditis elegans nhr-5 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000287531 Psittacidae Species 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000012255 powdered metal Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明はα−窒化ケイ素粉末の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing α-silicon nitride powder.
窒化ケイ素粉末は、高強度、耐摩耗性を必要とする治工
具類(切削工具、ダイス、抽伸プラグ等)、産業機械部
品(メカニカルシール、ポンプ部品等)及び耐熱構造部
材(タービン、エンジン部品等)等の用途に利用されて
いる。Silicon nitride powder is used for jigs and tools that require high strength and wear resistance (cutting tools, dies, drawn plugs, etc.), industrial machine parts (mechanical seals, pump parts, etc.), and heat-resistant structural members (turbines, engine parts, etc.) ), etc.
従来、高α化率、高純度かつ結晶形状と大きさの一定し
た高品質の結晶質窒化ケイ素を得る方法として、含窒素
シラン化合物及び/又は非晶質窒化ケイ素に高α化率の
結晶質窒化ケイ素を種として添加する技術が知られてい
る(特公昭62−59050号公報)。この方法によれ
ば、針状晶を含まず、適当な比表面積をもったα化率9
01以上の窒化ケイ素粉末の合成が可能である。−殻内
には、高α化率なもの程、焼結工種でのβ−柱状晶の生
成には良いといわれているが、窒化ケイ素の高α化率と
窒化ケイ素焼結体の高強度等の特性との関係については
よく判っておらず、現在、高温構造材料に要求されてい
る充分な高温強度例えば1200℃の曲げ強度600
MPIL以上は得られていない。Conventionally, as a method for obtaining high-quality crystalline silicon nitride with a high pre-gelatinization rate, high purity, and constant crystal shape and size, a crystalline silicon nitride with a high pre-gelatinization rate has been added to a nitrogen-containing silane compound and/or amorphous silicon nitride. A technique of adding silicon nitride as a seed is known (Japanese Patent Publication No. 62-59050). According to this method, the gelatinization rate is 9, which does not contain needle crystals and has an appropriate specific surface area.
It is possible to synthesize silicon nitride powder of 0.01 or higher. - It is said that the higher the α-ization rate in the shell, the better for the formation of β-columnar crystals in sintering processes, but the high α-ization rate of silicon nitride and the high strength of silicon nitride sintered bodies It is not well understood about the relationship between the properties of
MPIL or higher has not been obtained.
本発明者は、従来技術における問題点、即ち焼結過糧に
於ける緻密化、α−β転移挙動等について、窒化ケイ素
粉末の合成条件を種々変更して得られ九各種粉末金用い
て検討した結果、焼結特性及び焼結体特性を向上せしめ
るには、焼結体組織に於けるβ−柱状晶の制御が1要な
役割を果しており、それは、合成工種で添加したβ−窒
化ケイ素とα−窒化ケイ素とからなる樵にもとづいてい
ることを見い出し、本発明を完成したものである。The present inventor investigated problems in the prior art, such as densification during sintering, α-β transition behavior, etc., by using various powdered metals obtained by variously changing the synthesis conditions of silicon nitride powder. As a result, controlling the β-columnar crystals in the structure of the sintered body plays an important role in improving the sintering properties and properties of the sintered body, and this is due to the fact that β-silicon nitride added in the synthesis process plays an important role. The present invention was completed based on the discovery that the present invention is based on a material consisting of .alpha.-silicon nitride and .alpha.-silicon nitride.
丁なわち、本発明は、含窒素シラン化合物及び/又は非
晶質窒化ケイ素を原料とし、この原料に、比表面積10
−2011=”/!lでple 、 ALs ”及びM
gの合計が1 [100ppm以下のβ−窒化ケイ素と
α−窒化ケイ素とを、前記原料から生成される理論窒化
ケイ素に対して合計2〜10′N量畳かつβ−窒化ケイ
素0.3〜5exsの割合として添加し、次いでそれを
非酸化性雰囲気下において加熱結晶化することt−W徴
とするα−窒化ケイ素粉末の製造方法である。Specifically, the present invention uses a nitrogen-containing silane compound and/or amorphous silicon nitride as a raw material, and this raw material has a specific surface area of 10
-2011="/!l in ple, ALs" and M
The total amount of g is 1 [100 ppm or less of β-silicon nitride and α-silicon nitride, and the total amount of β-silicon nitride is 2 to 10'N based on the theoretical silicon nitride produced from the above raw materials, and β-silicon nitride is 0.3 to This is a method for producing α-silicon nitride powder, in which the α-silicon nitride powder is added at a ratio of 5exs, and then heated and crystallized in a non-oxidizing atmosphere.
