JP2764985B2 - Bipolar junction transistor - Google Patents

Bipolar junction transistor

Info

Publication number
JP2764985B2
JP2764985B2 JP184589A JP184589A JP2764985B2 JP 2764985 B2 JP2764985 B2 JP 2764985B2 JP 184589 A JP184589 A JP 184589A JP 184589 A JP184589 A JP 184589A JP 2764985 B2 JP2764985 B2 JP 2764985B2
Authority
JP
Japan
Prior art keywords
layer
type
gaas
base
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP184589A
Other languages
Japanese (ja)
Other versions
JPH02181932A (en
Inventor
木村  亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP184589A priority Critical patent/JP2764985B2/en
Publication of JPH02181932A publication Critical patent/JPH02181932A/en
Application granted granted Critical
Publication of JP2764985B2 publication Critical patent/JP2764985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低消費電力、超高速動作のバイポーラ接合ト
ランジスタに関する。
Description: TECHNICAL FIELD The present invention relates to a bipolar junction transistor with low power consumption and ultra-high speed operation.

(従来の技術) 高速動作素子として、現在ひ化ガリウム(以下GaAs)
とひ化アルミニウムガリウム(AlGaAs)を用いたヘテロ
接合バイポーラトランジスタ(HBT)が実用化されよう
としている。そして、更に高速かつ低消費電力な素子と
してゲルマニウム(Ge)とGaAsのヘテロ接合を用いたホ
ットエレクトロントランジスタ(HET)やHBTが提案され
ている。例えばエヌ・チャンド(N.Chand)等による文
献「アプライド・フィジックス・レターズ」(Applied
Physics Letters)誌第48巻7号484頁からあるようにn
型Geをエミッタ、ベース、コレクタにGaAsをエミッタ・
ベース障壁層、ベース・コレクタ障壁層に用いたHETが
提案されているがHET特有の問題である電流増幅率が小
さという欠点は解決されていない。さらにGeとGaAsの伝
導帯不連続量は80meV程度と小さいため実質的に液体窒
素温度以下の低温でないと動作しない。またエイチ・ク
レーマー(H.Kroemer)により文献「プロシーディング
ス・オブ・ズィ・アイ・イー・イー・イー」(Proceedi
ngs of the IEEE)誌70巻1号13頁からあるように、n
型GaAsをエミッタに、p型Geをベースに、n型GaAsをコ
レクタに用いたHBTは古くより研究されているが、GaAs
はGeやケイ素(Si)に比べ、伝導帯状態密度が小さいた
めコレクタ電流が大きくとれないこと、金属との接合抵
抗が大きいこと、等の欠点がありこれらは素子の高速動
作を妨げる要因となっている。
(Prior art) Currently, gallium arsenide (hereinafter GaAs) is used as a high-speed operation element.
A heterojunction bipolar transistor (HBT) using aluminum gallium arsenide (AlGaAs) is about to be put to practical use. Hot electron transistors (HET) and HBTs using a heterojunction of germanium (Ge) and GaAs have been proposed as devices with higher speed and lower power consumption. For example, the book "Applied Physics Letters" by N. Chand (Applied
Physics Letters, Vol. 48, No. 7, page 484
Type Ge as emitter, base and collector as GaAs
Although HETs used for the base barrier layer and the base-collector barrier layer have been proposed, the drawback of a small current amplification factor, which is a problem unique to HET, has not been solved. In addition, since the conduction band discontinuity of Ge and GaAs is as small as about 80 meV, it does not operate unless the temperature is substantially lower than the liquid nitrogen temperature. H. Kroemer (Proceedi, "Proceedings of zi IEE")
ngs of the IEEE), vol. 70, no. 1, page 13, n
HBTs using n-type GaAs as collector and n-type GaAs as collector based on p-type Ge as emitter,
Has a drawback that the collector current cannot be increased due to a lower conduction band density than Ge and silicon (Si), and the junction resistance with metal is large. These are factors that hinder high-speed operation of the device. ing.

(発明が解決しようとする課題) GaAs/GeHBTの持つコレクタ電流値の小さいこと、コン
タクト抵抗が大きい事等の問題を解決し、また、Ge/GaA
sヘテロ接合を利用したHETに比べ電流増幅率が大きく室
温動作が可能なバイポーラ接合トランジスタ(BJT)を
提供することにある。
(Problems to be Solved by the Invention) The problems of the collector current value of GaAs / GeHBT being small and the contact resistance being large are solved.
An object of the present invention is to provide a bipolar junction transistor (BJT) that has a larger current amplification factor than an HET using an s heterojunction and can operate at room temperature.

(課題を解決するための手段) 本発明はエミッタ及びコレクタにn型のゲルマニウ
ム、ベースにp型ゲルマニウム、エミッタ/ベース間空
乏層、ベース/コレクタ間空乏層にひ化ガリウムを用い
たバイポーラ接合トランジスタである。さらに該バイポ
ーラトランジスタにおいて、エミッタ層、コレクタ層は
電子が縮退する程度に高濃度のn型に、ベース層は正孔
が縮退する程度に高濃度のp型にドープされることを特
徴としたバイポーラ接合トランジスタである。
(Means for Solving the Problems) The present invention relates to a bipolar junction transistor using n-type germanium for an emitter and a collector, p-type germanium for a base, a depletion layer between an emitter and a base, and gallium arsenide for a depletion layer between a base and a collector. It is. Further, the bipolar transistor is characterized in that the emitter layer and the collector layer are doped to a high concentration n-type so that electrons are degenerated, and the base layer is doped to a high concentration p-type so that holes are degenerated. It is a junction transistor.

(作用) Geを用いたBJTは、電位、正孔共に移動度が大きくコ
ンタクト抵抗が小さく、動作電圧が小さい等、集積化し
た場合も含め高速動作に有利であるが、狭ハンドギャッ
プ半導体であるがゆえブレークダウン電圧が小さくリー
ク電流が大きいなどの欠点がある。GaAsは温度により特
性が変化する事が少ないがコンタクト抵抗が大きくな
り、ベース抵抗(RB)とベース/コレクタ接合容量(C
BC)とで表される時定数RB*CBCが小さくできないため
高速動作に関して大きな障害となる。また禁制帯幅が大
きいことから動作電圧が大きく消費電力か小さくできな
い。本発明によるBJTは外部回路と接触するエミッタ
(E)、ベース(B)、コレクタ(C)の各電極部は各
種金属とのショットキー障壁高さの低いGeを用いる。こ
のことにより各電極抵抗を下げることができる。またエ
ミッタ/ベース間のビルトイン電圧はGeのpnの接合でき
まる0.6V程度であり低消費電力が実現できる。また各電
極部を分離する空乏層となる部分にGaAsを用いることで
ベース/コレクタ間の耐圧はGaAsの耐圧で決まる。従っ
て本発明のBJTは室温でもリーク電流が小さく、ブレー
クダウン電圧が大きい。さらにGaAsは比誘電率が13.1と
Geの16.0に比べ小さいため、エミッタ/ベース接合容量
(CEB)及びCBCは小さく、電極抵抗が小さいこととあわ
せて高速動作に適している。さらにE、B、Cの各層を
縮退する程度に高ドープすることによってそれぞれの電
極の性質は金属的になりより一層の高速動作が期待でき
る。
(Function) The BJT using Ge is advantageous in high-speed operation including integration even when it has high mobility in both potential and hole, low contact resistance, and low operating voltage. However, it is a narrow hand gap semiconductor. Therefore, there are disadvantages such as a small breakdown voltage and a large leak current. The characteristics of GaAs hardly change with temperature, but the contact resistance increases, and the base resistance (R B ) and the base / collector junction capacitance (C
BC ), the time constant R B * C BC cannot be reduced, which is a major obstacle to high-speed operation. In addition, since the forbidden bandwidth is large, the operating voltage is large and the power consumption cannot be reduced. In the BJT according to the present invention, the emitter (E), the base (B), and the collector (C), which are in contact with an external circuit, use Ge having a low Schottky barrier height with various metals. As a result, the resistance of each electrode can be reduced. The built-in voltage between the emitter and the base is about 0.6 V, which is determined by the junction of Ge pn, and low power consumption can be realized. Also, by using GaAs for a portion serving as a depletion layer separating each electrode portion, the breakdown voltage between the base and the collector is determined by the breakdown voltage of GaAs. Therefore, the BJT of the present invention has a small leakage current and a large breakdown voltage even at room temperature. GaAs has a relative dielectric constant of 13.1
Since it is smaller than Ge of 16.0, the emitter / base junction capacitance (C EB ) and C BC are small, and are suitable for high-speed operation together with low electrode resistance. Further, by doping the layers E, B, and C to such an extent that the layers are degenerate, the properties of the respective electrodes become metallic, and higher-speed operation can be expected.

(実施例) 以下に本発明の実施例を図面を用いて説明する。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

半絶縁性GaAs基板1上に分子線エピタキシー法を用い
てn型Ge層2、真性GaAs層3、p型Ge層4、真性GaAs層
5、n型Ge層6を順次積層した。各層のドーピング濃度
及び層厚は以下の通りである。
An n-type Ge layer 2, an intrinsic GaAs layer 3, a p-type Ge layer 4, an intrinsic GaAs layer 5, and an n-type Ge layer 6 were sequentially stacked on a semi-insulating GaAs substrate 1 by molecular beam epitaxy. The doping concentration and layer thickness of each layer are as follows.

エミッタ層 Sbドープ Ge 1*1019cm-33000Å エミッタ層/ベース空乏層 ノンドープ GaAs 300Å ベース層 Gaドープ Ge 1*1019cm-3 500Å ベース層/コレクタ空乏層 ノンドープ GaAs 3000Å コレクタ層 Sbドープ Ge 1*1019cm-34000Å Ge層のドーパントはn型にアンチモン(以下Sb)、p
型にガリウム(Ga)を用いた。Sbはイオン化クヌーセン
セルを用い1*1019(cm-3)の高濃度ドーピングを可能
にした。川中らによる文献「フィフス・インターナショ
ナル・コンファレンス・オン・モレキュラー・ビーム・
エピタキシー」(Fifth International Conference on
Molecular Beam Epitaxy)575頁からあるようにGaAs上
のGeは反射高エネルギー電子線回折(RHEED)による表
面超構造の観察によりGaAs(2*2)構造上に成長した
場合はn型に、GaAs(2*4),(4*2)上に成長し
た場合はp型になることが知られている。従ってn型の
GeはGaAs(2*2)上に、p型のGeはGaAs(2*4)上
に成長すればよい。各層を成長後CF4ガスおよびCCl2F2
ガスを用いてGaAs層およびGe層をエッチアウトした。オ
ーミック電極としてエミッタ、コレクタ電極にAuGeSb
を、ベース電極にAlを用いた。上記の構造ではコレクタ
空乏層を3000Åと厚めに設計したが1500Å程度でも十分
な耐圧が得られる。
Emitter layer Sb-doped Ge 1 * 10 19 cm -3 3000Å Emitter layer / base depletion layer Non-doped GaAs 300Å Base layer Ga-doped Ge 1 * 10 19 cm -3 500Å Base layer / collector depletion layer Non-doped GaAs 3000Å Collector layer Sb-doped Ge 1 * 10 19 cm -3 4000Å Ge layer dopants are n-type antimony (Sb) and p-type
Gallium (Ga) was used for the mold. Sb enables high-concentration doping of 1 * 10 19 (cm −3 ) using an ionized Knudsen cell. Kawanaka et al., Fifth International Conference on Molecular Beam
Epitaxy "(Fifth International Conference on
As shown from page 575 of Molecular Beam Epitaxy, Ge on GaAs becomes n-type when grown on GaAs (2 * 2) structure by observation of surface superstructure by reflection high energy electron diffraction (RHEED), and GaAs ( It is known that when grown on (2 * 4), (4 * 2), it becomes p-type. Therefore n-type
Ge may be grown on GaAs (2 * 2), and p-type Ge may be grown on GaAs (2 * 4). After growing each layer, CF 4 gas and CCl 2 F 2
The GaAs layer and the Ge layer were etched out using gas. AuGeSb for emitter and collector electrodes as ohmic electrodes
And Al as a base electrode. In the above structure, the collector depletion layer is designed to be as thick as 3000 °, but sufficient withstand voltage can be obtained even at about 1500 °.

(発明の効果) 上記の構造で作製したるBJTは高い電流増幅率、低い
コンタクト抵抗、高耐圧性を有し、ターンオン電圧は0.
5Vと低い値でありながら十分大きな電流で動作するた
め、低消費電力、超高速動作が期待される。
(Effect of the Invention) The BJT manufactured by the above structure has a high current amplification factor, a low contact resistance, a high withstand voltage, and a turn-on voltage of 0.
Since it operates with a sufficiently large current despite its low value of 5V, low power consumption and ultra high speed operation are expected.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によるバイポーラ接合トランジスタの断
面模式図。第2図は本発明によるバイポーラ接合トラン
ジスタの請求項1に述べた型のエネルギーバンドダイヤ
グラム。第3図は従来例によるGaAs/GeHETの断面模式
図。 図に於いて 1……半絶縁性GaAs基板、2……n型Ge層、3……真性
GaAs層、4……p型Ge層、5……真性GaAs層、6……n
型Ge層、7……エミッタ電極、8……ベース電極、9…
…コレクタ電極、10……n型Geエミッタ層、11……n型
GaAsバリア層、12……n型Geベース層、13……n型GaAs
バリア層、14……n型Geコレクタ層。
FIG. 1 is a schematic sectional view of a bipolar junction transistor according to the present invention. FIG. 2 is an energy band diagram of the type described in claim 1 of a bipolar junction transistor according to the invention. FIG. 3 is a schematic sectional view of a conventional GaAs / GeHET. In the figure, 1 ... a semi-insulating GaAs substrate, 2 ... n-type Ge layer, 3 ... intrinsic
GaAs layer, 4 ... p-type Ge layer, 5 ... intrinsic GaAs layer, 6 ... n
Ge layer, 7 ... Emitter electrode, 8 ... Base electrode, 9 ...
… Collector electrode, 10… n-type Ge emitter layer, 11… n-type
GaAs barrier layer, 12 ... n-type Ge base layer, 13 ... n-type GaAs
Barrier layer, 14 ... n-type Ge collector layer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エミッタ及びコレクタにn型のゲルマニウ
ム、ベースにp型のゲルマニウム、エミッタ/ベース間
空乏層、ベース/コレクタ間空乏層にひ化ガリウムを用
いたバイポーラ接合トランジスタ。
1. A bipolar junction transistor using n-type germanium for an emitter and a collector, p-type germanium for a base, gallium arsenide for a depletion layer between an emitter and a base, and a depletion layer between a base and a collector.
【請求項2】特許請求項1記載のバイポーラトランジス
タにおいて、エミッタ層、コレクタ層は電子が縮退する
程度に高濃度のn型に、ベース層は正孔が縮退する程度
に高濃度のp型にドープすることを特徴としたバイポー
ラ接合トランジスタ。
2. The bipolar transistor according to claim 1, wherein the emitter layer and the collector layer are of an n-type having a high concentration such that electrons are degenerated, and the base layer is of a p-type having a high concentration such that holes are degenerated. Bipolar junction transistor characterized by doping.
JP184589A 1989-01-06 1989-01-06 Bipolar junction transistor Expired - Lifetime JP2764985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP184589A JP2764985B2 (en) 1989-01-06 1989-01-06 Bipolar junction transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP184589A JP2764985B2 (en) 1989-01-06 1989-01-06 Bipolar junction transistor

Publications (2)

Publication Number Publication Date
JPH02181932A JPH02181932A (en) 1990-07-16
JP2764985B2 true JP2764985B2 (en) 1998-06-11

Family

ID=11512887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP184589A Expired - Lifetime JP2764985B2 (en) 1989-01-06 1989-01-06 Bipolar junction transistor

Country Status (1)

Country Link
JP (1) JP2764985B2 (en)

Also Published As

Publication number Publication date
JPH02181932A (en) 1990-07-16

Similar Documents

Publication Publication Date Title
US6767783B2 (en) Self-aligned transistor and diode topologies in silicon carbide through the use of selective epitaxy or selective implantation
EP0541971B1 (en) A graded bandgap single-crystal emitter heterojunction bipolar transistor
Lee et al. Origin of high offset voltage in an AlGaAs/GaAs heterojunction bipolar transistor
CA1265626A (en) Electron gas hole gas tunneling transistor device
US4958208A (en) Bipolar transistor with abrupt potential discontinuity in collector region
JPH0435904B2 (en)
JP2804095B2 (en) Heterojunction bipolar transistor
US6410396B1 (en) Silicon carbide: germanium (SiC:Ge) heterojunction bipolar transistor; a new semiconductor transistor for high-speed, high-power applications
JP3262056B2 (en) Bipolar transistor and manufacturing method thereof
US5571732A (en) Method for fabricating a bipolar transistor
US4590502A (en) Camel gate field effect transistor device
US5783966A (en) Reducing junction capacitance and increasing current gain in collector-up bipolar transistors
JP2764985B2 (en) Bipolar junction transistor
JP3874919B2 (en) Compound semiconductor device
US6459103B1 (en) Negative-differential-resistance heterojunction bipolar transistor with topee-shaped current-voltage characteristics
JPH07273311A (en) Band versus band resonance tunnelling transistor
JP2537168B2 (en) Heterojunction bipolar transistor
JPH01171269A (en) Semiconductor device
Yanagihara et al. 253-GHz f/sub max/AlGaAs/GaAs HBT with Ni/Ti/Pt/Ti/Pt-contact and L-shaped base electrode
JPH0511656B2 (en)
JP2621854B2 (en) High mobility transistor
JP2808145B2 (en) Semiconductor device
Hsin et al. Electron saturation velocity of GaInP deduced in a GaInP/GaAs/GaInP double heterojunction bipolar transistor
JPH02150032A (en) Hetero junction bipolar transistor
Ohkubo et al. High-reliability InGaP/GaAs HBTs with 153 GHz fT and 170 GHz fmax