JPH0218134B2 - - Google Patents

Info

Publication number
JPH0218134B2
JPH0218134B2 JP59252190A JP25219084A JPH0218134B2 JP H0218134 B2 JPH0218134 B2 JP H0218134B2 JP 59252190 A JP59252190 A JP 59252190A JP 25219084 A JP25219084 A JP 25219084A JP H0218134 B2 JPH0218134 B2 JP H0218134B2
Authority
JP
Japan
Prior art keywords
divalent transition
transition metal
aqueous solution
tio
transition metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59252190A
Other languages
Japanese (ja)
Other versions
JPS61129041A (en
Inventor
Yoshinori Fujiki
Takayoshi Sasaki
Masaru Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP59252190A priority Critical patent/JPS61129041A/en
Publication of JPS61129041A publication Critical patent/JPS61129041A/en
Publication of JPH0218134B2 publication Critical patent/JPH0218134B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は水溶液中の二価遷移金属の吸着及びイ
オン交換材並びに二価遷移金属の固定化法に関す
る。 従来技術 高レベルの放射性廃液中には腐食性の高い二価
遷移金属が含有されており、これを放置すると公
害となり危険であるが、従来、二価遷移金属イオ
ンを有効に吸着したり、イオン交換性のある材料
は開発されていなかつた。 一方、従来、高レベル放射性廃液から二価遷移
金属を分離固化する方法としては、ほうけい酸ガ
ラスにより固化する方法が知られている。 しかしながら、ほうけい酸ガラスで固化する方
法は、固化する際硝酸塩を使用するため、溶融の
際高い溶融温度を必要とし、ルツボ材が浸食され
ること、また固化体は経年変化及び崩壊熱の蓄積
により分相・結晶化が起る等耐久性が悪く、かつ
固化体の二価遷移金属の浸出率は10-7g/cm2day
のオーダーで、浸出も大きい欠点がある。 発明の目的 本発明の目的は従来法の欠点がなく、二価遷移
金属に対し高い吸着性・イオン交換性を有し、且
つ固化体の二価遷移金属の浸出率が低い二価遷移
金属の吸着及びイオン交換材、並びに固定化を提
供するにある。 発明の構成 本発明者は、さきにTiO2とK2Oの溶融物から
繊維状物を形成して繊維状チタン酸カリウム
K2O・nTiO2(ただし、n=2〜4)となし、こ
の繊維状チタン酸カリウムからK2O成分を酸水溶
液等で溶出することによつて、繊維状チタニヤ水
和物TiO2・mH2O(ただし、m=0〜3)を作る
ことに成功した(特願昭53−676856号、特願昭54
−93460号)。 更に得られた繊維状チタニヤ水和物の性質につ
いて研究を続けた結果、該繊維状チタニヤ水和物
は、水溶液中の二価遷移金属を吸着及びイオン交
換し、二価遷移金属吸着体MO・nTiO2・mH2O
(ただし、MはCu、Zn、Mn、Co、Niの二価遷移
金属、n=4.0〜30.0、m=4.0〜40.0を表わす。)
となることが分つた。 また該二価遷移金属吸着体を1010〜1300℃の温
度で加熱すると、チタン酸二価遷移金属と二酸化
チタンの混合物となる。この場合、銅は複雑な構
造を有するCu2TiO3とCu3TiO4またはCu2Ti2O5
相の両相に固定化される。亜鉛は逆スピネル構造
を有するZn2TiO3相中へ固定化され、マンガン、
コバルト、ニツケルはいずれもイルミナイト構造
を有するMTiO3式で示す鉱物相中に固定される。
そして、これらの二価遷移金属固定化相はいずれ
も二酸化チタンのルチル相との混合相となり、ル
チルはマトリツクスを形成している。それにより
一層耐久性の大きい安定な鉱物相となつており、
またこれを加圧成形して焼結すると更に二価遷移
金属の浸出率が小さい耐久性の優れたものとなる
ことを究明し得た。この知見に基いて本発明を完
成した。 本発明の要旨は、 1 チタン酸カリウムK2O・nTiO2(ただし、n
=2〜4を表わす)からK2O成分を抽出して得
られたチタニヤ水和物TiO2・mH2O(ただし、
m=0〜3)からなる水溶液中の二価遷移金属
の吸着及びイオン交換材。 2 チタン酸カリウムK2O・nTiO2(ただし、n
=2〜4を表わす)からK2O成分を抽出して得
られたチタニヤ水和物TiO2・mH2O(ただし、
m=0〜3を表わす)によつて水溶液中の二価
遷移金属を吸着及びイオン交換させて、二価遷
移金属吸着体MO・nTiO2・mH2O(ただし、M
は二価遷移金属、n=4.0〜30.0、m=4.0〜
40.0を表わす)となし、これを1010〜1300℃に
加熱した、チタン酸二価遷移金属と二酸化チタ
ンの混合物とし、または更にこれを加圧成形・
焼結する二価遷移金属の固定化法にある。 本発明において使用するチタニヤ水和物は非晶
質ゲル状物、非晶質または結晶質の粉状物、粒状
物または繊維状物のいずれのものでもよい。しか
し、繊維状のものが吸着量も多く、取扱いが容易
である点で好ましく、特に結晶質で層状構造を有
する繊維状のものが好ましい。水溶液中の二価遷
移金属の吸着及びイオン交換は、水溶液中に浸漬
しても、吸着材を充填したカラムに該水溶液を通
じてもよい。これにより水溶液中の二価遷移金属
はMO・nTiO2・mH2Oの吸着体となる。その吸
着量は二価遷移金属水溶液の濃度、水素イオン濃
度、反応時間、温度等により変化する。 この固定化には、前記吸着体を粉砕し、これを
例えば5〜500Kg/cm2の圧力で加圧成形した後、
1010〜1300℃で加熱処理すると、チタン酸二価遷
移金属と二酸化チタン(ルチル相)の混合物とな
る。1010℃より低いと熱分解して混合物となし得
なく、1300℃を超えると、溶融する。 前記の加圧成形・焼結の二段法に代え、ホツト
プレスの一段法でもよい。 本発明の吸着及びイオン交換材は、その材料が
チタン酸塩で、TiO6八面体の連結中に固定する
ので、従来のほうけい酸ガラス中に固定するもの
に比べて固定化が優れ、高温下においても安定
で、特に水熱条件下(550℃、1000気圧の熱水下)
でも安定である。 実施例 1 (1) 繊維状チタン酸カリウムの製造 TiO2とK2CO3の粉末をモル比で2:1の割
合で混合した。この混合物約45gを100ml白金
ルツボに充填し、1000〜1100℃で3分間加熱し
て溶融させた。この溶融物を別の金属製容器
(底を水冷)へ流出して急冷し繊維状に結晶化
させた。この結晶化物はK2Ti2O5の単独相繊維
であつた。これを水中に約2時間浸漬して解繊
した。この繊維は直径0.1〜0.5mmの束状で平均
5mmの長さであつた。このままでは結晶性が悪
いので、900℃で30分間加熱した。この繊維は
K2Ti4O9とK2Ti2O5の混合相であつた。 なお、K2Ti4O9相はK2Ti2O5相の一部のカリ
ウムが水に溶出して生成したものである。 (2) 繊維状チタニヤ水和物の製造 前記方法で得られた繊維を0.5N−HCl水溶
液1000mlに対して10gの割合で約4時間浸漬し
てK2O成分を抽出した。これを2回繰返し、水
洗・乾燥してチタニヤ水和物(H2Ti2O5
nH2O)を得た。この水和物の銅対陰極とした
X線粉末回折図は2θ=10゜、25.6゜、48.6゜附近に
ブロードなピークを示す結晶質繊維であつた。 (3) 水溶液中の二価遷移金属の吸着及びイオン交
換それぞれの金属0.1Mの酢酸水溶液0.2に対
してチタニヤ水和物2gの割合で、25℃で14日
間適宜撹拌して浸漬した後、風乾した。吸着体
を化学分析した結果は、次の表−1の通りであ
つた。
INDUSTRIAL APPLICATION FIELD The present invention relates to an adsorption and ion exchange material for divalent transition metals in an aqueous solution and a method for immobilizing divalent transition metals. Prior Art High-level radioactive waste liquid contains divalent transition metals, which are highly corrosive, and if left untreated, it can cause pollution and be dangerous. No interchangeable materials had been developed. On the other hand, as a conventional method for separating and solidifying divalent transition metals from high-level radioactive waste liquid, a method of solidifying them using borosilicate glass is known. However, since the method of solidifying with borosilicate glass uses nitrate during solidification, it requires a high melting temperature during melting, and the crucible material is eroded, and the solidified material deteriorates over time and accumulates decay heat. The durability is poor due to phase separation and crystallization, and the leaching rate of divalent transition metals from the solidified product is 10 -7 g/cm 2 day.
On the order of, leaching is also a big drawback. Purpose of the Invention The purpose of the present invention is to produce a divalent transition metal that does not have the drawbacks of conventional methods, has high adsorption and ion exchange properties for divalent transition metals, and has a low leaching rate of divalent transition metals from the solidified material. To provide adsorption and ion exchange materials and immobilization. Structure of the Invention The present inventor first formed a fibrous material from a melt of TiO 2 and K 2 O to produce fibrous potassium titanate.
By eluting the K 2 O component from this fibrous potassium titanate with an acid aqueous solution, etc., the fibrous titanium hydrate TiO 2 Succeeded in producing mH 2 O (m = 0 to 3) (Patent Application No. 1983-676856
−93460). Furthermore, as a result of continuing research on the properties of the obtained fibrous titania hydrate, it was found that the fibrous titania hydrate adsorbs and ion-exchanges divalent transition metals in an aqueous solution, and becomes a divalent transition metal adsorbent MO. nTiO2mH2O
(However, M represents a divalent transition metal such as Cu, Zn, Mn, Co, or Ni, n = 4.0 to 30.0, m = 4.0 to 40.0.)
It turns out that Further, when the divalent transition metal adsorbent is heated at a temperature of 1010 to 1300°C, it becomes a mixture of divalent transition metal titanate and titanium dioxide. In this case, copper has a complex structure Cu 2 TiO 3 and Cu 3 TiO 4 or Cu 2 Ti 2 O 5
immobilized on both phases of the phase. Zinc is immobilized in a Zn 2 TiO 3 phase with an inverted spinel structure, and manganese,
Both cobalt and nickel are fixed in the mineral phase represented by the formula MTiO3 , which has an illuminite structure.
All of these divalent transition metal fixed phases become a mixed phase with the rutile phase of titanium dioxide, and the rutile forms a matrix. This results in a more durable and stable mineral phase.
Furthermore, it has been found that when this is pressure-molded and sintered, it becomes a product with even lower leaching rate of divalent transition metals and excellent durability. The present invention was completed based on this knowledge. The gist of the present invention is as follows: 1 Potassium titanate K 2 O・nTiO 2 (however, n
titania hydrate TiO 2 mH 2 O obtained by extracting the K 2 O component from
An adsorption and ion exchange material for divalent transition metals in an aqueous solution consisting of m=0 to 3). 2 Potassium titanate K 2 O・nTiO 2 (however, n
titania hydrate TiO 2 mH 2 O obtained by extracting the K 2 O component from
The divalent transition metal in the aqueous solution is adsorbed and ion-exchanged by the divalent transition metal adsorbent MO・nTiO 2・mH 2 O (where M
is a divalent transition metal, n=4.0~30.0, m=4.0~
40.0), which is then heated to 1010-1300°C to form a mixture of divalent transition metal titanate and titanium dioxide, or further press-molded.
A method for immobilizing divalent transition metals during sintering. The titania hydrate used in the present invention may be an amorphous gel, an amorphous or crystalline powder, a granule, or a fibrous material. However, fibrous materials are preferable because they have a large adsorption amount and are easy to handle, and fibrous materials that are crystalline and have a layered structure are particularly preferred. Adsorption and ion exchange of divalent transition metals in an aqueous solution may be carried out by immersion in the aqueous solution or by passing the aqueous solution through a column packed with an adsorbent. As a result, the divalent transition metal in the aqueous solution becomes an adsorbent for MO·nTiO 2 ·mH 2 O. The amount of adsorption varies depending on the concentration of the divalent transition metal aqueous solution, hydrogen ion concentration, reaction time, temperature, etc. For this immobilization, after crushing the adsorbent and press-molding it at a pressure of, for example, 5 to 500 kg/ cm2 ,
When heat treated at 1010-1300°C, it becomes a mixture of divalent transition metal titanate and titanium dioxide (rutile phase). If the temperature is lower than 1010°C, it will thermally decompose and cannot form a mixture, and if it exceeds 1300°C, it will melt. Instead of the two-step method of pressure forming and sintering, a one-step method of hot pressing may be used. The adsorption and ion exchange material of the present invention is made of titanate and is fixed during the connection of TiO 6 octahedra, so it has better fixation compared to the conventional fixation in borosilicate glass, and can be used at high temperatures. Stable even under hydrothermal conditions (550℃, 1000 atm hot water)
But it is stable. Example 1 (1) Production of fibrous potassium titanate TiO 2 and K 2 CO 3 powders were mixed at a molar ratio of 2:1. About 45 g of this mixture was filled into a 100 ml platinum crucible and heated at 1000 to 1100° C. for 3 minutes to melt it. This melt was poured into another metal container (water-cooled bottom) and rapidly cooled to crystallize into fibers. This crystallized product was a single phase fiber of K 2 Ti 2 O 5 . This was immersed in water for about 2 hours to defibrate it. The fibers were bundles with a diameter of 0.1 to 0.5 mm and an average length of 5 mm. Since the crystallinity was poor as it was, it was heated at 900°C for 30 minutes. This fiber is
It was a mixed phase of K 2 Ti 4 O 9 and K 2 Ti 2 O 5 . Note that the K 2 Ti 4 O 9 phase was generated when part of the potassium in the K 2 Ti 2 O 5 phase was eluted into water. (2) Production of fibrous titania hydrate The fibers obtained by the above method were immersed in a ratio of 10 g to 1000 ml of a 0.5N-HCl aqueous solution for about 4 hours to extract the K 2 O component. Repeat this twice, wash with water, dry and prepare titania hydrate (H 2 Ti 2 O 5 .
nH2O ) was obtained. The X-ray powder diffraction pattern of this hydrate with a copper anticathode showed a crystalline fiber showing broad peaks around 2θ=10°, 25.6°, and 48.6°. (3) Adsorption and ion exchange of divalent transition metals in aqueous solution After soaking at 25°C for 14 days with appropriate stirring in a ratio of 2 g of titanium hydrate to 0.2 g of a 0.1 M acetic acid aqueous solution of each metal, air drying. did. The results of chemical analysis of the adsorbent were as shown in Table 1 below.

【表】 (4) 成形・固定化 前記(3)で得られた二価遷移金属吸着体をそれ
ぞれ粉砕し、約0.2gを500Kg/cm2の圧力下で、
直径1.3cm、厚さ0.1cmのペレツト状に成形した
後、1010〜1200℃で1時間焼成した。得られた
固定化鉱物相は下記表−2の通りであつた。
[Table] (4) Molding/immobilization The divalent transition metal adsorbents obtained in (3) above were each ground, and approximately 0.2 g was crushed under a pressure of 500 kg/cm 2 .
After forming into pellets with a diameter of 1.3 cm and a thickness of 0.1 cm, the pellets were fired at 1010 to 1200°C for 1 hour. The obtained immobilized mineral phase was as shown in Table 2 below.

【表】 これらはいずれもルチル型チタニヤとの混合
相であつた。 そして、その比表面積は窒素ガス吸着法によ
り測定した結果、9.81×104cm2/gである。 (5) 純水中での二価遷移金属の浸出 (1) 前記(4)の方法で得た固化体0.2gを10mlの
蒸留水中に浸漬し、室温下で撹拌しながら経
時変化に対する浸出量の変化を調べた。24時
間間隔で4回繰返した時のそれぞれの二価遷
移金属の浸出量について原子吸光で分析し決
定した。 その結果は次の表−3の通りであつた。
[Table] All of these were mixed phases with rutile titania. The specific surface area was measured by nitrogen gas adsorption method and was 9.81×10 4 cm 2 /g. (5) Leaching of divalent transition metals in pure water (1) Immerse 0.2 g of the solidified material obtained by the method (4) above in 10 ml of distilled water, and measure the amount of leaching over time while stirring at room temperature. We investigated changes in The leaching amount of each divalent transition metal was determined by atomic absorption analysis when the test was repeated four times at 24-hour intervals. The results were as shown in Table 3 below.

【表】 (2) 次に550℃、100MPa、下の水熱条件下で、
24時間浸出試験を行つた。その結果は次の表
−4の通りであつた。
[Table] (2) Next, under the hydrothermal conditions of 550℃ and 100MPa,
A 24 hour leaching test was conducted. The results were as shown in Table 4 below.

【表】【table】

【表】 以上の浸出率の結果から、大気圧下、また水熱
条件下のいずれの条件下においても、極めて浸出
率が小さいことが分かる。 発明の効果 本発明のチタニヤ水和物は二価遷移金属の吸着
及びイオン交換性を有しており、これを使用して
水溶液中の二価遷移金属を吸着・固定化すると、
浸出率を極めて小さくすることができる優れた効
果を有する。特に高レベル放射性廃液の処理法と
して有効に利用し得られるものと考える。
[Table] From the above leaching rate results, it can be seen that the leaching rate is extremely low under both atmospheric pressure and hydrothermal conditions. Effects of the Invention The titanium hydrate of the present invention has adsorption and ion exchange properties for divalent transition metals, and when it is used to adsorb and immobilize divalent transition metals in an aqueous solution,
It has the excellent effect of making the leaching rate extremely small. We believe that this method can be particularly effectively used as a treatment method for high-level radioactive waste liquid.

Claims (1)

【特許請求の範囲】 1 チタン酸カリウムK2O・nTiO2(ただし、n
=2〜4を表わす)からK2O成分を抽出して得ら
れたチタニア水和物TiO2・mH2O(ただし、m=
0〜3)からなることを特徴とする水溶液中の二
価遷移金属M(ただし、MはCu、Zn、Mn、Coま
たはNiである)の吸着及びイオン交換材。 2 チタン酸カリウムがTiO2とK2Oの溶融物を
繊維状に形成せしめ結晶化させたものである特許
請求の範囲第1項記載の水溶液中の二価遷移金属
の吸着及びイオン交換材。 3 チタン酸カリウムK2O・nTiO2(ただし、n
=2〜4を表わす)からK2O成分を抽出して得ら
れたチタニア水和物TiO2・mH2O(ただし、m=
0〜3を表わす)によつて水溶液中の二価遷移金
属M(ただし、Mは前記と同じ)を吸着及びイオ
ン交換させて、二価遷移金属吸着体MO・
nTiO2・mH2O(ただし、Mは前記と同じ、n=
4.0〜30.0、m=4.0〜40.0を表わす)となし、こ
れを1010〜1300℃に加熱して、チタン酸二価遷移
金属と二酸化チタンの混合物とすることを特徴と
する二価遷移金属の固定化法。 4 チタン酸二価遷移金属と二酸化チタンの混合
物を更に加圧成形・焼結する特許請求の範囲第3
項記載の二価遷移金属の固定化法。
[Claims] 1 Potassium titanate K 2 O・nTiO 2 (however, n
= 2 to 4)) obtained by extracting the K 2 O component from titania hydrate TiO 2 · mH 2 O (where m =
0 to 3) in an aqueous solution, wherein M is Cu, Zn, Mn, Co or Ni. 2. The adsorption and ion exchange material for divalent transition metals in an aqueous solution according to claim 1, wherein potassium titanate is obtained by crystallizing a melt of TiO 2 and K 2 O into fibers. 3 Potassium titanate K 2 O・nTiO 2 (however, n
= 2 to 4)) obtained by extracting the K 2 O component from titania hydrate TiO 2 · mH 2 O (where m =
The divalent transition metal M (where M is the same as above) in the aqueous solution is adsorbed and ion-exchanged by the divalent transition metal adsorbent MO.
nTiO 2 mH 2 O (M is the same as above, n=
4.0 to 30.0, m = 4.0 to 40.0) and heating this to 1010 to 1300°C to form a mixture of divalent transition metal titanate and titanium dioxide. cation law. 4 Claim 3 in which the mixture of divalent transition metal titanate and titanium dioxide is further pressure-molded and sintered.
Method for immobilizing divalent transition metals as described in Section.
JP59252190A 1984-11-29 1984-11-29 Adsorption of divalent transition metal in aqueous solution and immobilization of ion exchange agent and divalent transition metal Granted JPS61129041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59252190A JPS61129041A (en) 1984-11-29 1984-11-29 Adsorption of divalent transition metal in aqueous solution and immobilization of ion exchange agent and divalent transition metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252190A JPS61129041A (en) 1984-11-29 1984-11-29 Adsorption of divalent transition metal in aqueous solution and immobilization of ion exchange agent and divalent transition metal

Publications (2)

Publication Number Publication Date
JPS61129041A JPS61129041A (en) 1986-06-17
JPH0218134B2 true JPH0218134B2 (en) 1990-04-24

Family

ID=17233750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252190A Granted JPS61129041A (en) 1984-11-29 1984-11-29 Adsorption of divalent transition metal in aqueous solution and immobilization of ion exchange agent and divalent transition metal

Country Status (1)

Country Link
JP (1) JPS61129041A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110304907A (en) * 2019-06-12 2019-10-08 魏炎梅 A kind of preparation method of Zinc oxide-base composite conductive ceramic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617928A (en) * 1979-07-23 1981-02-20 Natl Inst For Res In Inorg Mater Manufacture of titania hydrate fiber, titania glass fiber and titania fiber
JPS56161835A (en) * 1980-05-13 1981-12-12 Agency Of Ind Science & Technol Fibrous uranium adsorbent material and its manufacture
JPS57117341A (en) * 1981-01-12 1982-07-21 Natl Inst For Res In Inorg Mater Adsorbing and ion exchange material for strontium in aqueous solution and method for fixing strontium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617928A (en) * 1979-07-23 1981-02-20 Natl Inst For Res In Inorg Mater Manufacture of titania hydrate fiber, titania glass fiber and titania fiber
JPS56161835A (en) * 1980-05-13 1981-12-12 Agency Of Ind Science & Technol Fibrous uranium adsorbent material and its manufacture
JPS57117341A (en) * 1981-01-12 1982-07-21 Natl Inst For Res In Inorg Mater Adsorbing and ion exchange material for strontium in aqueous solution and method for fixing strontium

Also Published As

Publication number Publication date
JPS61129041A (en) 1986-06-17

Similar Documents

Publication Publication Date Title
EP0121339B1 (en) Method for removal of poisonous gases
Aiello et al. Use of natural products for zeolite synthesis. V. Self-bonded zeolite pellets from rhyolitic pumice
JPS61256922A (en) Immobilizing method for strontium incorporated in aqueous solution
JPS621293B2 (en)
JPH0218134B2 (en)
JPS6132053B2 (en)
JPH0450063B2 (en)
JPS6125657B2 (en)
SASAKI et al. Ion-exchange properties of hydrous titanium dioxide with a fibrous form obtained from potassium dititanate
El-Naggar et al. Synthesis and sorption behaviour of some radioactive nuclides on sodium titanate as cation exchanger
JPS5820300B2 (en) Adsorption and ion exchange material for cesium in aqueous solution
JPS6156017B2 (en)
WO1993017964A1 (en) Silver-bearing tobermorite
JPS63185811A (en) Synthetic porous material and production thereof
JPS5869799A (en) Production of fibrous potassium titanate
JPH1043609A (en) Ion exchanger
JPH01258737A (en) Adsorbent for recovery of rare earth element in aqueous solution
JP3541201B2 (en) Silver-containing zonotolite
KR102654512B1 (en) Adsorbent for removing radionuclides and manufacturing method thereof
JPH05229900A (en) Production of phombic layered titanic acid plate crystal represented by hxmyti2-yo4-nh2o
JP2001080916A (en) Mel type crystalline metallosilicate and its production
JPH0234888B2 (en) SENIJOCHITANSANKARIUMUNOSEIZOHO
JPH03205315A (en) Method for ion exchange and separation of sodium and potassium
JPS6052087B2 (en) Manufacturing method of zeolitic composition
JPH0357814B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term