JPH02180854A - Production of n,n-diisopropylethylamine - Google Patents

Production of n,n-diisopropylethylamine

Info

Publication number
JPH02180854A
JPH02180854A JP63333974A JP33397488A JPH02180854A JP H02180854 A JPH02180854 A JP H02180854A JP 63333974 A JP63333974 A JP 63333974A JP 33397488 A JP33397488 A JP 33397488A JP H02180854 A JPH02180854 A JP H02180854A
Authority
JP
Japan
Prior art keywords
reaction
acetaldehyde
ethylamine
catalyst
acetone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63333974A
Other languages
Japanese (ja)
Other versions
JP2740828B2 (en
Inventor
Toshinari Nahata
名畑 俊成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP63333974A priority Critical patent/JP2740828B2/en
Publication of JPH02180854A publication Critical patent/JPH02180854A/en
Application granted granted Critical
Publication of JP2740828B2 publication Critical patent/JP2740828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the title compound useful as a raw material for drugs from inexpensive raw materials by catalytically reducing ethylamine and acetone as starting raw materials in the presence of a novel metallic catalyst. CONSTITUTION:70 % aqueous solution of ethylamine and 2-30mols based on ethylamine of acetone are gradually heated at 100-180 deg.C and catalytically reduced in the presence of a catalyst of noble metal such as Pd/C under >= normal pressure for 3-10 hours while introducing H2 to give the aimed compound. Or diisopropylamine and acetaldehyde as starting raw materials are catalytically reduced in the presence of the catalyst of noble metal such as Pd/C at room temperature - 200 deg.C under >= normal pressure for 1-6 hours while introducing H2 and 1-2.0mol based on 1mol diisopropylamine of aqueous solution of acetaldehyde to the reaction system to give the aimed compound.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、N、N−ジイソプロピルエチルアミン(以下
、DIPEAという)を′51造する方法に関し、詳し
くはエチルアミンとアセトンを出発原料とし、貴金属触
媒存在下での接触還元反応によるDI))EAの製造法
、及びジイソプロピルアミン(以下、DIPAという)
とアセトアルデヒドを出発原料とし、1!1金属触媒存
在下アセトアルデヒドを反応系内に供給しながら接触還
元反応を行なうことによるDIPEAの製造法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing N,N-diisopropylethylamine (hereinafter referred to as DIPEA) using ethylamine and acetone as starting materials and a noble metal catalyst. DI)) Method for producing EA by catalytic reduction reaction in the presence of diisopropylamine (hereinafter referred to as DIPA)
The present invention relates to a method for producing DIPEA by using acetaldehyde and acetaldehyde as starting materials and carrying out a catalytic reduction reaction while supplying acetaldehyde into the reaction system in the presence of a 1:1 metal catalyst.

DIl)L?、Aは医農薬の原料として有用な化合物で
ある。
DIl)L? , A are compounds useful as raw materials for pharmaceuticals and agricultural chemicals.

(従来技術及び発明が解決しようとする課題)従来、D
IPEAの!2造法としてはDIPAをジエチル硫酸で
エチル化する方法が知られている( CheIIl、 
Ber、 、 91.3H〜392 (19581)、
この方法によると反応器に原料のDIPAと目的物であ
るDIPEAを等モルずつ仕込み、ジエチル硫酸を加え
140℃で3.5時間反応し、収率90%でDlr”E
Aを得ている。しかしながら、この方法は収率が高いも
のの反応を促進させるため目的物を加えるなど工業的に
有利な方法とは言い難い。
(Prior art and problems to be solved by the invention) Conventionally, D
IPEA's! As a method for producing DIPA, a method of ethylating DIPA with diethyl sulfate is known (CheIIl,
Ber, 91.3H~392 (19581),
According to this method, equimolar amounts of DIPA as a raw material and DIPEA as a target product are charged into a reactor, diethyl sulfuric acid is added, and the reaction is carried out at 140°C for 3.5 hours, resulting in a yield of 90%.
I got an A. However, although this method has a high yield, it is difficult to say that it is an industrially advantageous method because the target substance is added to promote the reaction.

また、他の製造法としてDIPAをエチルアイオダイド
でエチル化する方法(J、O,C,,16,19119
51))があるが、収率は約50%と低く好ましい方法
とは言い難い。
In addition, as another manufacturing method, a method of ethylating DIPA with ethyl iodide (J, O, C,, 16, 19119
51)), but the yield is as low as about 50% and it cannot be said to be a preferable method.

本発明の目的は、安価に人手できる原料を用いてD I
 PEAを良好な収率で得る方法を提供することにある
The purpose of the present invention is to produce D I using raw materials that can be done manually at low cost.
The object of the present invention is to provide a method for obtaining PEA in good yield.

(課題を解決するための手段) 本発明の第1発明は、エチルアミンとアセトンを貴金属
触媒の存在下、接触還元反応させることを特徴とするD
IPEAの製造法である。
(Means for Solving the Problems) The first invention of the present invention is characterized in that ethylamine and acetone are subjected to a catalytic reduction reaction in the presence of a noble metal catalyst.
This is a method for producing IPEA.

また本発明の第2発明は、DIPAとアセトアルデヒド
を貴金属触媒の存在下、接触還元反応させてDIPEA
するにあたり1反応系内にアセトアルデヒドを供給しな
がら反応することを特徴とするDIPEAの製造法であ
る。
In addition, the second invention of the present invention provides DIPEA by subjecting DIPA and acetaldehyde to a catalytic reduction reaction in the presence of a noble metal catalyst.
This method for producing DIPEA is characterized in that the reaction is carried out while supplying acetaldehyde into one reaction system.

従来本第1発明の方法は意外にも知られていない。その
理由はエチルアミンにアセトンとの接触還元によりイソ
プロピル基を導入する場合、イソプロピル、2!1個の
導入は比較的容易であるが、更にもう1個のイソプロピ
ル基の導入は、中間体であるN−イソプロピルエチルア
ミン(以下。
Surprisingly, the method of the first invention has not been known in the past. The reason for this is that when introducing isopropyl groups into ethylamine by catalytic reduction with acetone, it is relatively easy to introduce 2!1 isopropyl groups, but it is difficult to introduce one more isopropyl group into the intermediate N -isopropylethylamine (hereinafter referred to as

MIPEAという)のアルキル基による立体障害により
生じるその窒素原子の活性低下によって困難であると考
えられていたものと推察される。
It is presumed that this was thought to be difficult due to the reduction in activity of the nitrogen atom caused by steric hindrance by the alkyl group of MIPEA.

そこで、本発明者は、水素化触媒として極めて汎用され
ているラネーNi触媒を用いてエチルアミンとアセトン
の接触還元反応を試みたが、主たる生成物はアセトンの
還元体であるイソプロピルアルコールでありDIPIE
Aの生成をほとんど認めることができなかった。本発明
者は、更に検討を重ねた結果、意外にも、貴金属触媒を
用いるとDIPCへの収率が著しく向上することを見出
し本発明の第1+7?!明を完成するに至った。
Therefore, the present inventor attempted a catalytic reduction reaction of ethylamine and acetone using a Raney Ni catalyst, which is extremely widely used as a hydrogenation catalyst, but the main product was isopropyl alcohol, which is a reduced form of acetone.
Almost no formation of A could be observed. As a result of further studies, the present inventor surprisingly found that the yield to DIPC is significantly improved when a noble metal catalyst is used. ! He came to complete Ming.