以下、さらに詳しく本発明について説明する。The present invention will be explained in more detail below.
先ず、含窒素シラン化合物及び/又は非晶質窒化ケイ素
原料、例えばハロゲン化ケイ素、モノシランがス等とア
ンモニアガスを気相で反応させて得られた原料に、その
原料から生成する理論窒化ケイ素に対して、それぞれ比
表面積が10〜20m”/ElでかつF8.AL%Ca
及びMgの合計(以下金属不純物という)が1000
ppm以下のβ−窒化ケイ素とα−窒化ケイ素とt−S
として合計で内側2〜10重量幅好ましくは4〜7重量
憾でかつβ−窒化ケイ素0.3〜3重量係好ましくは0
.4〜1.2重量%の割合で添加する。β−窒化ケイ素
のβ化率は80嗟以上特に901以上が望ましく、また
α−窒化ケイ素のα化率は801以上特に90嘔以上が
望ましい。First, a raw material obtained by reacting a nitrogen-containing silane compound and/or an amorphous silicon nitride raw material, such as silicon halide, monosilane, etc., with ammonia gas in the gas phase is reacted with the theoretical silicon nitride produced from the raw material. On the other hand, each has a specific surface area of 10 to 20 m”/El and F8.AL%Ca
and Mg (hereinafter referred to as metal impurities) is 1000
ppm or less β-silicon nitride, α-silicon nitride and t-S
In total, the inside weight range is 2 to 10, preferably 4 to 7, and the β-silicon nitride is 0.3 to 3, preferably 0.
.. It is added in a proportion of 4 to 1.2% by weight. The beta conversion rate of β-silicon nitride is desirably 80 or more, especially 901 or more, and the gelatinization rate of α-silicon nitride is preferably 801 or more, especially 90 or more.
ここで、種として混合するβ−窒化ケイ素とα−窒化ケ
イ素の比表面積t10〜2011279に限定した理由
は、10 F16”/9未満になると熱分解して生じる
窒化ケイ素自身の粒子が大きくなって焼結特性及び焼結
体特性の向上は期待できず、一方、20 m”/gt−
越えると生成する窒化ケイ素が微粉末になり過ぎて取扱
い性と成形性が悪くなるからである。また金属不純物?
11000pp以下に限定し九理由は、1000 pp
m を越えると粒界相中の金属不純物の濃縮に起因する
と推定される高温強度の劣化が起こる。Here, the reason why the specific surface area of β-silicon nitride and α-silicon nitride mixed as seeds is limited to t10 to 2011279 is that when it is less than 10 F16"/9, the particles of silicon nitride itself generated by thermal decomposition become larger. No improvement in the sintering properties or properties of the sintered body can be expected;
This is because if it exceeds the limit, the silicon nitride produced becomes too fine a powder, resulting in poor handling and moldability. Another metal impurity?
The reason for limiting the amount to 11,000 pp or less is 1,000 pp.
If m is exceeded, high-temperature strength deteriorates, which is presumed to be caused by concentration of metal impurities in the grain boundary phase.
さらに本発明において、種の添加量をβ−窒化ケイ素と
α−窒化ケイ素の合計で2〜10″Nt俤とした理由は
、2x量憾未満であると熱分解して生じる窒化ケイ素自
身の粒子が大きKなって焼結特性及び焼結体特性の向上
は1めす、一方、10重竜憾を越えると生成する窒化ケ
イ素が微粉末になり過ぎて取扱い性と成形性が悪くなり
、また経済的にも不利となるからである。さらにその際
、β−窒化ケイ素量t 0.5〜5111慢としたのは
、0.3x量幅未満では粒界相よりβ−柱状晶が析出す
る際の核の数が不足し、その結果、不均一なβ−柱状晶
となり焼結特性と焼結体特性を向上させることができず
、一方、!1″Xt*t−越えると、生成するα−窒化
ケイ素のα化率が低下し、さらには焼結時の核の数の増
加に伴い焼結体組織におけるβ−柱状晶の微細化が起こ
り焼結体特性が向上しなくなるからである。Furthermore, in the present invention, the reason why the amount of seeds added is 2 to 10''Nt in total of β-silicon nitride and α-silicon nitride is that if the amount is less than 2x, particles of silicon nitride itself will be generated by thermal decomposition. When K becomes large, the sintering properties and the properties of the sintered compact are improved by 1, but on the other hand, when K exceeds 10 times, the silicon nitride produced becomes too fine a powder, which deteriorates the handling and formability, and also makes it less economical. Furthermore, in this case, the β-silicon nitride amount t is set to be 0.5 to 5111. If the amount is less than 0.3x, β-columnar crystals will precipitate from the grain boundary phase. The number of nuclei is insufficient, resulting in non-uniform β-columnar crystals, making it impossible to improve the sintering properties and properties of the sintered compact.On the other hand, if the number exceeds !1″ - This is because the gelatinization rate of silicon nitride decreases, and furthermore, as the number of nuclei increases during sintering, the β-columnar crystals in the structure of the sintered body become finer, and the properties of the sintered body no longer improve.
次に、含窒素シラン化合物及び/又は非晶質窒化ケイ素
に上記α−及びβ−窒化ケイ素粉末を添加した混合物を
非酸化性雰囲気下で加熱結晶化し、添加し次窒化ケイ素
粉末表面上に包晶反応的にα−窒化ケイ素を析出させる
。ここで非酸化性雰囲気とは窒素又はアンモニアを含む
雰囲気である。Next, a mixture of a nitrogen-containing silane compound and/or amorphous silicon nitride with the above α- and β-silicon nitride powders is heated and crystallized in a non-oxidizing atmosphere, added, and then encapsulated on the surface of the silicon nitride powder. α-Silicon nitride is precipitated by crystal reaction. Here, the non-oxidizing atmosphere is an atmosphere containing nitrogen or ammonia.
非酸化性雰囲気で加熱する理由は、気相反応で得られた
原料は酸化性雰囲気下では非常に不安定であり酸素等と
反応して酸化物又は酸窒化物を生成し易すく、得られる
α−窒化ケイ素の特性を悪化させるからである。この際
の加熱結晶化温度としては、1350℃以上特に145
0℃以上が好ましい。1650℃未満の温度では非晶質
部分が残り生成窒化ケイ素粉末に酸化・変質が生じ充分
な焼結体特性が得られに(い。The reason for heating in a non-oxidizing atmosphere is that raw materials obtained by gas-phase reactions are extremely unstable in an oxidizing atmosphere and easily react with oxygen, etc. to form oxides or oxynitrides. This is because the properties of α-silicon nitride are deteriorated. The heating crystallization temperature at this time is 1350°C or higher, especially 145°C.
The temperature is preferably 0°C or higher. At temperatures below 1650°C, amorphous portions remain and the resulting silicon nitride powder is oxidized and altered, making it impossible to obtain sufficient sintered properties.
以下、実施例と比較例t−6げてさらに具体的に本発明
を説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Example t-6.
冥施例1〜9 比較例1〜1O
NH3と51cz4’1反応温度120℃、NHr5/
51dt4モル比6.8の気相状態で反応させて、含窒
素化合物金得た。次に、この粉末に無添加も含め、β−
窒化ケイ素及びα−窒化ケイ素からなる各穐混合粉末を
、前記窒素化合物から理論的に生成される窒化ケイ素に
対し第1表に示すとおり添加量(内側)を変えて混合し
、N、雰囲気下1550℃×2h加熱し結晶化させてα
−窒化ケイ素粉末を得九。Comparative Examples 1 to 9 Comparative Examples 1 to 1O NH3 and 51cz4'1 reaction temperature 120°C, NHr5/
A nitrogen-containing gold compound was obtained by reacting in a gas phase at a 51dt4 molar ratio of 6.8. Next, β-
Each mixed powder of silicon nitride and α-silicon nitride was mixed with silicon nitride theoretically produced from the nitrogen compound at different amounts (inner side) as shown in Table 1, and then mixed in an N atmosphere. Heated at 1550℃ x 2h to crystallize α
- Obtain silicon nitride powder.
得られたα−窒化ケイ素粉末についてα化率、比表面積
の測定を行った。その結果を第1表に示すO
次に、この粉末90ttlに、焼結助剤として、Mgo
33!m優、Al2O22N :Jt es、 YJ1
035重量憾を添加し、更に1,1.1−トリクロルエ
タンを加えて4時間ボールミルで湿式混合し、乾燥後、
100に9/σ2の成形圧で6×10×60鵡形状に金
型成形した後、2000 kg /aa”の成形圧でC
IP成形した。The α-silicon nitride powder obtained was measured for α-ization rate and specific surface area. The results are shown in Table 1.Next, Mgo was added to 90 ttl of this powder as a sintering aid.
33! m-superior, Al2O22N: Jtes, YJ1
035 weight residue was added, further 1,1,1-trichloroethane was added, wet-mixed in a ball mill for 4 hours, and after drying,
After molding into a 6 x 10 x 60 parrot shape with a molding pressure of 9/σ2 to 100, C was molded with a molding pressure of 2000 kg/aa".
IP molded.
これらの成形体をカーボンルツボにセットし、N2ガス
雰囲気中、1700°CX4h焼成して焼結体を得た。These molded bodies were set in a carbon crucible and fired at 1700°C for 4 hours in a N2 gas atmosphere to obtain a sintered body.
得られた焼結体を研削後相対密度と5点曲げ法にて常温
と高温(1200°G)の強度を測定した。それらの結
果を第2表の焼結体Aとして示す。After grinding the obtained sintered body, its relative density and strength at room temperature and high temperature (1200°G) were measured using a five-point bending method. The results are shown as sintered body A in Table 2.
上記で得られたα−窒化ケイ素粉末93X量係に、焼結
助剤として、Altos 2 il量係及びy、o、。In addition to the amount of α-silicon nitride powder 93X obtained above, the amount of Altos 2 il and y, o, as a sintering aid.
5]r−11%とじ友こと、並びにCIP成形体の焼結
条件t−1850℃X4hとしたこと以外は同様にして
試験しtoその結果上第2表の焼結体Bに示す。5] The test was carried out in the same manner except that R-11% was used and the sintering conditions for the CIP molded body were t-1850°C x 4 hours.The results are shown in sintered body B in Table 2.
さらに上記で得られたα−窒化ケイ素粉末95″N量嗟
に、焼結助剤として、AA、031.5重ii[%及び
y、o、 3.5 N像幅とし大こと、並びにCIP成
形体の焼結条件’t−1850℃X4hとしたこと以外
は同様にして試験した。その結果を第2表の焼結体Cに
示す。Further, a quantity of 95"N of the α-silicon nitride powder obtained above was added as a sintering aid, AA, 031.5 weight II [% and y, o, 3.5 N image width, and CIP. The test was carried out in the same manner except that the sintering conditions for the molded body were t-1850°C for 4 hours.The results are shown in Sintered body C in Table 2.
尚、表に示し次側定値は次の方法によった。The following method was used to determine the next-side constant value shown in the table.
(1)α化率・・・・・・理学電機(株)製のガイが−
フラツクスRAD −I B型のX線回折による。(1) Pregelatinization rate: Gai manufactured by Rigaku Denki Co., Ltd.
Based on X-ray diffraction of flux RAD-IB type.
(2) 比表面積・・・湯浅アイオニクス社製のカン
タープ Jr BET 1点法による。(2) Specific surface area: Based on the Cantarp Jr BET 1-point method manufactured by Yuasa Ionics.
(3)金属不純物(Fe 、 At % CAL %
Mg ) =、rxs−G−1322に準拠。(3) Metal impurities (Fe, At% CAL%
Mg) =, based on rxs-G-1322.
本発明のα−窒化ケイ素扮末は、易焼結性であり焼結体
強度にすぐれた窒化ケイ素焼結体を製造することができ
る。これは、β−窒化ケイ素とα−窒化ケイ素からなる
混合s’i用いることにより、β−柱状晶の析出過8鷺
制御できるので、析出するβ−柱状晶の大きさ、アスペ
クト比等を変化させることができた結果である。The α-silicon nitride powder of the present invention can be easily sintered and can produce a silicon nitride sintered body having excellent sintered body strength. By using a mixture of β-silicon nitride and α-silicon nitride, it is possible to control the precipitation of β-columnar crystals, so the size, aspect ratio, etc. of the precipitated β-columnar crystals can be changed. This is the result of being able to do so.
特許出願人 電気化学工業株式会社Patent applicant Denki Kagaku Kogyo Co., Ltd.
Claims (1)
を原料とし、この原料に、比表面積10〜20m^2/
gでFe、Al、Ca及びMgの合計が1000ppm
以下のβ−窒化ケイ素とα−窒化ケイ素とを、前記原料
から生成される理論窒化ケイ素に対して合計2〜10重
量%かつβ−窒化ケイ素0.3〜3重量%の割合として
添加し、次いでそれを非酸化性雰囲気下において加熱結
晶化することを特徴とするα−窒化ケイ素粉末の製造方
法。(1) Use a nitrogen-containing silane compound and/or amorphous silicon nitride as a raw material, and add a specific surface area of 10 to 20 m^2/
g and the total of Fe, Al, Ca and Mg is 1000 ppm
Adding the following β-silicon nitride and α-silicon nitride in a total proportion of 2 to 10% by weight and 0.3 to 3% by weight of β-silicon nitride based on the theoretical silicon nitride produced from the raw materials, A method for producing α-silicon nitride powder, which comprises then heating and crystallizing the powder in a non-oxidizing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16773288A JP2635695B2 (en) | 1988-07-07 | 1988-07-07 | Method for producing α-silicon nitride powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16773288A JP2635695B2 (en) | 1988-07-07 | 1988-07-07 | Method for producing α-silicon nitride powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0218307A true JPH0218307A (en) | 1990-01-22 |
JP2635695B2 JP2635695B2 (en) | 1997-07-30 |
Family
ID=15855122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16773288A Expired - Fee Related JP2635695B2 (en) | 1988-07-07 | 1988-07-07 | Method for producing α-silicon nitride powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2635695B2 (en) |
-
1988
- 1988-07-07 JP JP16773288A patent/JP2635695B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2635695B2 (en) | 1997-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4117095A (en) | Method of making α type silicon nitride powder | |
US4499193A (en) | Process for producing beta'-silicon aluminum oxynitride (B'-SiAlON) using discrete particles | |
JPS6112844B2 (en) | ||
US4619905A (en) | Process for the synthesis of silicon nitride | |
US4716028A (en) | Process for preparation of high-type silicon nitride powder | |
US4977113A (en) | Process for producing silicon aluminum oxynitride by carbothermic reaction | |
JPS6111886B2 (en) | ||
EP0206795A2 (en) | Method of producing silicon nitride powders | |
JPH0218307A (en) | Production of alpha-silicon nitride powder | |
US5108967A (en) | Process for producing nonequiaxed silicon aluminum oxynitride | |
JPS63239104A (en) | Production of fine silicon nitride powder containing beta-phase | |
JPH082907A (en) | Powdery silicon nitride | |
JPS6144770A (en) | Manufacture of silicon nitride sintered body | |
JPS61242905A (en) | Production of alpha-silicon nitride powder | |
JPS62148309A (en) | Preparation of silicon nitride having high content of alpha type silicon nitride | |
JPS6227004B2 (en) | ||
JP2569074B2 (en) | α-Silicon nitride powder and method for producing the same | |
JPS621564B2 (en) | ||
JPS5849611A (en) | Powder containing 2h type silicon carbide and its preparation | |
JPS61155209A (en) | Preparation of easily sinterable aluminum nitride powder | |
JPS60155509A (en) | Preparation of fine powder of high-purity silicon nitride of isometric system | |
JPS5891028A (en) | Manufacture of silicon carbide powder | |
JPS61256906A (en) | Preparation of alpha type silicon nitride | |
JPH0454609B2 (en) | ||
JPS61256907A (en) | Preparation of alpha type silicon nitride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |