JPH02181932A - Bipolar junction transistor - Google Patents

Bipolar junction transistor

Info

Publication number
JPH02181932A
JPH02181932A JP184589A JP184589A JPH02181932A JP H02181932 A JPH02181932 A JP H02181932A JP 184589 A JP184589 A JP 184589A JP 184589 A JP184589 A JP 184589A JP H02181932 A JPH02181932 A JP H02181932A
Authority
JP
Japan
Prior art keywords
base
collector
emitter
gaas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP184589A
Other languages
Japanese (ja)
Other versions
JP2764985B2 (en
Inventor
Toru Kimura
亨 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP184589A priority Critical patent/JP2764985B2/en
Publication of JPH02181932A publication Critical patent/JPH02181932A/en
Application granted granted Critical
Publication of JP2764985B2 publication Critical patent/JP2764985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To be provided with a high current-amplification factor, a low contact resistance and a high breakdown-strength property and to realize a low power consumption and an ultrahigh-speed operation by a method wherein n-type germanium is sued for an emitter and a collector, p-type germanium is used for a base and gallium arsenide is used for a depletion layer between the emitter and the base and for a depletion layer between the base and the collector. CONSTITUTION:Ge whose Schottky barrier height with reference to various metals is low is used for an emitter electrode part 7, a base electrode part 8 and a collector electrode part 9 which come into contact with an external circuit. Thereby, it is possible to lower a resistance of the individual electrode resistances. A built-in voltage between the emitter and the base is about 0.6V which is decided by a p-n junction of the Ge; a low power consumption can be realized. In addition, when GaAs is used for parts to be used as depletion layers which isolate the individual electrodes 7, 8, 9, a breakdown strength between the base and the collector is decided by a breakdown strength of the GaAs. Accordingly, a leakage current is small even at room temperature, and a breakdown voltage is large. In addition, a specific permittivity of the GaAs is small at 13.1 as compared with that of the Ge at 16.0; accordingly, a junction capacitance CEB between the emitter and the base and the junction capacitance CBC between the base and the collector are small; the electrode resistances are small; accordingly, this transistor is suitable for a high-speed operation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低消費電力、超高速動作のバイポーラ接合トラ
ンジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a bipolar junction transistor with low power consumption and ultra-high speed operation.

(従来の技術) 高速動作素子として、現在ひ化ガリウム(以下GaAs
)とび化アルミニウムガリウム(AIGaAs)を用い
たヘテロ接合バイポーラトランジスタ(HBT)が実用
化されようとしている。そして、更に高速かつ低消費電
力な素子としてゲルマニウム(Ge)とGaAsのへテ
ロ接合を用いたホットエレクトロントランジスタ(HE
T)やHBTが提案されている。例えばエヌ。
(Prior art) Currently, gallium arsenide (hereinafter referred to as GaAs) is used as a high-speed operating element.
) A heterojunction bipolar transistor (HBT) using aluminum gallium oxide (AIGaAs) is about to be put into practical use. As an element with even higher speed and lower power consumption, the hot electron transistor (HE) uses a heterojunction of germanium (Ge) and GaAs.
T) and HBT have been proposed. For example, N.

チャンド(N、 Chand)等による文献「アプライ
ド。
The literature by Chand (N, Chand) et al. “Applied.

フィジックス・レターズJ (Applied Phy
sics Letters)誌第48巻7号484頁か
らあるようにn型Geをエミッタ、ベース、コレクタに
GaAsをエミッタ・ベース障壁層、ベース・コレクタ
障壁層に用いたHETが提案されているがHET特有の
問題である電流増幅率が小さいという欠点は解決されて
いない。さらにGeとGaAsの伝導帯不連続量は80
meV程度と小さいため実質的に液体窒素温度以下の低
温でないと動作しない。またエイチ・クレーマー(H,
Kroemer)により文献[プロシーデインゲス・オ
ブ・ズイ・アイ・イー・イー・イーJ (Procee
dings of the IEEE)誌70巻1号1
3頁からあるように、n型GaAsをエミッタに、p型
Geをベースに、n型GaAsをコレクタに用いたHB
Tは古くより研究されているが、GaAsはGeやケイ
素(Si)に比べ、伝導帯状態密度が小さいなめコレク
タ電流が大きくとれないこと、金属との接合抵抗が大き
いこと、等の欠点がありこれらは素子の高速動作を妨げ
る要因になっている。
Physics Letters J (Applied Phy
sics Letters, Vol. 48, No. 7, page 484, a HET using n-type Ge as the emitter, base, and collector and GaAs as the emitter/base barrier layer and base/collector barrier layer has been proposed, but there are The problem of low current amplification factor has not been solved. Furthermore, the conduction band discontinuity of Ge and GaAs is 80
Since it is small, on the order of meV, it does not operate unless the temperature is substantially lower than the temperature of liquid nitrogen. Also, H. Kramer (H,
Kroemer) in the literature [Proceedings of Zui I.
dings of the IEEE) Volume 70, No. 1
As shown from page 3, the HB uses n-type GaAs as the emitter, p-type Ge as the base, and n-type GaAs as the collector.
Although T has been studied for a long time, GaAs has disadvantages compared to Ge and silicon (Si), such as a low conduction band density of states, an inability to obtain a large collector current, and a high junction resistance with metals. These are factors that hinder high-speed operation of the device.

(発明が解決しようとする課題) GaAs/GeHBTの持つコレクタ電流値の小さいこ
と、コンタクト抵抗が大きい事等の問題を解決し、また
、Ge/GaAsへテロ接合を利用したHETに比べ電
流増幅率が大きく室温動作が可能なバイポーラ接合トラ
ンジスタ(BJT)を提供することにある。
(Problem to be solved by the invention) Problems such as the small collector current value and large contact resistance of GaAs/GeHBTs are solved, and the current amplification rate is lower than that of HETs using Ge/GaAs heterojunctions. An object of the present invention is to provide a bipolar junction transistor (BJT) which has a large resistance and can operate at room temperature.

(課題を解決するための手段) 本発明はエミッタ及びコレクタにn型のゲルマニウム、
ベースにp型ゲルマニウム、エミッタ/ベース間空乏層
、ベース/コーク2間空乏層にひ化ガリウムを用いたバ
イポーラ接合トランジスタである。
(Means for Solving the Problems) The present invention includes n-type germanium in the emitter and collector.
This is a bipolar junction transistor using p-type germanium for the base, gallium arsenide for the emitter/base depletion layer, and the base/coke 2 depletion layer.

さらに該バイポーラ接合トランジスタにおいて、エミッ
タ層、コレクタ層は電子が縮退する程度に高濃度のn型
に、ベース層は正孔が縮退する程度に高濃度のp型にド
ープされることを特徴としたバイポーラ接合トランジス
タである。
Furthermore, the bipolar junction transistor is characterized in that the emitter layer and the collector layer are doped with a high concentration of n-type to the extent that electrons are degenerated, and the base layer is doped with a high concentration of p-type to the extent that holes are degenerated. It is a bipolar junction transistor.

(作用) Geを用いたBJTは、電子、正孔共に移動度が大きく
コンタクト抵抗が小さく、動作電圧が小さい等、集積化
した場合も含め高速動作に有利であるが、狭バンドギヤ
ツプ半導体であるがゆえブレークダウン電圧が小さくリ
ーク電流が大きいなどの欠点がある。GaAsは温度に
より特性が変化する事は少ないがコンタクト抵抗が大き
くなり、ベース抵抗(RB)とベースlコレクタ接合容
量(C8o)とで表される時定数R8*C8oが小さく
できないため高速動作に関して大きな障害となる。また
禁制帯幅が大きいことから動作電圧が大きく消費電力か
小さくできない。本発明によるBJTは外部回路と接触
するエミッタ(E)、ベース(B)、コレクタ(C)の
各電極部は各種金属とのショットキー障壁高さの低いG
eを用いる。このことにより各電極抵抗を下げることが
できる。またエミッタlベース間のビルトイン電圧はG
eのpnの接合できまる0、6V程度であり低消費電力
が実現できる。また各電極部を分離する空乏層となる部
分にGaAsを用いることでベースlコレクタ間の耐圧
はGaAsの耐圧で決まる。従って本発明のBJTは室
温でもリーク電流が小さく、ブレークダウン電圧が大き
い。さらにGaAsは比誘電率が13.1とGeの16
.0に比べ小さいため、エミッタlベース接合容量(C
F、B)及びCBoは小さく、電極抵抗が小さいことと
あわせて高速動作に適している。さらにE、 B。
(Function) BJTs using Ge have high mobility for both electrons and holes, low contact resistance, and low operating voltage, and are advantageous for high-speed operation even when integrated, but they are narrow bandgap semiconductors. Therefore, it has drawbacks such as low breakdown voltage and large leakage current. The characteristics of GaAs do not change much with temperature, but the contact resistance increases, and the time constant R8*C8o, which is expressed by the base resistance (RB) and the base l-collector junction capacitance (C8o), cannot be made small, making it difficult for high-speed operation. It becomes an obstacle. Furthermore, since the forbidden band width is large, the operating voltage is large and power consumption cannot be reduced. In the BJT according to the present invention, each electrode part of the emitter (E), base (B), and collector (C) that contacts the external circuit has a low Schottky barrier height with various metals.
Use e. This allows the resistance of each electrode to be lowered. Also, the built-in voltage between emitter and base is G
The voltage generated by the pn junction of e is about 0.6V, and low power consumption can be achieved. In addition, by using GaAs for the depletion layer separating each electrode part, the breakdown voltage between the base and the collector is determined by the breakdown voltage of GaAs. Therefore, the BJT of the present invention has a small leakage current and a large breakdown voltage even at room temperature. Furthermore, GaAs has a dielectric constant of 13.1 and Ge's 16
.. Since it is smaller than 0, the emitter l base junction capacitance (C
F, B) and CBo are small and, together with the low electrode resistance, are suitable for high-speed operation. Furthermore, E, B.

Cの各層を縮退する程度に高ドープすることによってそ
れぞれの電極の性質は金属的になりより一層の高速動作
が期待できる。
By heavily doping each layer of C to the extent of degeneracy, the properties of each electrode become metallic, and even higher speed operation can be expected.

(実施例) 以下に本発明の実施例を図面を用いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

半絶縁性GaAs基板1上に分子線エピタキシー法を用
いてn型Ge層2、真性GaAs層3、p型Ge層4、
真性GaAs層5、n型Ge層6を順次積層した。各層
のドーピング濃度及び層厚は以下の通りである。
On a semi-insulating GaAs substrate 1, an n-type Ge layer 2, an intrinsic GaAs layer 3, a p-type Ge layer 4,
An intrinsic GaAs layer 5 and an n-type Ge layer 6 were sequentially laminated. The doping concentration and layer thickness of each layer are as follows.

エミッタ層  sb  ドープ Ge  1*10  
am  3000人エミッタ層/ベース空乏層 ノンドープ GaAs    300人ベース層lコレ
クタ空乏層 ノンドープ GaAs    3000人Geiのドー
パントはn型にアンチモン(以下sb)、p型にガリウ
ム(Ga)を用いた。sbはイオン化クヌーセンセルを
用い1*10 (cm  )の高濃度ドーピングを可能
にした。用中らによる文献「フイフス、インターナショ
ナル・コンファレンス・オン・モレキュラー・ビーム、
エピタキシーJ (Fifth Internatio
nalConference on Mo1ecula
r Beam Epitaxy) 575頁゛からある
ようにGaAs上のGeは反射高エネルギー電子線回折
(RHEED)による表面超構造の観察によりGaAs
(2*2)構造上に成長した場合はn型に、GaAs(
2*4)。
Emitter layer sb doped Ge 1*10
am 3000 emitter layer/base depletion layer non-doped GaAs 3000 base layer l collector depletion layer non-doped GaAs 3000 Gei dopants were antimony (hereinafter referred to as sb) for n-type and gallium (Ga) for p-type. sb enabled doping at a high concentration of 1*10 (cm) using an ionization Knudsen cell. References by Yochu et al. “Fifth International Conference on Molecular Beams,
Epitaxy J (Fifth International
nalConference on Molecula
r Beam Epitaxy) As shown on page 575, Ge on GaAs was determined by observation of the surface superstructure by reflection high energy electron diffraction (RHEED).
When grown on a (2*2) structure, it becomes n-type, and GaAs (
2*4).

(4*2)上に成長した場合はp型になることが知られ
ている。従ってn型のGeはGaAs (2*2)上に
、p型のGeはGaAs(2*4)上に成長すればよい
。各層を成長後CF4ガスおよびCCI□F2ガスを用
いてGaAs層およびGe層をエッチアウトした。オー
ミック電極としてエミッタ、コレクタ電極にAuGeS
bを、ベース電極にA1を用いた。上記の構造ではコレ
クタ空乏層を3000人と厚めに設計したが1500人
程度でも十分な耐圧が得られる。
It is known that when grown on (4*2), it becomes p-type. Therefore, n-type Ge may be grown on GaAs (2*2), and p-type Ge may be grown on GaAs (2*4). After each layer was grown, the GaAs layer and Ge layer were etched out using CF4 gas and CCI□F2 gas. AuGeS for emitter and collector electrodes as ohmic electrodes
b, A1 was used as the base electrode. In the above structure, the collector depletion layer is designed to be thick with 3000 layers, but sufficient breakdown voltage can be obtained even with about 1500 layers.

(発明の効果) 上記の構造で作製したるBJTは高い電流増幅率、低い
コンタクト抵抗、高耐圧性を有し、ターンオン電圧は0
.5vと低い値でありながら十分大きな電流で動作する
ため、低消費電力、超高速動作が期待される。
(Effects of the invention) The BJT manufactured with the above structure has a high current amplification factor, low contact resistance, high voltage resistance, and a turn-on voltage of 0.
.. Since it operates with a sufficiently large current at a low value of 5V, low power consumption and ultra-high speed operation are expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるバイポーラ接合トランジスタの断
面模式図。第2図は本発明によるバイポーラ接合トラン
ジスタの請求項1に述べた型のエネルギーバンドダイヤ
グラム。第3図は従来例によるGaAs/GeHETの
断面模式図。 図に於いて 1・・・半絶縁性GaAs基板、2・・・n型Ge層、
3・・・真性GaAs層、4・p型Ge層、5・・・真
性GaAs層、6・n型Ge層、7・・・エミッタ電極
、8・・・ベース電極、9・・・コレクタ電極、10・
・・n型Geエミッタ層、11・・・n型GaAsバリ
ア層、12・・・n型Geベース層、13・・・n型G
aAsバリア層、14・・・n型Geコレクタ層。
FIG. 1 is a schematic cross-sectional view of a bipolar junction transistor according to the present invention. FIG. 2 is an energy band diagram of a bipolar junction transistor according to the invention of the type claimed in claim 1; FIG. 3 is a schematic cross-sectional view of a conventional GaAs/GeHET. In the figure, 1... semi-insulating GaAs substrate, 2... n-type Ge layer,
3... Intrinsic GaAs layer, 4. P-type Ge layer, 5... Intrinsic GaAs layer, 6. N-type Ge layer, 7... Emitter electrode, 8... Base electrode, 9... Collector electrode. , 10・
... n-type Ge emitter layer, 11... n-type GaAs barrier layer, 12... n-type Ge base layer, 13... n-type G
aAs barrier layer, 14... n-type Ge collector layer.

Claims (1)

【特許請求の範囲】 1)エミッタ及びコレクタにn型のゲルマニウム、ベー
スにp型のゲルマニウム、エミッタ/ベース間空乏層、
ベース/コレクタ間空乏層にひ化ガリウムを用いたバイ
ポーラ接合トランジスタ。 2)特許請求項1記載のバイポーラトランジスタにおい
て、エミッタ層、コレクタ層は電子が縮退する程度に高
濃度のn型に、ベース層は正孔が縮退する程度に高濃度
のp型にドープすることを特徴としたバイポーラ接合ト
ランジスタ。
[Claims] 1) n-type germanium in the emitter and collector, p-type germanium in the base, a depletion layer between the emitter and the base,
A bipolar junction transistor that uses gallium arsenide for the base/collector depletion layer. 2) In the bipolar transistor according to claim 1, the emitter layer and collector layer are doped with an n-type concentration so high that electrons are degenerated, and the base layer is doped with a p-type concentration so high that holes are degenerated. A bipolar junction transistor featuring
JP184589A 1989-01-06 1989-01-06 Bipolar junction transistor Expired - Lifetime JP2764985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP184589A JP2764985B2 (en) 1989-01-06 1989-01-06 Bipolar junction transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP184589A JP2764985B2 (en) 1989-01-06 1989-01-06 Bipolar junction transistor

Publications (2)

Publication Number Publication Date
JPH02181932A true JPH02181932A (en) 1990-07-16
JP2764985B2 JP2764985B2 (en) 1998-06-11

Family

ID=11512887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP184589A Expired - Lifetime JP2764985B2 (en) 1989-01-06 1989-01-06 Bipolar junction transistor

Country Status (1)

Country Link
JP (1) JP2764985B2 (en)

Also Published As

Publication number Publication date
JP2764985B2 (en) 1998-06-11

Similar Documents

Publication Publication Date Title
EP0541971B1 (en) A graded bandgap single-crystal emitter heterojunction bipolar transistor
US7304334B2 (en) Silicon carbide bipolar junction transistors having epitaxial base regions and multilayer emitters and methods of fabricating the same
CA1265626A (en) Electron gas hole gas tunneling transistor device
US4286275A (en) Semiconductor device
Lee et al. Origin of high offset voltage in an AlGaAs/GaAs heterojunction bipolar transistor
US4958208A (en) Bipolar transistor with abrupt potential discontinuity in collector region
JP2801624B2 (en) Heterojunction bipolar transistor
US5349201A (en) NPN heterojunction bipolar transistor including antimonide base formed on semi-insulating indium phosphide substrate
JP2804095B2 (en) Heterojunction bipolar transistor
US5561306A (en) Hetero-bipolar transistor having a plurality of emitters
US5571732A (en) Method for fabricating a bipolar transistor
US5912480A (en) Heterojunction semiconductor device
US6459103B1 (en) Negative-differential-resistance heterojunction bipolar transistor with topee-shaped current-voltage characteristics
Nakajima et al. High-performance AlGaAs/GaAs HBT's utilizing proton-implanted buried layers and highly doped base layers
JPH02181932A (en) Bipolar junction transistor
WO1987000692A1 (en) Semiconductor device
Chung et al. Integration of Si/SiGe HBT and Si-based RITD demonstrating controllable negative differential resistance for wireless applications
Wang et al. Minimization of the offset voltage in heterojunction dipolar transistors by using a thick spacer
Matutinovic-Krstelj et al. Reduction of p/sup+/-n/sup+/junction tunneling current for base current improvement in Si/SiGe/Si heterojunction bipolar transistors
Kyono et al. Very high current gain InGaAs/InP heterojunction bipolar transistors grown by metalorganic chemical vapour deposition
Pelouard et al. Double-heterojunction GaAlInAs/GaInAs bipolar transistor grown by molecular beam epitaxy
JP2621854B2 (en) High mobility transistor
JPH11121461A (en) Hetero junction bipolar transistor
Ohkubo et al. High-reliability InGaP/GaAs HBTs with 153 GHz fT and 170 GHz fmax
Inoue et al. Fabrication and characterization of low barrier height InAs/Ga x In 1-x As/InAs heterostructure diodes toward millimeter-wave detection