本発明の第2発明のような第2級アミンとアルデヒドの
接触還元反応による第3級アミンの!+2造においては
、一般に、オートクレーブ中に第2級アミンとアルデヒ
ドのいずれも全量を仕込み水素化触媒の存在下接触還元
反応させる方法がとられている。ところが、ジイソプロ
ピルアミンとアセトアルデヒドの接触還元反応によるD
 I PEAの!!2造の際、かかる一般の方法では貴
金属触媒及びラネーNi触媒のいずれでもアセトアルデ
ヒドが本発明の目的以外の反応を起こし、DIPEAの
収率は極めて低いかもしくはD I PEAの生成をほ
とんど認めることができない、このように、従来一般的
に行なわれている方法ではD I I) E Aを収率
良く得ることができない。
A tertiary amine by a catalytic reduction reaction of a secondary amine and an aldehyde as in the second invention of the present invention! In +2 manufacturing, a method is generally used in which the entire amount of both the secondary amine and aldehyde is charged into an autoclave and subjected to a catalytic reduction reaction in the presence of a hydrogenation catalyst. However, D due to the catalytic reduction reaction of diisopropylamine and acetaldehyde
I PEA's! ! In this general method, acetaldehyde causes a reaction other than the purpose of the present invention in both the noble metal catalyst and the Raney Ni catalyst, and the yield of DIPEA is extremely low or the formation of DIPEA is hardly observed. As described above, it is not possible to obtain DII) EA in a good yield by the conventionally commonly used methods.

そこで1本発明者は、鋭意研究を行なった結果、意外に
も、貴金属触媒の存在下反応系内に原料のアセトアルデ
ヒドを供給しながらDIPAとアセトアルデヒドの接触
還元反応を行なうことにより、DIPEAの収率が著し
く向上することを見出し本発明の第2発明を完成するに
至った。ところでラネーNi触媒の存在下反応系内に原
料のアセトアルデヒドを供給しながらDIPAとアセト
アルデヒドの接触還元反応を行なっても、主たる生成物
はアセトアルデヒドの還元体であるエチルアルコールで
ありDIPIEAの生成をほとんど認めることができな
い。
Therefore, as a result of intensive research, the present inventor unexpectedly found that the yield of DIPEA could be increased by carrying out a catalytic reduction reaction between DIPA and acetaldehyde while supplying the raw material acetaldehyde into the reaction system in the presence of a noble metal catalyst. The inventors have found that the properties are significantly improved and have completed the second invention of the present invention. By the way, even if the catalytic reduction reaction of DIPA and acetaldehyde is carried out in the presence of a Raney Ni catalyst while supplying the raw material acetaldehyde into the reaction system, the main product is ethyl alcohol, which is a reduced form of acetaldehyde, and almost no DIPIEA is produced. I can't.

本第2発明では水素化触媒として貴金属触媒を用いるこ
と及び反応系内にアセトアルデヒドを供給しながら接触
還元反応を行なうことが重要である。
In the second invention, it is important to use a noble metal catalyst as the hydrogenation catalyst and to carry out the catalytic reduction reaction while supplying acetaldehyde into the reaction system.

本発明の方法に用いる貴金属触媒としては通常使用され
る水素化用貴金属触媒が挙げられ、その具体例としては
パラジウム−カーボン、ルテニウム−カーボン、ロジウ
ム−カーボン、白金−カーボンなどが挙げられる。貴金
属触媒の使用量は。
The noble metal catalyst used in the method of the present invention includes commonly used noble metal catalysts for hydrogenation, and specific examples thereof include palladium-carbon, ruthenium-carbon, rhodium-carbon, platinum-carbon, and the like. What is the amount of precious metal catalyst used?

エチルアミン又はジイソプロピルアミンに対して1〜2
0%重量の範囲が反応効率、触媒効率の面から好ましい
1-2 for ethylamine or diisopropylamine
A range of 0% by weight is preferable from the viewpoint of reaction efficiency and catalyst efficiency.

本発明の第19!明の方法について更に説明する。No. 19 of the present invention! This method will be further explained.

アセトンの使用量は通常エチルアミンに対して2倍〜3
0倍モルで、好ましくは4〜16倍モルと過剰に用いる
ことにより反応が好適に進行する。アセトンの使用量が
エチルアミンに対して2倍モル未満であると、DIPE
AよりもM I P E Aの方の生成率が増す。
The amount of acetone used is usually 2 to 3 times the amount of ethylamine.
The reaction proceeds suitably by using an excess of 0 times the mole, preferably 4 to 16 times the mole. If the amount of acetone used is less than 2 times the mole of ethylamine, DIPE
The production rate of MIPEAA is higher than that of A.

エチルアミンは水溶液として反応に供することができる
。エチルアミン水溶液としては工業的に人毛しやすい7
0%品が用いられる。
Ethylamine can be subjected to the reaction as an aqueous solution. As an ethylamine aqueous solution, it is industrially easy to use human hair 7
0% product is used.

本発明の第1発明の反応は比較的低温下で生成可能なM
 I PEAを経由してD I PEAを生成するもの
である0本発明の第1発明の好ましい一つの実施態様に
よれば、エチルアミン、アセトン及び貴金属触媒をオー
トクレーブに仕込み、水素を導入しながら100〜18
0℃好ましくは130〜160℃まで徐々に加温し、該
温度に保ちながら常圧以上好ましくは5〜60気圧で水
素の導入を続ければよい、水素導入開始後3〜10時間
で水素の吸収が終了し、エチルアミンはほとんど消費さ
れる。他の好ましい実施態様としては、常温〜90℃程
度でエチルアミンとアセトンを貴金属触媒存在下で接触
還元反応させてMIPCAを製造単離し1次いで中継さ
れたMIPEAとアセトンを貴金属触媒存在下100〜
180℃好ましくは130〜160℃で接触還元反応さ
せてDIPEAをgi造するといった2ステツプの方法
が挙げられる。
The reaction of the first invention of the present invention can produce M at a relatively low temperature.
According to a preferred embodiment of the first aspect of the present invention, which produces D I PEA via I PEA, ethylamine, acetone, and a noble metal catalyst are charged into an autoclave, and 100~ 18
It is sufficient to gradually heat the temperature to 0°C, preferably 130 to 160°C, and continue introducing hydrogen at normal pressure or higher, preferably 5 to 60 atmospheres while maintaining the temperature. Hydrogen absorption occurs within 3 to 10 hours after the start of hydrogen introduction. is completed and most of the ethylamine is consumed. In another preferred embodiment, MIPCA is produced and isolated by catalytic reduction reaction of ethylamine and acetone in the presence of a noble metal catalyst at room temperature to about 90°C, and then the relayed MIPEA and acetone are reacted for catalytic reduction in the presence of a noble metal catalyst.
A two-step method may be used in which DIPEA is produced by catalytic reduction reaction at 180°C, preferably 130-160°C.

また本発明の第1発明の方法において反応液中に含まれ
るM I PEAは反応液から中継後、アセトンとil
l金属触媒存在下で接触還元反応せしめることによりD
IPEAに誘導できる。
Furthermore, in the method of the first aspect of the present invention, M I PEA contained in the reaction solution is transferred from the reaction solution and then transferred to acetone and IL.
D by carrying out a catalytic reduction reaction in the presence of a metal catalyst.
Can be induced to IPEA.

つぎに、本発明の第2発明の方法について更に説明する
Next, the method of the second aspect of the present invention will be further explained.

反応系内に供給するアセトアルデヒドは、1) I P
 Aに対して1〜2.0倍モルと理論量ないし過剰に用
いるのが好ましい。アセトアルデヒドは低沸点のため溶
媒で希釈して供給する方が操作しやすい、溶媒としては
水、或はアミンとアセトアルデヒドに対して不活性な有
機溶媒などが使用できるが、後処理の操作性のよい水が
好ましい。
Acetaldehyde supplied into the reaction system is 1) I P
It is preferable to use it in a theoretical amount or in excess of 1 to 2.0 times the mole of A. Because acetaldehyde has a low boiling point, it is easier to operate if it is diluted with a solvent and supplied.As a solvent, water or an organic solvent that is inert to amines and acetaldehyde can be used, but it is easier to operate in post-treatment. Water is preferred.

溶媒量としては特に制限はないが、生産効率を考慮した
場合、アセトアルデヒドに対して0.5〜3倍!nにが
好ましい。
There is no particular limit to the amount of solvent, but considering production efficiency, it is 0.5 to 3 times the amount of acetaldehyde! n is preferred.

反応温度は通常室温〜200℃好ましくは70〜150
℃である8反応圧としては常圧以上好ましくは5〜60
気圧である。アセトアルデヒドの供給時間は1〜6時間
で十分であり、Di)Aはほとんど消費される。
The reaction temperature is usually room temperature to 200°C, preferably 70 to 150°C.
The reaction pressure is at least normal pressure, preferably 5 to 60°C.
It is atmospheric pressure. Acetaldehyde supply time of 1 to 6 hours is sufficient, and Di)A is almost consumed.

本発明の方法で製造されるD I PEAは一般的な!
11離稍型子段1例えば反応液から濾過により触媒を除
去し、濾液を蒸留することにより極めて容易に高純度で
得られる。
DI PEA produced by the method of the present invention is common!
11 Separate type substage 1 It can be obtained very easily with high purity, for example, by removing the catalyst from the reaction solution by filtration and distilling the filtrate.

本発明の方法を実施例及び比較例により説明するが1本
発明はそれらの実施例に限定されるものではない。
The method of the present invention will be explained by Examples and Comparative Examples, but the present invention is not limited to these Examples.

(実施例) 実施例1 容ff1142の電磁式攪拌式オートクレーブに70%
エチルアミン水溶液64g (1,0モル)、アセトン
464g (8,0モル)及びパラジウム−カーボン6
.4gを仕込み、これに水素を導入、及び加熱して16
0℃、50気圧に昇温昇圧し接触還元反応を行なった0
次いで当該温度、当該圧を保ちながら水素の導入を続は
接触還元反応を行なった。水素吸収は水素導入開始後7
時間で終了した1反応液を冷却後、濾過して触媒を濾別
し、濾液を蒸留してD I PEAを82゜8g(収率
64.2%)及びMIPI三Aを20゜3g(収率23
.3%)得た。
(Example) Example 1 70% in an electromagnetic stirring autoclave with a capacity of ff1142
64 g (1.0 mol) of ethylamine aqueous solution, 464 g (8.0 mol) of acetone and palladium-carbon 6
.. Charge 4g, introduce hydrogen into it, and heat to 16
The temperature and pressure were raised to 0°C and 50 atm to perform a catalytic reduction reaction.
Next, hydrogen was introduced while maintaining the temperature and pressure, followed by a catalytic reduction reaction. Hydrogen absorption begins at 7 pm after the start of hydrogen introduction.
After cooling the reaction mixture, the catalyst was removed by filtration, and the filtrate was distilled to obtain 82.8 g of DIPEA (64.2% yield) and 20.3 g of MIPI3A (yield of 64.2%). rate 23
.. 3%) obtained.

実施例2 反応温度を180℃に代えた他は実施例!と同様にして
反応及び後処理を行ない、DIPEAを57.7g (
収率44.7%)及びMIPCAを29.6g (収率
34.0%)得た。
Example 2 Same as Example except that the reaction temperature was changed to 180°C! The reaction and post-treatment were carried out in the same manner as above, and 57.7 g of DIPEA (
29.6 g (yield: 44.7%) and MIPCA (yield: 34.0%) were obtained.

実施例3 70%エチルアミン水溶液を45g (0,7−f−ル
)及びアセトンを487g (8,4モル)に代えた他
は実施例1と同様にして反応及び後処理を行ない、DI
PEAを60.8g (収率67゜:3%)及びMIP
CAを12.0g (収率19゜7%)得た。
Example 3 The reaction and post-treatment were carried out in the same manner as in Example 1, except that 45 g (0,7-f-1) of 70% ethylamine aqueous solution and 487 g (8,4 mol) of acetone were used.
60.8 g of PEA (yield 67°: 3%) and MIP
12.0 g (yield 19.7%) of CA was obtained.

実施例4 70%エチルアミン水溶液を257 g (4−fl−
ル)、アセトンを232g (4モル)及びパラジウム
−カーボンを3.5g反応温度を70’Cに代えた他は
実施例1と同様にして反応及び後処理を行ない、M I
 r’ E Aを334.4g (収率96゜1%)得
た。なお、水素吸収は水素導入開始後4時間で終了した
Example 4 257 g of 70% ethylamine aqueous solution (4-fl-
The reaction and post-treatment were carried out in the same manner as in Example 1, except that the reaction temperature was changed to 70'C, 232 g (4 moles) of acetone, and 3.5 g of palladium-carbon.
334.4 g (yield 96.1%) of r' EA was obtained. Note that hydrogen absorption was completed 4 hours after the start of hydrogen introduction.

ついで、得られたMIPI三A100g (1゜15モ
ル)、アセトン333g (5,75モル)及びパラジ
ウム−カーボン7.4gを容1i1Jltの電磁式攪拌
式オートクレーブに仕込み、これに水素を導入しながら
160℃、40気圧で5時間接触還元反応を行なった。
Next, 100 g (1°15 mol) of the obtained MIPI3A, 333 g (5.75 mol) of acetone, and 7.4 g of palladium-carbon were charged into a 111 Jlt electromagnetic stirring autoclave, and heated to 160 g while introducing hydrogen into the autoclave. A catalytic reduction reaction was carried out at 40 atm at 0.degree. C. for 5 hours.

反応液を冷却後、濾過して触媒を濾別し、濾液を蒸留し
てDIPEAを105.9g (収率71.4%)、未
反応M I PEAを8.4g(回収率8,4%)得た
After the reaction solution was cooled, it was filtered to remove the catalyst, and the filtrate was distilled to obtain 105.9 g of DIPEA (yield 71.4%) and 8.4 g of unreacted MI PEA (recovery rate 8.4%). )Obtained.

実施例5 容ff1lJ2の電磁式攪拌式オートクレーブにDII
’A202g (2,0モル)及びパラジウム−カーボ
ン12.9gを仕込み、これに水素を導入し加熱し12
0℃、25気圧とした8次いで50%アセトアルデヒド
水溶液184g (2゜1モル)を高圧定攪ポンプにて
及び25気圧を保つように水素をオートクレーブ内に3
時間かけて供給しながら接触還元反応を行なった0反応
液を冷却後、濾過して触媒を濾別し、2層に分液した濾
液のオイル層を蒸留してD I P EAを210゜O
g(収率81゜4%)及び未反応DIPAを17.8g
 (回収率8.8%)得た。他にエタノールがIQ、4
g (収率10.8%)副生していた。
Example 5 DII was placed in an electromagnetic stirring autoclave with a capacity of ff1lJ2.
202 g (2.0 mol) of 'A and 12.9 g of palladium-carbon were charged, hydrogen was introduced into the mixture, and the mixture was heated to 12.0 g.
8 Then, 184 g (2° 1 mol) of a 50% acetaldehyde aqueous solution was added to the autoclave at 0°C and 25 atm using a high-pressure constant stirring pump, and hydrogen was added to the autoclave to maintain the pressure at 25 atm.
The catalytic reduction reaction was carried out while being fed over a period of time. After cooling, the reaction solution was filtered to remove the catalyst. The oil layer of the filtrate was separated into two layers and distilled to produce DIP EA at 210°O.
g (yield 81°4%) and 17.8 g of unreacted DIPA
(Recovery rate: 8.8%). Besides, ethanol has an IQ of 4
g (yield 10.8%) was produced as a by-product.

実施例6 パラジウム−カーボンを7.7g及び50%アセトアル
デヒド水i8液を228g (2,6モル)に代えた他
は実施例5と同様にして反応及び後処理を行ない、D 
I )) [’:八を236.1g (収率91.5%
)得、未反応DIPAは0.6g (回収率Q、3%)
とほとんど残っていなかった。他にエタノールが10.
5g (収率8.8%)副生じていた。
Example 6 The reaction and post-treatment were carried out in the same manner as in Example 5, except that 7.7 g of palladium-carbon and 228 g (2.6 mol) of 50% aqueous acetaldehyde solution I8 were used.
I)) [': 236.1g of 8 (yield 91.5%
), unreacted DIPA was 0.6 g (recovery rate Q, 3%)
There wasn't much left. In addition, ethanol is 10.
5g (yield: 8.8%) was produced as a by-product.

比較例1 容量1℃の電磁式攪拌式オートクレーブに1)IPΔ2
02g (2,0モル)、50%アセトアルデヒド水溶
液184g(2,1モル)及びパラジウム−カーボン7
.7gを仕込み、これに水素を導入しながら120℃、
25気圧で接触還元反応を行なったところ、1時間30
分で水素の吸収が止まり反応は終丁した。反応液を冷却
後、濾過して触媒を濾別し、2層に分液した濾液のオイ
ル層を蒸留してD I PEAを23.5g (収率9
.1%)及び未反応DIPAを68.3g (回収率3
3.8%)得た。他に高沸物が多種多量に副生じていた
Comparative Example 1 1) IPΔ2 in an electromagnetic stirring autoclave with a capacity of 1°C
02 g (2.0 mol), 184 g (2.1 mol) of 50% aqueous acetaldehyde solution and palladium-carbon 7
.. 7g was charged and heated to 120℃ while introducing hydrogen into it.
When the catalytic reduction reaction was carried out at 25 atmospheres, it took 30 minutes for 1 hour.
After a few minutes, hydrogen absorption stopped and the reaction came to an end. After cooling the reaction solution, it was filtered to remove the catalyst, and the oil layer of the filtrate separated into two layers was distilled to obtain 23.5 g of D I PEA (yield: 9).
.. 1%) and 68.3 g of unreacted DIPA (recovery rate 3
3.8%) was obtained. Many other high-boiling substances were produced as by-products.

比較例2 パラジウム−カーボンをラネーNi52gに代えた他は
実施例6と同様にして反応及び後処理を行なった。DI
PEAの生成量はトレースであり、未反応DIPAを1
94.9g (回収率96.5%)及びエタノールをz
sg(収率98.7%)得た。
Comparative Example 2 The reaction and post-treatment were carried out in the same manner as in Example 6, except that 52 g of Raney Ni was used instead of palladium-carbon. D.I.
The amount of PEA produced is a trace, and the amount of unreacted DIPA is 1
94.9g (recovery rate 96.5%) and ethanol
sg (yield 98.7%) was obtained.

(発明の効果) 本発明の第1及び2発明によれば、従来法に比べ安価な
原料で良好な収率でD I P rE Aが得られる。
(Effects of the Invention) According to the first and second aspects of the present invention, D I P rE A can be obtained in good yield using cheaper raw materials than in conventional methods.

特許出願人  広栄化字工業株式会社Patent applicant Koeikaji Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】 1)エチルアミンとアセトンを貴金属触媒の存在下、接
触還元反応させることを特徴とするN,N−ジイソプロ
ピルエチルアミンの製造法。 2)ジイソプロピルアミンとアセトアルデヒドを貴金属
触媒の存在下、接触還元反応させてN,N−ジイソプロ
ピルエチルアミンするにあたり、反応系内にアセトアル
デヒドを供給しながら反応することを特徴とするN,N
−ジイソプロピルエチルアミンの製造法。
[Claims] 1) A method for producing N,N-diisopropylethylamine, which comprises subjecting ethylamine and acetone to a catalytic reduction reaction in the presence of a noble metal catalyst. 2) N,N, which is characterized in that when diisopropylamine and acetaldehyde are subjected to a catalytic reduction reaction to form N,N-diisopropylethylamine in the presence of a noble metal catalyst, the reaction is carried out while supplying acetaldehyde into the reaction system.
-Production method of diisopropylethylamine.
JP63333974A 1988-12-29 1988-12-29 Method for producing N, N-diisopropylethylamine Expired - Fee Related JP2740828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63333974A JP2740828B2 (en) 1988-12-29 1988-12-29 Method for producing N, N-diisopropylethylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63333974A JP2740828B2 (en) 1988-12-29 1988-12-29 Method for producing N, N-diisopropylethylamine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9260814A Division JP2851274B2 (en) 1997-09-08 1997-09-08 Method for producing N, N-diisopropylethylamine

Publications (2)

Publication Number Publication Date
JPH02180854A true JPH02180854A (en) 1990-07-13
JP2740828B2 JP2740828B2 (en) 1998-04-15

Family

ID=18272073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63333974A Expired - Fee Related JP2740828B2 (en) 1988-12-29 1988-12-29 Method for producing N, N-diisopropylethylamine

Country Status (1)

Country Link
JP (1) JP2740828B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020424A1 (en) * 1999-01-14 2000-07-19 Basf Aktiengesellschaft Method for the production of N-Ethyl-diisopropylamin
US6834939B2 (en) 2002-11-23 2004-12-28 Silverbrook Research Pty Ltd Micro-electromechanical device that incorporates covering formations for actuators of the device
WO2007137990A1 (en) * 2006-05-31 2007-12-06 Basf Se Process for the preparation of an amine
US9416689B2 (en) 2012-12-28 2016-08-16 Nittan Valve Co., Ltd. Method and apparatus for controlling a phase varying apparatus
US9884805B2 (en) 2014-02-18 2018-02-06 Basf Antwerpen Nv Method for producing N-ethyl-diisopropylamine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020424A1 (en) * 1999-01-14 2000-07-19 Basf Aktiengesellschaft Method for the production of N-Ethyl-diisopropylamin
US6111141A (en) * 1999-01-14 2000-08-29 Basf Aktiengesellschaft Preparation of N-ethyldiisopropylamine
US6834939B2 (en) 2002-11-23 2004-12-28 Silverbrook Research Pty Ltd Micro-electromechanical device that incorporates covering formations for actuators of the device
WO2007137990A1 (en) * 2006-05-31 2007-12-06 Basf Se Process for the preparation of an amine
US8034978B2 (en) 2006-05-31 2011-10-11 Basf Se Process for the preparation of an amine
US9416689B2 (en) 2012-12-28 2016-08-16 Nittan Valve Co., Ltd. Method and apparatus for controlling a phase varying apparatus
US9884805B2 (en) 2014-02-18 2018-02-06 Basf Antwerpen Nv Method for producing N-ethyl-diisopropylamine

Also Published As

Publication number Publication date
JP2740828B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
SK285043B6 (en) Method for producing L-phenylephrine hydrochloride
JP3001685B2 (en) Diamine production method
JPH02180854A (en) Production of n,n-diisopropylethylamine
CA1319707C (en) Process for the preparation of serinol
EP0566783A1 (en) Process for the production of nitrodiarylamines
JP2851274B2 (en) Method for producing N, N-diisopropylethylamine
JP3422331B2 (en) Method for producing N, N-disubstituted ethylenediamine
CA1202982A (en) Hydrogenation process
JP3038271B2 (en) Method for producing 3-aminopropanol
JP3031727B2 (en) Process for producing aminomethylpyridines having a chlorine atom at the α-position
JPH05286889A (en) Production of arylacetic acid and its alkali metal salt
JPH04149160A (en) Production of 1-amino-4-alkoxybenzene compounds
US4658032A (en) Process for producing 2,3,5-collidine and/or 2,3,5,6-tetramethylpyridine
JPH05310697A (en) Production of 2-chloro-5-substituted aminomethylpyridines
JPS63246370A (en) Production of amine compound
CA1080725A (en) Process for producing phthalide
JP2558480B2 (en) Method for producing N-ethylpiperazine
JPH0250101B2 (en)
JPS63185942A (en) Production of tribenzylamine
JP2762106B2 (en) Method for producing 3-hydroxypyrrolidine
JPH059427B2 (en)
JPH08109170A (en) Production of hexahydropyridazine
JPH0816101B2 (en) Process for producing 3,5-dichloropyridine
JPH0229067B2 (en)
JPH09151168A (en) Production of beta-alanine salt

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees