JPH02181984A - Manufacture of superconducting circuit - Google Patents

Manufacture of superconducting circuit

Info

Publication number
JPH02181984A
JPH02181984A JP1002340A JP234089A JPH02181984A JP H02181984 A JPH02181984 A JP H02181984A JP 1002340 A JP1002340 A JP 1002340A JP 234089 A JP234089 A JP 234089A JP H02181984 A JPH02181984 A JP H02181984A
Authority
JP
Japan
Prior art keywords
substrate
thin film
ion beam
ions
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1002340A
Other languages
Japanese (ja)
Other versions
JP2890431B2 (en
Inventor
Shinji Nagamachi
信治 長町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP1002340A priority Critical patent/JP2890431B2/en
Publication of JPH02181984A publication Critical patent/JPH02181984A/en
Application granted granted Critical
Publication of JP2890431B2 publication Critical patent/JP2890431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To form a superconducting thin film in desired patterns by applying a focusing ion beam consisting of ions of a material for the superconducting thin film to the surface of a substrate while attenuating the same to a predetermined energy so that the ions can be vapor deposited directly on the surface of the substrate. CONSTITUTION:While a chamber of a focusing ion beam apparatus having an attenuation function is exhausted, Nb-Ni alloy for example is enclosed in an ion source 11 and the apparatus is set such that Nb<+> ions are guided to a substrate 1 mounted on a sample stage 18. An attenuating power supply 20 is adjusted properly so that the ion source 11 emits a focusing ion beam B attenuated enough (about 200eV or below) to allow Nb<+> ions to be vapor deposited directly on the surface of the substrate 1. The attenuated focusing ion beam B is is deflected by a deflecting electrode 15 so that it is applied to the surface of the substrate 1 in predetermined patterns. In this manner, a superconduction thin film 2 of Nb can be formed in said patterns on the surface of the substrate 1. Material of the superconducting thin film 2 is not limited to Nb, and it may be Pb, Tc, V or the like.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は超電導回路、詳しくは超電導薄膜回路、の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a method for manufacturing a superconducting circuit, specifically a superconducting thin film circuit.

〈従来の技術〉 超電導薄膜回路を製作するには、従来、基板上にNb等
の超電導体を蒸着させて−様な超電導薄膜を形成し、次
いでその表面にレジストを塗布し、露光および現像後に
エツチングを行い、更にレジストを除去するという工程
により、所望のパターンを有する超電導薄膜を得ていた
<Conventional technology> Conventionally, in order to produce a superconducting thin film circuit, a superconducting material such as Nb is deposited on a substrate to form a -like superconducting thin film, a resist is then applied to the surface, and after exposure and development, A superconducting thin film having a desired pattern was obtained by etching and then removing the resist.

〈発明が解決しようとする課題〉 上述のような従来の超電導薄膜回路の製造方法によると
、工程が多く繁雑で、完成までに長時間を要するととも
に、光露光のためにはフォトマスクを製作する必要があ
り、また、薄膜を人気中にさらし、あるいは大気中と真
空中を往復させる工程があるため、大気からの吸着汚染
の惧れもある。
<Problems to be Solved by the Invention> According to the conventional manufacturing method of superconducting thin film circuits as described above, there are many and complicated steps, it takes a long time to complete the circuit, and it is necessary to manufacture a photomask for light exposure. In addition, since there is a process in which the thin film is exposed to heat or sent back and forth between the atmosphere and vacuum, there is a risk of adsorption contamination from the atmosphere.

本発明の目的は、簡単な工程で、しかも、工程途中で超
電導薄膜を大気にさらす必要のない、超電導薄膜回路の
製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a superconducting thin film circuit using simple steps and which does not require exposing the superconducting thin film to the atmosphere during the process.

〈課題を解決するための手段〉 上記の目的を達成するため、本発明では、実施例に対応
する第1図に示すように、基板1上の表面に、超電導薄
膜の素材をイオン化して作った集束イオンビームBを所
定のエネルギに減速して所定パターンで照射することに
より、そのイオンを基板1表面に直接蒸着させる。
<Means for Solving the Problems> In order to achieve the above object, in the present invention, as shown in FIG. By decelerating the focused ion beam B to a predetermined energy and irradiating it in a predetermined pattern, the ions are deposited directly onto the surface of the substrate 1.

く作用〉 集束イオンビームをターゲットの直前であるエネルギ以
下に減速すると、そのイオンはクーゲノトの表面に蒸着
して膜を作る。
Effect> When the focused ion beam is decelerated to below a certain energy just before the target, the ions are deposited on the surface of the Kugenot, forming a film.

本発明はこの性質を利用したもので、超電導薄膜素材を
イオン化して集束イオンビームを作り、これを直接蒸着
可能なエネルギにまで減速して基板1上に所望のパター
ンで照射すれば、基板1の表面にそのパターンの超電導
薄膜2が形成される。
The present invention takes advantage of this property, and by ionizing a superconducting thin film material to create a focused ion beam, decelerating the beam to an energy level that allows direct vapor deposition, and irradiating it onto the substrate 1 in a desired pattern, the substrate 1 can be irradiated with a desired pattern. A superconducting thin film 2 having the pattern is formed on the surface of the superconducting film 2.

〈実施例〉 第1図は本発明実施例の工程説明図で、第2図はその工
程に使用される減速機能付の集束・イオンビーム装置の
構造説明図である。
<Embodiment> FIG. 1 is a process explanatory diagram of an embodiment of the present invention, and FIG. 2 is a structural diagram of a focused ion beam device with a deceleration function used in the process.

まず、石英、Si等の基板1の表面を清浄化し、これを
第2図に例示する減速機能付の集束イオンビーム装置の
サンプルステージ17上に装着する。
First, the surface of a substrate 1 made of quartz, Si, etc. is cleaned, and this is mounted on a sample stage 17 of a focused ion beam device with a deceleration function, as illustrated in FIG.

この減速機能付の集束イオンビーム装置は、チャンバ(
図示せず)内に液体金属イオン源11、引出し電極12
、静電型レンズ13aおよび13b1マスフイルタ14
、偏向電極15、減速電極16、およびサンプルステー
ジ17等を設けるとともに、イオンに加速エネルギを与
える加速電源18と、・イオン源11と引出し電極12
間に電位差を与える引出し電源19、および、イオンに
減速エネルギを与える減速電源20を備えている。この
構成により、イオン源11から引出されたイオンビーム
Bは静電型レンズ13a、13bで集束されると同時に
、マスフィルタ14で所望イオンのみが選別されてサン
プルステージ17に導かれるが、この集束イオンビーム
Bがサンプルステージ17に到達するときのエネルギは
、加速電源18と減速電源20との出力電圧差に等しい
ものとなる。
This focused ion beam device with deceleration function has a chamber (
(not shown) contains a liquid metal ion source 11 and an extraction electrode 12.
, electrostatic lenses 13a and 13b1 mass filter 14
, a deflection electrode 15, a deceleration electrode 16, a sample stage 17, etc., and an acceleration power supply 18 that provides acceleration energy to ions; an ion source 11 and an extraction electrode 12;
It includes an extraction power source 19 that provides a potential difference between the ions, and a deceleration power source 20 that provides deceleration energy to the ions. With this configuration, the ion beam B extracted from the ion source 11 is focused by the electrostatic lenses 13a and 13b, and at the same time only desired ions are selected by the mass filter 14 and guided to the sample stage 17. The energy when the ion beam B reaches the sample stage 17 is equal to the output voltage difference between the acceleration power source 18 and the deceleration power source 20.

すなわち、集束イオンビームBは、減速電極16に近づ
くまでは加速電源18で与えられるエネルギを持ってい
るが、減速電極1日とサンプルステージ17の電位を減
速電源20によって上げると、基板1に入射する集束イ
オンビームBはその分だけ減速される。従って、減速電
源20の出力調整により、原理的には、0〜加速電源1
8出力までの間で、連続的に集束イオンビームBの基板
1への到達エネルギを変化させ得ることになる。
That is, the focused ion beam B has the energy given by the acceleration power source 18 until it approaches the deceleration electrode 16, but when the potentials of the deceleration electrode 1 and the sample stage 17 are raised by the deceleration power source 20, the focused ion beam B becomes incident on the substrate 1. The focused ion beam B is decelerated by that amount. Therefore, by adjusting the output of the deceleration power supply 20, in principle, the
This means that the energy that the focused ion beam B reaches the substrate 1 can be changed continuously between up to 8 outputs.

さて、このような装置のチャンバ内を真空引きするとと
もに、イオン源11に例えばNb−N合金を封入し、N
b”イオンをサンプルステージ16上の基板1に導くよ
うセツティングする。そして、減速電源20の調節によ
り、Nb”が基板1の表面に直接蒸着できる程度(20
0eV以下程度)に減速した集束イオンビームBを発生
させる。この減速された集束イオンビームBを偏向電極
15で偏向させることにより、第1図に示すようにu+
5.1の表面に所定のパターンで照射する。
Now, the chamber of such an apparatus is evacuated, and the ion source 11 is filled with, for example, an Nb-N alloy,
Nb" ions are set to be guided to the substrate 1 on the sample stage 16. Then, by adjusting the deceleration power source 20, the Nb" ions are set to the extent that they can be directly deposited on the surface of the substrate 1 (20
A focused ion beam B decelerated to approximately 0 eV or less is generated. By deflecting this decelerated focused ion beam B with the deflection electrode 15, as shown in FIG.
5. Irradiate the surface of 1 in a predetermined pattern.

これにより、基板1の表面にはそのパターンのNb製の
超電導薄膜2が形成される。
As a result, a superconducting thin film 2 made of Nb having the pattern is formed on the surface of the substrate 1.

なお、超電導薄膜2の材質としては、Nbのほか、Pb
、TcあるいはV等を使用することができ、本発明の方
法によってこれらを用いた超電導薄膜回路を製造するこ
とができる。
In addition to Nb, the material of the superconducting thin film 2 is Pb.
, Tc, V, etc. can be used, and a superconducting thin film circuit using these can be manufactured by the method of the present invention.

〈発明の効果〉 以上説明したように、本発明によれば、超電導薄膜素材
をイオン化した集束イオンビームを減速して基ヰ反に照
射することによって、そのイオンを基板表面に直接蒸着
させて所望のパターンの超電導薄膜を形成するので、従
来の製造方法に比してその工程を著しく簡略化すること
ができ、製造の所要時間の短縮とコストダウンを達成で
きる。
<Effects of the Invention> As explained above, according to the present invention, a focused ion beam that ionizes a superconducting thin film material is decelerated and irradiated onto a substrate, thereby depositing the ions directly onto the surface of the substrate to achieve a desired effect. Since a superconducting thin film with a pattern is formed, the process can be significantly simplified compared to conventional manufacturing methods, and the required manufacturing time and cost can be reduced.

また、従来の製法のようにレジストの塗布工程や露光、
現像工程等を必要とせず、マスクの製作が不要となると
ともに、工程の途中で大気中に超電導薄膜をさらす必要
がなくなり、吸着汚染の惧れがなく、信頼性の高い超電
導回路が得られる。
In addition, unlike conventional manufacturing methods, the resist coating process, exposure,
There is no need for a developing process, there is no need to manufacture a mask, there is no need to expose the superconducting thin film to the atmosphere during the process, there is no risk of adsorption contamination, and a highly reliable superconducting circuit can be obtained.

【図面の簡単な説明】 第1図は本発明実施例の工程説明図、 第2図はその工程で使用される減速機能付の集束イオン
ビーム装置の構造説明図である。 1・・・基板 2 ・ ・  」=【1′111:≦(1【ンW膜B・
・・集束イオンビーム
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process explanatory diagram of an embodiment of the present invention, and FIG. 2 is a structural diagram of a focused ion beam device with a deceleration function used in the process. 1...Substrate 2 ・ ・''=[1′111:≦(1[nW film B・
・Focused ion beam

Claims (1)

【特許請求の範囲】[Claims] 超電導薄膜素材のイオンからなる集束イオンビームを、
所定のエネルギに減速して基板の表面に所定パターンで
照射し、そのイオンを基板表面に直接蒸着させることを
特徴とする超電導回路の製造方法。
A focused ion beam consisting of ions of superconducting thin film material,
1. A method for manufacturing a superconducting circuit, which comprises irradiating the surface of a substrate with ions at a predetermined energy deceleration in a predetermined pattern, and depositing the ions directly onto the surface of the substrate.
JP1002340A 1989-01-09 1989-01-09 Superconducting circuit manufacturing method Expired - Lifetime JP2890431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002340A JP2890431B2 (en) 1989-01-09 1989-01-09 Superconducting circuit manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002340A JP2890431B2 (en) 1989-01-09 1989-01-09 Superconducting circuit manufacturing method

Publications (2)

Publication Number Publication Date
JPH02181984A true JPH02181984A (en) 1990-07-16
JP2890431B2 JP2890431B2 (en) 1999-05-17

Family

ID=11526570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002340A Expired - Lifetime JP2890431B2 (en) 1989-01-09 1989-01-09 Superconducting circuit manufacturing method

Country Status (1)

Country Link
JP (1) JP2890431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158292A (en) * 1992-11-30 1994-06-07 Shimadzu Corp Vapor deposition device using convergent ion beam

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186342A (en) * 1981-05-13 1982-11-16 Toshiba Corp Manufacture of semiconductor device
JPS60137012A (en) * 1983-12-26 1985-07-20 Ulvac Corp Ion-beam epitaxial growth device
JPS6396921A (en) * 1986-10-13 1988-04-27 Nec Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186342A (en) * 1981-05-13 1982-11-16 Toshiba Corp Manufacture of semiconductor device
JPS60137012A (en) * 1983-12-26 1985-07-20 Ulvac Corp Ion-beam epitaxial growth device
JPS6396921A (en) * 1986-10-13 1988-04-27 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158292A (en) * 1992-11-30 1994-06-07 Shimadzu Corp Vapor deposition device using convergent ion beam

Also Published As

Publication number Publication date
JP2890431B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
US4085330A (en) Focused ion beam mask maker
US4746587A (en) Electron emissive mask for an electron beam image projector, its manufacture, and the manufacture of a solid state device using such a mask
EP0153854A2 (en) Process for forming a pattern film
US4608332A (en) Electron lithography mask manufacture
JPS58124230A (en) Forming method for ultrafine pattern
JPH02181984A (en) Manufacture of superconducting circuit
JPH03129349A (en) Production of photomask
JP3168593B2 (en) Method for generating compound thin film pattern using high-intensity focused ion beam
JPS6358446A (en) Pattern forming method
GB1597595A (en) Manufacture of semiconductor elements
JPS622700B2 (en)
JP2900490B2 (en) Method for manufacturing MES field effect transistor
JP3390181B2 (en) Method for generating compound thin film pattern using high-intensity focused ion beam
JPS6136928A (en) Evacuator
JPH04272640A (en) Focused ion beam etching device
GB2131608A (en) Fabricating semiconductor circuits
JPS63216257A (en) Ion beam device
JP2730269B2 (en) Semiconductor device manufacturing equipment
JPS5884429A (en) Pattern formation
JPS60157220A (en) Electron beam exposing method
JPS6075837A (en) Mask for x-ray exposing and its production
JPS60178623A (en) Charged-beam exposure method
Poole Improvements in or relating to optical components
JPH0626209B2 (en) Etching method
JPS62145816A (en) Photoelectric image transferring apparatus