JPH0218134B2 - - Google Patents
Info
- Publication number
- JPH0218134B2 JPH0218134B2 JP59252190A JP25219084A JPH0218134B2 JP H0218134 B2 JPH0218134 B2 JP H0218134B2 JP 59252190 A JP59252190 A JP 59252190A JP 25219084 A JP25219084 A JP 25219084A JP H0218134 B2 JPH0218134 B2 JP H0218134B2
- Authority
- JP
- Japan
- Prior art keywords
- divalent transition
- transition metal
- aqueous solution
- tio
- transition metals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052723 transition metal Inorganic materials 0.000 claims description 37
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 36
- 150000003624 transition metals Chemical class 0.000 claims description 32
- 239000007864 aqueous solution Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 12
- 238000001179 sorption measurement Methods 0.000 claims description 12
- 238000005342 ion exchange Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 10
- 239000003463 adsorbent Substances 0.000 claims description 9
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 8
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 claims description 8
- 239000000835 fiber Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 239000004408 titanium dioxide Substances 0.000 claims description 6
- -1 transition metal titanate Chemical class 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 230000003100 immobilizing effect Effects 0.000 claims description 3
- 239000000155 melt Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 150000001768 cations Chemical class 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000002386 leaching Methods 0.000 description 11
- 239000010936 titanium Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000002657 fibrous material Substances 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000005388 borosilicate glass Substances 0.000 description 3
- 239000002927 high level radioactive waste Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- AKMXMQQXGXKHAN-UHFFFAOYSA-N titanium;hydrate Chemical compound O.[Ti] AKMXMQQXGXKHAN-UHFFFAOYSA-N 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Water Treatment By Sorption (AREA)
Description
産業上の利用分野
本発明は水溶液中の二価遷移金属の吸着及びイ
オン交換材並びに二価遷移金属の固定化法に関す
る。
従来技術
高レベルの放射性廃液中には腐食性の高い二価
遷移金属が含有されており、これを放置すると公
害となり危険であるが、従来、二価遷移金属イオ
ンを有効に吸着したり、イオン交換性のある材料
は開発されていなかつた。
一方、従来、高レベル放射性廃液から二価遷移
金属を分離固化する方法としては、ほうけい酸ガ
ラスにより固化する方法が知られている。
しかしながら、ほうけい酸ガラスで固化する方
法は、固化する際硝酸塩を使用するため、溶融の
際高い溶融温度を必要とし、ルツボ材が浸食され
ること、また固化体は経年変化及び崩壊熱の蓄積
により分相・結晶化が起る等耐久性が悪く、かつ
固化体の二価遷移金属の浸出率は10-7g/cm2day
のオーダーで、浸出も大きい欠点がある。
発明の目的
本発明の目的は従来法の欠点がなく、二価遷移
金属に対し高い吸着性・イオン交換性を有し、且
つ固化体の二価遷移金属の浸出率が低い二価遷移
金属の吸着及びイオン交換材、並びに固定化を提
供するにある。
発明の構成
本発明者は、さきにTiO2とK2Oの溶融物から
繊維状物を形成して繊維状チタン酸カリウム
K2O・nTiO2(ただし、n=2〜4)となし、こ
の繊維状チタン酸カリウムからK2O成分を酸水溶
液等で溶出することによつて、繊維状チタニヤ水
和物TiO2・mH2O(ただし、m=0〜3)を作る
ことに成功した(特願昭53−676856号、特願昭54
−93460号)。
更に得られた繊維状チタニヤ水和物の性質につ
いて研究を続けた結果、該繊維状チタニヤ水和物
は、水溶液中の二価遷移金属を吸着及びイオン交
換し、二価遷移金属吸着体MO・nTiO2・mH2O
(ただし、MはCu、Zn、Mn、Co、Niの二価遷移
金属、n=4.0〜30.0、m=4.0〜40.0を表わす。)
となることが分つた。
また該二価遷移金属吸着体を1010〜1300℃の温
度で加熱すると、チタン酸二価遷移金属と二酸化
チタンの混合物となる。この場合、銅は複雑な構
造を有するCu2TiO3とCu3TiO4またはCu2Ti2O5
相の両相に固定化される。亜鉛は逆スピネル構造
を有するZn2TiO3相中へ固定化され、マンガン、
コバルト、ニツケルはいずれもイルミナイト構造
を有するMTiO3式で示す鉱物相中に固定される。
そして、これらの二価遷移金属固定化相はいずれ
も二酸化チタンのルチル相との混合相となり、ル
チルはマトリツクスを形成している。それにより
一層耐久性の大きい安定な鉱物相となつており、
またこれを加圧成形して焼結すると更に二価遷移
金属の浸出率が小さい耐久性の優れたものとなる
ことを究明し得た。この知見に基いて本発明を完
成した。
本発明の要旨は、
1 チタン酸カリウムK2O・nTiO2(ただし、n
=2〜4を表わす)からK2O成分を抽出して得
られたチタニヤ水和物TiO2・mH2O(ただし、
m=0〜3)からなる水溶液中の二価遷移金属
の吸着及びイオン交換材。
2 チタン酸カリウムK2O・nTiO2(ただし、n
=2〜4を表わす)からK2O成分を抽出して得
られたチタニヤ水和物TiO2・mH2O(ただし、
m=0〜3を表わす)によつて水溶液中の二価
遷移金属を吸着及びイオン交換させて、二価遷
移金属吸着体MO・nTiO2・mH2O(ただし、M
は二価遷移金属、n=4.0〜30.0、m=4.0〜
40.0を表わす)となし、これを1010〜1300℃に
加熱した、チタン酸二価遷移金属と二酸化チタ
ンの混合物とし、または更にこれを加圧成形・
焼結する二価遷移金属の固定化法にある。
本発明において使用するチタニヤ水和物は非晶
質ゲル状物、非晶質または結晶質の粉状物、粒状
物または繊維状物のいずれのものでもよい。しか
し、繊維状のものが吸着量も多く、取扱いが容易
である点で好ましく、特に結晶質で層状構造を有
する繊維状のものが好ましい。水溶液中の二価遷
移金属の吸着及びイオン交換は、水溶液中に浸漬
しても、吸着材を充填したカラムに該水溶液を通
じてもよい。これにより水溶液中の二価遷移金属
はMO・nTiO2・mH2Oの吸着体となる。その吸
着量は二価遷移金属水溶液の濃度、水素イオン濃
度、反応時間、温度等により変化する。
この固定化には、前記吸着体を粉砕し、これを
例えば5〜500Kg/cm2の圧力で加圧成形した後、
1010〜1300℃で加熱処理すると、チタン酸二価遷
移金属と二酸化チタン(ルチル相)の混合物とな
る。1010℃より低いと熱分解して混合物となし得
なく、1300℃を超えると、溶融する。
前記の加圧成形・焼結の二段法に代え、ホツト
プレスの一段法でもよい。
本発明の吸着及びイオン交換材は、その材料が
チタン酸塩で、TiO6八面体の連結中に固定する
ので、従来のほうけい酸ガラス中に固定するもの
に比べて固定化が優れ、高温下においても安定
で、特に水熱条件下(550℃、1000気圧の熱水下)
でも安定である。
実施例 1
(1) 繊維状チタン酸カリウムの製造
TiO2とK2CO3の粉末をモル比で2:1の割
合で混合した。この混合物約45gを100ml白金
ルツボに充填し、1000〜1100℃で3分間加熱し
て溶融させた。この溶融物を別の金属製容器
(底を水冷)へ流出して急冷し繊維状に結晶化
させた。この結晶化物はK2Ti2O5の単独相繊維
であつた。これを水中に約2時間浸漬して解繊
した。この繊維は直径0.1〜0.5mmの束状で平均
5mmの長さであつた。このままでは結晶性が悪
いので、900℃で30分間加熱した。この繊維は
K2Ti4O9とK2Ti2O5の混合相であつた。
なお、K2Ti4O9相はK2Ti2O5相の一部のカリ
ウムが水に溶出して生成したものである。
(2) 繊維状チタニヤ水和物の製造
前記方法で得られた繊維を0.5N−HCl水溶
液1000mlに対して10gの割合で約4時間浸漬し
てK2O成分を抽出した。これを2回繰返し、水
洗・乾燥してチタニヤ水和物(H2Ti2O5・
nH2O)を得た。この水和物の銅対陰極とした
X線粉末回折図は2θ=10゜、25.6゜、48.6゜附近に
ブロードなピークを示す結晶質繊維であつた。
(3) 水溶液中の二価遷移金属の吸着及びイオン交
換それぞれの金属0.1Mの酢酸水溶液0.2に対
してチタニヤ水和物2gの割合で、25℃で14日
間適宜撹拌して浸漬した後、風乾した。吸着体
を化学分析した結果は、次の表−1の通りであ
つた。
INDUSTRIAL APPLICATION FIELD The present invention relates to an adsorption and ion exchange material for divalent transition metals in an aqueous solution and a method for immobilizing divalent transition metals. Prior Art High-level radioactive waste liquid contains divalent transition metals, which are highly corrosive, and if left untreated, it can cause pollution and be dangerous. No interchangeable materials had been developed. On the other hand, as a conventional method for separating and solidifying divalent transition metals from high-level radioactive waste liquid, a method of solidifying them using borosilicate glass is known. However, since the method of solidifying with borosilicate glass uses nitrate during solidification, it requires a high melting temperature during melting, and the crucible material is eroded, and the solidified material deteriorates over time and accumulates decay heat. The durability is poor due to phase separation and crystallization, and the leaching rate of divalent transition metals from the solidified product is 10 -7 g/cm 2 day.
On the order of, leaching is also a big drawback. Purpose of the Invention The purpose of the present invention is to produce a divalent transition metal that does not have the drawbacks of conventional methods, has high adsorption and ion exchange properties for divalent transition metals, and has a low leaching rate of divalent transition metals from the solidified material. To provide adsorption and ion exchange materials and immobilization. Structure of the Invention The present inventor first formed a fibrous material from a melt of TiO 2 and K 2 O to produce fibrous potassium titanate.
By eluting the K 2 O component from this fibrous potassium titanate with an acid aqueous solution, etc., the fibrous titanium hydrate TiO 2 Succeeded in producing mH 2 O (m = 0 to 3) (Patent Application No. 1983-676856
−93460). Furthermore, as a result of continuing research on the properties of the obtained fibrous titania hydrate, it was found that the fibrous titania hydrate adsorbs and ion-exchanges divalent transition metals in an aqueous solution, and becomes a divalent transition metal adsorbent MO. nTiO2・mH2O
(However, M represents a divalent transition metal such as Cu, Zn, Mn, Co, or Ni, n = 4.0 to 30.0, m = 4.0 to 40.0.)
It turns out that Further, when the divalent transition metal adsorbent is heated at a temperature of 1010 to 1300°C, it becomes a mixture of divalent transition metal titanate and titanium dioxide. In this case, copper has a complex structure Cu 2 TiO 3 and Cu 3 TiO 4 or Cu 2 Ti 2 O 5
immobilized on both phases of the phase. Zinc is immobilized in a Zn 2 TiO 3 phase with an inverted spinel structure, and manganese,
Both cobalt and nickel are fixed in the mineral phase represented by the formula MTiO3 , which has an illuminite structure.
All of these divalent transition metal fixed phases become a mixed phase with the rutile phase of titanium dioxide, and the rutile forms a matrix. This results in a more durable and stable mineral phase.
Furthermore, it has been found that when this is pressure-molded and sintered, it becomes a product with even lower leaching rate of divalent transition metals and excellent durability. The present invention was completed based on this knowledge. The gist of the present invention is as follows: 1 Potassium titanate K 2 O・nTiO 2 (however, n
titania hydrate TiO 2 mH 2 O obtained by extracting the K 2 O component from
An adsorption and ion exchange material for divalent transition metals in an aqueous solution consisting of m=0 to 3). 2 Potassium titanate K 2 O・nTiO 2 (however, n
titania hydrate TiO 2 mH 2 O obtained by extracting the K 2 O component from
The divalent transition metal in the aqueous solution is adsorbed and ion-exchanged by the divalent transition metal adsorbent MO・nTiO 2・mH 2 O (where M
is a divalent transition metal, n=4.0~30.0, m=4.0~
40.0), which is then heated to 1010-1300°C to form a mixture of divalent transition metal titanate and titanium dioxide, or further press-molded.
A method for immobilizing divalent transition metals during sintering. The titania hydrate used in the present invention may be an amorphous gel, an amorphous or crystalline powder, a granule, or a fibrous material. However, fibrous materials are preferable because they have a large adsorption amount and are easy to handle, and fibrous materials that are crystalline and have a layered structure are particularly preferred. Adsorption and ion exchange of divalent transition metals in an aqueous solution may be carried out by immersion in the aqueous solution or by passing the aqueous solution through a column packed with an adsorbent. As a result, the divalent transition metal in the aqueous solution becomes an adsorbent for MO·nTiO 2 ·mH 2 O. The amount of adsorption varies depending on the concentration of the divalent transition metal aqueous solution, hydrogen ion concentration, reaction time, temperature, etc. For this immobilization, after crushing the adsorbent and press-molding it at a pressure of, for example, 5 to 500 kg/ cm2 ,
When heat treated at 1010-1300°C, it becomes a mixture of divalent transition metal titanate and titanium dioxide (rutile phase). If the temperature is lower than 1010°C, it will thermally decompose and cannot form a mixture, and if it exceeds 1300°C, it will melt. Instead of the two-step method of pressure forming and sintering, a one-step method of hot pressing may be used. The adsorption and ion exchange material of the present invention is made of titanate and is fixed during the connection of TiO 6 octahedra, so it has better fixation compared to the conventional fixation in borosilicate glass, and can be used at high temperatures. Stable even under hydrothermal conditions (550℃, 1000 atm hot water)
But it is stable. Example 1 (1) Production of fibrous potassium titanate TiO 2 and K 2 CO 3 powders were mixed at a molar ratio of 2:1. About 45 g of this mixture was filled into a 100 ml platinum crucible and heated at 1000 to 1100° C. for 3 minutes to melt it. This melt was poured into another metal container (water-cooled bottom) and rapidly cooled to crystallize into fibers. This crystallized product was a single phase fiber of K 2 Ti 2 O 5 . This was immersed in water for about 2 hours to defibrate it. The fibers were bundles with a diameter of 0.1 to 0.5 mm and an average length of 5 mm. Since the crystallinity was poor as it was, it was heated at 900°C for 30 minutes. This fiber is
It was a mixed phase of K 2 Ti 4 O 9 and K 2 Ti 2 O 5 . Note that the K 2 Ti 4 O 9 phase was generated when part of the potassium in the K 2 Ti 2 O 5 phase was eluted into water. (2) Production of fibrous titania hydrate The fibers obtained by the above method were immersed in a ratio of 10 g to 1000 ml of a 0.5N-HCl aqueous solution for about 4 hours to extract the K 2 O component. Repeat this twice, wash with water, dry and prepare titania hydrate (H 2 Ti 2 O 5 .
nH2O ) was obtained. The X-ray powder diffraction pattern of this hydrate with a copper anticathode showed a crystalline fiber showing broad peaks around 2θ=10°, 25.6°, and 48.6°. (3) Adsorption and ion exchange of divalent transition metals in aqueous solution After soaking at 25°C for 14 days with appropriate stirring in a ratio of 2 g of titanium hydrate to 0.2 g of a 0.1 M acetic acid aqueous solution of each metal, air drying. did. The results of chemical analysis of the adsorbent were as shown in Table 1 below.
【表】
(4) 成形・固定化
前記(3)で得られた二価遷移金属吸着体をそれ
ぞれ粉砕し、約0.2gを500Kg/cm2の圧力下で、
直径1.3cm、厚さ0.1cmのペレツト状に成形した
後、1010〜1200℃で1時間焼成した。得られた
固定化鉱物相は下記表−2の通りであつた。[Table] (4) Molding/immobilization The divalent transition metal adsorbents obtained in (3) above were each ground, and approximately 0.2 g was crushed under a pressure of 500 kg/cm 2 .
After forming into pellets with a diameter of 1.3 cm and a thickness of 0.1 cm, the pellets were fired at 1010 to 1200°C for 1 hour. The obtained immobilized mineral phase was as shown in Table 2 below.
【表】
これらはいずれもルチル型チタニヤとの混合
相であつた。
そして、その比表面積は窒素ガス吸着法によ
り測定した結果、9.81×104cm2/gである。
(5) 純水中での二価遷移金属の浸出
(1) 前記(4)の方法で得た固化体0.2gを10mlの
蒸留水中に浸漬し、室温下で撹拌しながら経
時変化に対する浸出量の変化を調べた。24時
間間隔で4回繰返した時のそれぞれの二価遷
移金属の浸出量について原子吸光で分析し決
定した。
その結果は次の表−3の通りであつた。[Table] All of these were mixed phases with rutile titania. The specific surface area was measured by nitrogen gas adsorption method and was 9.81×10 4 cm 2 /g. (5) Leaching of divalent transition metals in pure water (1) Immerse 0.2 g of the solidified material obtained by the method (4) above in 10 ml of distilled water, and measure the amount of leaching over time while stirring at room temperature. We investigated changes in The leaching amount of each divalent transition metal was determined by atomic absorption analysis when the test was repeated four times at 24-hour intervals. The results were as shown in Table 3 below.
【表】
(2) 次に550℃、100MPa、下の水熱条件下で、
24時間浸出試験を行つた。その結果は次の表
−4の通りであつた。[Table] (2) Next, under the hydrothermal conditions of 550℃ and 100MPa,
A 24 hour leaching test was conducted. The results were as shown in Table 4 below.
【表】【table】
【表】
以上の浸出率の結果から、大気圧下、また水熱
条件下のいずれの条件下においても、極めて浸出
率が小さいことが分かる。
発明の効果
本発明のチタニヤ水和物は二価遷移金属の吸着
及びイオン交換性を有しており、これを使用して
水溶液中の二価遷移金属を吸着・固定化すると、
浸出率を極めて小さくすることができる優れた効
果を有する。特に高レベル放射性廃液の処理法と
して有効に利用し得られるものと考える。[Table] From the above leaching rate results, it can be seen that the leaching rate is extremely low under both atmospheric pressure and hydrothermal conditions. Effects of the Invention The titanium hydrate of the present invention has adsorption and ion exchange properties for divalent transition metals, and when it is used to adsorb and immobilize divalent transition metals in an aqueous solution,
It has the excellent effect of making the leaching rate extremely small. We believe that this method can be particularly effectively used as a treatment method for high-level radioactive waste liquid.
Claims (1)
=2〜4を表わす)からK2O成分を抽出して得ら
れたチタニア水和物TiO2・mH2O(ただし、m=
0〜3)からなることを特徴とする水溶液中の二
価遷移金属M(ただし、MはCu、Zn、Mn、Coま
たはNiである)の吸着及びイオン交換材。 2 チタン酸カリウムがTiO2とK2Oの溶融物を
繊維状に形成せしめ結晶化させたものである特許
請求の範囲第1項記載の水溶液中の二価遷移金属
の吸着及びイオン交換材。 3 チタン酸カリウムK2O・nTiO2(ただし、n
=2〜4を表わす)からK2O成分を抽出して得ら
れたチタニア水和物TiO2・mH2O(ただし、m=
0〜3を表わす)によつて水溶液中の二価遷移金
属M(ただし、Mは前記と同じ)を吸着及びイオ
ン交換させて、二価遷移金属吸着体MO・
nTiO2・mH2O(ただし、Mは前記と同じ、n=
4.0〜30.0、m=4.0〜40.0を表わす)となし、こ
れを1010〜1300℃に加熱して、チタン酸二価遷移
金属と二酸化チタンの混合物とすることを特徴と
する二価遷移金属の固定化法。 4 チタン酸二価遷移金属と二酸化チタンの混合
物を更に加圧成形・焼結する特許請求の範囲第3
項記載の二価遷移金属の固定化法。[Claims] 1 Potassium titanate K 2 O・nTiO 2 (however, n
= 2 to 4)) obtained by extracting the K 2 O component from titania hydrate TiO 2 · mH 2 O (where m =
0 to 3) in an aqueous solution, wherein M is Cu, Zn, Mn, Co or Ni. 2. The adsorption and ion exchange material for divalent transition metals in an aqueous solution according to claim 1, wherein potassium titanate is obtained by crystallizing a melt of TiO 2 and K 2 O into fibers. 3 Potassium titanate K 2 O・nTiO 2 (however, n
= 2 to 4)) obtained by extracting the K 2 O component from titania hydrate TiO 2 · mH 2 O (where m =
The divalent transition metal M (where M is the same as above) in the aqueous solution is adsorbed and ion-exchanged by the divalent transition metal adsorbent MO.
nTiO 2 mH 2 O (M is the same as above, n=
4.0 to 30.0, m = 4.0 to 40.0) and heating this to 1010 to 1300°C to form a mixture of divalent transition metal titanate and titanium dioxide. cation law. 4 Claim 3 in which the mixture of divalent transition metal titanate and titanium dioxide is further pressure-molded and sintered.
Method for immobilizing divalent transition metals as described in Section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59252190A JPS61129041A (en) | 1984-11-29 | 1984-11-29 | Adsorption of divalent transition metal in aqueous solution and immobilization of ion exchange agent and divalent transition metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59252190A JPS61129041A (en) | 1984-11-29 | 1984-11-29 | Adsorption of divalent transition metal in aqueous solution and immobilization of ion exchange agent and divalent transition metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61129041A JPS61129041A (en) | 1986-06-17 |
JPH0218134B2 true JPH0218134B2 (en) | 1990-04-24 |
Family
ID=17233750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59252190A Granted JPS61129041A (en) | 1984-11-29 | 1984-11-29 | Adsorption of divalent transition metal in aqueous solution and immobilization of ion exchange agent and divalent transition metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61129041A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110304907A (en) * | 2019-06-12 | 2019-10-08 | 魏炎梅 | A kind of preparation method of Zinc oxide-base composite conductive ceramic |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5617928A (en) * | 1979-07-23 | 1981-02-20 | Natl Inst For Res In Inorg Mater | Manufacture of titania hydrate fiber, titania glass fiber and titania fiber |
JPS56161835A (en) * | 1980-05-13 | 1981-12-12 | Agency Of Ind Science & Technol | Fibrous uranium adsorbent material and its manufacture |
JPS57117341A (en) * | 1981-01-12 | 1982-07-21 | Natl Inst For Res In Inorg Mater | Adsorbing and ion exchange material for strontium in aqueous solution and method for fixing strontium |
-
1984
- 1984-11-29 JP JP59252190A patent/JPS61129041A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5617928A (en) * | 1979-07-23 | 1981-02-20 | Natl Inst For Res In Inorg Mater | Manufacture of titania hydrate fiber, titania glass fiber and titania fiber |
JPS56161835A (en) * | 1980-05-13 | 1981-12-12 | Agency Of Ind Science & Technol | Fibrous uranium adsorbent material and its manufacture |
JPS57117341A (en) * | 1981-01-12 | 1982-07-21 | Natl Inst For Res In Inorg Mater | Adsorbing and ion exchange material for strontium in aqueous solution and method for fixing strontium |
Also Published As
Publication number | Publication date |
---|---|
JPS61129041A (en) | 1986-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0121339B1 (en) | Method for removal of poisonous gases | |
Aiello et al. | Use of natural products for zeolite synthesis. V. Self-bonded zeolite pellets from rhyolitic pumice | |
JPS61256922A (en) | Immobilizing method for strontium incorporated in aqueous solution | |
JPS621293B2 (en) | ||
JPH0218134B2 (en) | ||
JPS6132053B2 (en) | ||
JPH0450063B2 (en) | ||
JPS6125657B2 (en) | ||
SASAKI et al. | Ion-exchange properties of hydrous titanium dioxide with a fibrous form obtained from potassium dititanate | |
El-Naggar et al. | Synthesis and sorption behaviour of some radioactive nuclides on sodium titanate as cation exchanger | |
JPS5820300B2 (en) | Adsorption and ion exchange material for cesium in aqueous solution | |
JPS6156017B2 (en) | ||
WO1993017964A1 (en) | Silver-bearing tobermorite | |
JPS63185811A (en) | Synthetic porous material and production thereof | |
JPS5869799A (en) | Production of fibrous potassium titanate | |
JPH1043609A (en) | Ion exchanger | |
JPH01258737A (en) | Adsorbent for recovery of rare earth element in aqueous solution | |
JP3541201B2 (en) | Silver-containing zonotolite | |
KR102654512B1 (en) | Adsorbent for removing radionuclides and manufacturing method thereof | |
JPH05229900A (en) | Production of phombic layered titanic acid plate crystal represented by hxmyti2-yo4-nh2o | |
JP2001080916A (en) | Mel type crystalline metallosilicate and its production | |
JPH0234888B2 (en) | SENIJOCHITANSANKARIUMUNOSEIZOHO | |
JPH03205315A (en) | Method for ion exchange and separation of sodium and potassium | |
JPS6052087B2 (en) | Manufacturing method of zeolitic composition | |
JPH0357814B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |