JP2740828B2 - Method for producing N, N-diisopropylethylamine - Google Patents

Method for producing N, N-diisopropylethylamine

Info

Publication number
JP2740828B2
JP2740828B2 JP63333974A JP33397488A JP2740828B2 JP 2740828 B2 JP2740828 B2 JP 2740828B2 JP 63333974 A JP63333974 A JP 63333974A JP 33397488 A JP33397488 A JP 33397488A JP 2740828 B2 JP2740828 B2 JP 2740828B2
Authority
JP
Japan
Prior art keywords
reaction
dipea
yield
acetaldehyde
catalytic reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63333974A
Other languages
Japanese (ja)
Other versions
JPH02180854A (en
Inventor
俊成 名畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Co Ltd
Original Assignee
Koei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Co Ltd filed Critical Koei Chemical Co Ltd
Priority to JP63333974A priority Critical patent/JP2740828B2/en
Publication of JPH02180854A publication Critical patent/JPH02180854A/en
Application granted granted Critical
Publication of JP2740828B2 publication Critical patent/JP2740828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明、N,N−ジイソプロピルエチルアミン(以下、D
IPEAという)を製造する方法に関し、詳しくはエチルア
ミンとアセトンを出発原料とし、貴金属触媒存在下での
接触還元反応によるDIPEAの製造法、及びジイソプロピ
ルアミン(以下、DIPAという)とアセトアルデヒドを出
発原料とし、貴金属触媒存在下アセトアルデヒドを反応
系内に供給しながら接触還元反応を行なうことによるDI
PEAの製造法に関する。DIPEAは医農薬の原料として有用
な化合物である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to N, N-diisopropylethylamine (hereinafter referred to as D
In particular, the method for producing IPEA) uses ethylamine and acetone as starting materials, a method for producing DIPEA by a catalytic reduction reaction in the presence of a noble metal catalyst, and diisopropylamine (hereinafter referred to as DIPA) and acetaldehyde as starting materials. DI by performing catalytic reduction reaction while supplying acetaldehyde into the reaction system in the presence of a noble metal catalyst
It relates to the manufacturing method of PEA. DIPEA is a useful compound as a raw material for medical and agricultural chemicals.

(従来技術及び発明が解決しようとする課題) 従来、DIPEAの製造法としてDIPAをジエチル硫酸でエ
チル化する方法が知られている(Chem.Ber.,91,380〜39
2(1958))。この方法によると反応器に原料のDIPAと
目的物であるDIPEAを等モルずつ仕込み、ジエチル硫酸
を加え140℃で3.5時間反応し、収率90%でDIPEAを得て
いる。しかしながら、この方法は収率が高いものの反応
を促進させるため目的物を加えるなど工業的に有利な方
法とは言い難い。また、他の製造法としてはDIPAをエチ
ルアイオダイドでエチル化する方法(J.O.C.,16,1911
(1951))があるが、収率は約50%と低く好ましい方法
とは言い難い。
(Prior Art and Problems to be Solved by the Invention) Conventionally, as a method for producing DIPEA, a method of ethylating DIPA with diethyl sulfate is known (Chem. Ber., 91 , 380-39).
2 (1958)). According to this method, DIPA as a raw material and DIPEA as a target substance are charged in equimolar amounts to a reactor, and diethyl sulfuric acid is added thereto, and the mixture is reacted at 140 ° C. for 3.5 hours to obtain DIPEA with a yield of 90%. However, although this method has a high yield, it is hard to say that it is an industrially advantageous method such as adding a target substance to promote the reaction. As another production method, DIPA is ethylated with ethyl iodide (JOC, 16 , 1911).
(1951)), but the yield is as low as about 50%, which is not a preferable method.

本発明の目的は、安価に入手できる原料を用いてDIPE
Aを良好な収率で得る方法を提供することにある。
It is an object of the present invention to use DIPE using inexpensive raw materials.
An object of the present invention is to provide a method for obtaining A in good yield.

(課題を解決するための手段) 本発明の第1発明は、エチルアミンとアセトンを貴金
属触媒の存在下、接触還元反応させることを特徴とする
DIPEAの製造法である。
(Means for Solving the Problems) The first invention of the present invention is characterized in that ethylamine and acetone are subjected to a catalytic reduction reaction in the presence of a noble metal catalyst.
It is a manufacturing method of DIPEA.

また本発明の第2発明は、DIPAとアセトアルデヒドを
貴金属触媒の存在下、接触還元反応させてDIPEAするに
あたり、反応系内にアセトアルデヒドを供給しながら反
応することを特徴とするDIPEAの製造法である。
Further, a second invention of the present invention is a method for producing DIPEA, wherein DIPA and acetaldehyde are subjected to catalytic reduction reaction in the presence of a noble metal catalyst to perform DIPEA, while reacting while supplying acetaldehyde into the reaction system. .

従来本第1発明の方法は意外にも知られていない。そ
の理由はエチルアミンにアセトンとの接触還元によりイ
ソプロピル基を導入する場合、イソプロピル基1個の導
入は比較的容易であるが、更にもう1個のイソプロピル
基の導入は、中間体であるN−イソプロピルエチルアミ
ン(以下、MIPEAという)のアルキル基による立体障害
により生じるその窒素原子の活性低下によって困難であ
ると考えられていたものと推察される。
Conventionally, the method of the first invention has not been known surprisingly. The reason is that when an isopropyl group is introduced into ethylamine by catalytic reduction with acetone, the introduction of one isopropyl group is relatively easy, but the introduction of another isopropyl group is based on the intermediate N-isopropyl. It is presumed that this was thought to be difficult due to a decrease in the activity of the nitrogen atom caused by steric hindrance by the alkyl group of ethylamine (hereinafter referred to as MIPEA).

そこで、本発明者は、水素化触媒として極めて汎用さ
れているラネーNi触媒を用いてエチルアミンとアセトン
の接触還元反応を試みたが、主たる生成物はアセトンの
還元体であるイソプロピルアルコールでありDIPEAの生
成をほとんど認めることができなかった。本発明者は、
更に検討を重ねた結果、意外にも、貴金属触媒を用いる
とDIPEAの収率が著しく向上することを見出し本発明の
第1発明を完成するに至った。
Therefore, the present inventor tried a catalytic reduction reaction of ethylamine and acetone using a Raney Ni catalyst which is extremely widely used as a hydrogenation catalyst, but the main product is isopropyl alcohol, which is a reduced form of acetone, and DIPEA Almost no formation was observed. The inventor has
As a result of further studies, it was surprisingly found that the use of a noble metal catalyst significantly improved the yield of DIPEA, and completed the first invention of the present invention.

本発明の第2発明のような第2級アミンとアルデヒド
の接触還元反応による第3級アミンの製造においては、
一般に、オートクレーブ中に第2級アミンとアルデヒド
のいずれも全量を仕込み水素化触媒の存在下接触還元反
応させる方法がとられている。ところが、ジイソプロピ
ルアミンとアセトアルデヒドの接触還元反応によるDIPE
Aの製造の際、かかる一般の方法では貴金属触媒及びラ
ネーNi触媒のいずれでもアセトアルデヒドが本発明の目
的以外の反応を起こし、DIPEAの収率は極めて低いかも
しくはDIPEAの生成をほとんど認めることができない。
このように、従来一般的に行なわれている方法ではDIPE
Aを収率良く得ることができない。
In the production of a tertiary amine by a catalytic reduction reaction of a secondary amine and an aldehyde as in the second invention of the present invention,
Generally, a method is employed in which all of the secondary amine and the aldehyde are charged in an autoclave and a catalytic reduction reaction is carried out in the presence of a hydrogenation catalyst. However, DIPE by the catalytic reduction reaction of diisopropylamine and acetaldehyde
In the production of A, in such a general method, acetaldehyde causes a reaction other than the object of the present invention in any of the noble metal catalyst and Raney Ni catalyst, and the yield of DIPEA is extremely low or the generation of DIPEA is hardly recognized. .
As described above, in the conventional method, DIPE
A cannot be obtained in good yield.

そこで、本発明者は、鋭意研究を行なった結果、意外
にも、貴金属触媒の存在下反応系内に原料のアセトアル
デヒドを供給しながらDIPAとアセトアルデヒドの接触還
元反応を行なうことにより、DIPEAの収率が著しく向上
することを見出し本発明の第2発明を完成するに至っ
た。ところでラネーNi触媒の存在下反応系内に原料のア
セトアルデヒドを供給しながらDIPAとアセトアルデヒド
の接触還元反応を行なっても、主たる生成物はアセトア
ルデヒドの還元体であるエチルアルコールでありDIPEA
の生成をほとんど認めることができない。
Therefore, the present inventor has conducted intensive studies and, as a result, surprisingly, by performing the catalytic reduction reaction of DIPA and acetaldehyde while supplying the raw material acetaldehyde in the presence of a noble metal catalyst, the yield of DIPEA was improved. Was found to be significantly improved, and the second invention of the present invention was completed. By the way, even if the catalytic reduction reaction of DIPA and acetaldehyde is performed while supplying the raw material acetaldehyde to the reaction system in the presence of the Raney Ni catalyst, the main product is ethyl alcohol, a reduced form of acetaldehyde, and DIPEA
Can hardly be recognized.

本第2発明では水素化触媒として貴金属触媒を用いる
こと及び反応系内にアセトアルデヒドを供給しながら接
触還元反応を行なうことが重要である。
In the second invention, it is important to use a noble metal catalyst as the hydrogenation catalyst and to perform the catalytic reduction reaction while supplying acetaldehyde into the reaction system.

本発明の方法に用いる貴金属触媒としては通常使用さ
れる水素化用貴金属触媒が挙げられ、その具体例として
はパラジウム−カーボン、ルテニウム−カーボン、ロジ
ウム−カーボン、白金−カーボンなどが挙げられる。貴
金属触媒の使用量は、エチルアミン又はジイソプロピル
アミンに対して1〜20%重量の範囲が反応効率、触媒効
率の面から好ましい。
Examples of the noble metal catalyst used in the method of the present invention include commonly used noble metal catalysts for hydrogenation, and specific examples thereof include palladium-carbon, ruthenium-carbon, rhodium-carbon, platinum-carbon and the like. The amount of the noble metal catalyst used is preferably in the range of 1 to 20% by weight based on ethylamine or diisopropylamine from the viewpoint of reaction efficiency and catalyst efficiency.

本発明の第1発明の方法について更に説明する。 The method of the first invention of the present invention will be further described.

アセトンの使用量は通常エチルアミンに対して2倍〜
30倍モルで、好ましくは4〜16倍モルと過剰に用いるこ
とにより反応が好適に進行する。アセトンの使用量がエ
チルアミンに対して2倍モル未満であると、DIPEAより
もMIPEAの方の生成率が増す。
The amount of acetone used is usually twice that of ethylamine.
The reaction proceeds suitably when used in an excess of 30 moles, preferably 4 to 16 moles. If the amount of acetone used is less than twice the amount of ethylamine, the production rate of MIPEA is higher than that of DIPEA.

エチルアミンは水溶液として反応に供することができ
る。エチルアミン水溶液としては工業的に入手しやすい
70%品が用いられる。
Ethylamine can be subjected to the reaction as an aqueous solution. Industrially available as ethylamine aqueous solution
70% products are used.

本発明の第1発明の反応は比較的低温下で生成可能な
MIPEAを経由してDIPEAを生成するものである。本発明の
第1発明の好ましい一つの実施態様によれば、エチルア
ミン、アセトン及び貴金属触媒をオートクレーブに仕込
み、水素を導入しながら100〜180℃好ましくは130〜160
℃まで徐々に加温し、該温度に保ちながら常圧以上好ま
しくは5〜60気圧で水素の導入を続ければよい。水素導
入開始後3〜10時間で水素の吸収が終了し、エチルアミ
ンはほとんど消費される。他の好ましい実施態様として
は、常温〜90℃程度でエチルアミンとアセトンを貴金属
触媒存在下で接触還元反応させてMIPEAを製造単離し、
次いで単離されたMIPEAとアセトンを貴金属触媒存在下1
00〜180℃好ましくは130〜160℃で接触還元反応させてD
IPEAを製造するといった2ステップの方法が挙げられ
る。
The reaction of the first invention of the present invention can be produced at a relatively low temperature.
DIPEA is generated via MIPEA. According to one preferred embodiment of the first invention of the present invention, ethylamine, acetone and a noble metal catalyst are charged into an autoclave, and while introducing hydrogen, 100 to 180 ° C, preferably 130 to 160 ° C.
C., and the introduction of hydrogen may be continued at a normal pressure or higher, preferably 5 to 60 atm while maintaining the temperature. After 3 to 10 hours from the start of hydrogen introduction, absorption of hydrogen ends, and ethylamine is almost consumed. In another preferred embodiment, MIPEA is produced and isolated by performing a catalytic reduction reaction of ethylamine and acetone at room temperature to about 90 ° C in the presence of a noble metal catalyst,
Then, isolated MIPEA and acetone were added in the presence of a noble metal catalyst.
A catalytic reduction reaction at 00 to 180 ° C, preferably 130 to 160 ° C,
There are two-step methods such as manufacturing IPEA.

また本発明の第1発明の方法において反応液中に含ま
れるMIPEAは反応液から単離後、アセトンと貴金属触媒
存在下で接触還元反応せしめることによりDIPEAに誘導
できる。
Further, in the method of the first invention of the present invention, MIPEA contained in the reaction solution can be induced to DIPEA by isolating from the reaction solution and subjecting it to a catalytic reduction reaction with acetone in the presence of a noble metal catalyst.

つぎに、本発明の第2発明の方法について更に説明す
る。
Next, the method of the second invention of the present invention will be further described.

反応系内に供給するアセトアルデヒドは、DIPAに対し
て1〜2.0倍モルと理論量ないし過剰に用いるのが好ま
しい。アセトアルデヒドは低沸点のため溶媒で希釈して
供給する方が操作しやすい。溶媒としては水、或はアミ
ンとアセトアルデヒドに対して不活性な有機溶媒などが
使用できるが、後処理の操作性のよい水が好ましい。溶
媒量としては特に制限はないが、生産効率を考慮した場
合、アセトアルデヒドに対して0.5〜3倍重量が好まし
い。
The acetaldehyde to be supplied into the reaction system is preferably used in a theoretical amount or an excess of 1 to 2.0 times mol of DIPA. Since acetaldehyde has a low boiling point, it is easier to operate when diluted with a solvent and supplied. As the solvent, water or an organic solvent inert to amine and acetaldehyde can be used, but water having good operability in post-treatment is preferable. The amount of the solvent is not particularly limited, but is preferably 0.5 to 3 times the weight of acetaldehyde in consideration of production efficiency.

反応温度は通常室温〜200℃好ましくは70〜150℃であ
る。反応圧としては常圧以上好ましくは5〜60気圧であ
る。アセトアルデヒドの供給時間は1〜6時間で十分で
あり、DIPAはほとんど消費される。
The reaction temperature is usually from room temperature to 200 ° C, preferably from 70 to 150 ° C. The reaction pressure is not lower than normal pressure and preferably 5 to 60 atm. A feed time of acetaldehyde of 1 to 6 hours is sufficient and DIPA is almost consumed.

本発明の方法で製造されるDIPEAは一般的な単離精製
手段、例えば反応液から濾過により触媒を除去し、濾液
を蒸留することにより極めて容易に高純度で得られる。
DIPEA produced by the method of the present invention can be obtained very easily and in high purity by a common isolation and purification means, for example, by removing the catalyst from the reaction solution by filtration and distilling the filtrate.

本発明の方法を実施例及び比較例により説明するが、
本発明はこれらの実施例に限定されるものではない。
The method of the present invention will be described with reference to Examples and Comparative Examples,
The present invention is not limited to these examples.

(実施例) 実施例1 容量1の電磁式攪拌式オートクレーブに70%エチル
アミン水溶液64g(1.0モル)、アセトン464g(8.0モ
ル)及びパラジウム−カーボン6.4gを仕込み、これに水
素を導入、及び加熱して160℃、50気圧に昇温昇圧し接
触還元反応を行なった。次いで当該温度、当該圧を保ち
ながら水素の導入を続け接触還元反応を行なった。水素
吸収は水素導入開始後7時間で終了した。反応液を冷却
後、濾過して触媒を濾別し、濾液を蒸留してDIPEAを82.
8g(収率64.2%)及びMIPEA20.3g(収率23.3%)得た。
(Example) Example 1 A 70% ethylamine aqueous solution 64 g (1.0 mol), acetone 464 g (8.0 mol) and palladium-carbon 6.4 g were charged into a 1-volume electromagnetic stirring type autoclave, and hydrogen was introduced into this and heated. The temperature was raised to 160 ° C. and 50 atm, and the catalytic reduction reaction was performed. Next, while maintaining the temperature and the pressure, introduction of hydrogen was continued to perform a catalytic reduction reaction. Hydrogen absorption was completed 7 hours after the start of hydrogen introduction. After cooling the reaction solution, filtration was performed to remove the catalyst, and the filtrate was distilled to obtain DIPEA 82.
8 g (64.2% yield) and 20.3 g (23.3% yield) of MIPEA were obtained.

実施例2 反応温度を180℃に代えた他は実施例1と同様にして
反応及び後処理を行ない、DIPEAを57.7g(収率44.7%)
及びMIPEAを29.6g(収率34.0%)得た。
Example 2 The reaction and post-treatment were carried out in the same manner as in Example 1 except that the reaction temperature was changed to 180 ° C., and 57.7 g of DIPEA (44.7% yield) was obtained.
And 29.6 g of MIPEA (34.0% yield).

実施例3 70%エチルアミン水溶液を45g(0.7モル)及びアセト
ンを487g(8.4モル)に代えた他は実施例1と同様にし
て反応及び後処理を行ない、DIPEAを60.8g(収率67.3
%)及びMIPEAを12.0g(収率19.7%)得た。
Example 3 The reaction and post-treatment were carried out in the same manner as in Example 1 except that the 70% ethylamine aqueous solution was replaced by 45 g (0.7 mol) and the acetone by 487 g (8.4 mol), and 60.8 g of DIPEA (yield: 67.3).
%) And 12.0 g of MIPEA (19.7% yield).

実施例4 70%エチルアミン水溶液を257g(4モル)、アセトン
を232g(4モル)及びパラジウム−カーボンを3.5g反応
温度を70℃に代えた他は実施例1と同様にして反応及び
後処理を行ない、MIPEAを334.4g(収率96.1%)得た。
なお、水素吸収は水素導入開始後4時間で終了した。
Example 4 The reaction and post-treatment were performed in the same manner as in Example 1 except that the reaction temperature was changed to 70 ° C except that the reaction temperature was changed to 70 ° C, and 257 g (4 mol) of a 70% ethylamine aqueous solution, 232 g (4 mol) of acetone, and 3.5 g of palladium-carbon were used. This gave 334.4 g of MIPEA (96.1% yield).
The hydrogen absorption was completed 4 hours after the start of hydrogen introduction.

ついで、得られたMIPEA100g(1.15モル),アセトン3
33g(5.75モル)及びパラジウム−カーボン7.4gを容量
1の電磁式攪拌式オートクレーブに仕込み、これに水
素を導入しながら160℃、40気圧で5時間接触還元反応
を行なった。反応液を冷却後、濾過して触媒を濾別し、
濾液を蒸留してDIPEAを105.9g(収率71.4%)、未反応M
IPEAを8.4g(回収率8.4%)得た。
Then, 100 g (1.15 mol) of the obtained MIPEA, acetone 3
33 g (5.75 mol) and 7.4 g of palladium-carbon were charged into a magnetic stirring autoclave having a capacity of 1 and subjected to a catalytic reduction reaction at 160 ° C. and 40 atm for 5 hours while introducing hydrogen into the autoclave. After cooling the reaction solution, the mixture was filtered to remove the catalyst, and
The filtrate was distilled and 105.9 g of DIPEA (71.4% yield) was obtained.
8.4 g of IPEA (8.4% recovery) was obtained.

実施例5 容量1の電磁式攪拌式オートクレーブにDIPA202g
(2.0モル)及びパラジウム−カーボン12.9gを仕込み、
これに水素を導入し加熱し120℃、25気圧とした。次い
で50%アセトアルデヒド水溶液184g(2.1モル)を高圧
定量ポンプにて及び25気圧を保つように水素をオートク
レーブ内に3時間かけて供給しながら接触還元反応を行
なった。反応液を冷却後、濾過して触媒を濾別し、2層
に分液した濾液のオイル層を蒸留してDIPEAを210.0g
(収率81.4%)及び未反応DIPAを17.8g(回収率8.8%)
得た。他にエタノールが10.4g(収率10.8%)副生して
いた。
Example 5 202 g of DIPA in a magnetic stirring autoclave having a capacity of 1
(2.0 mol) and 12.9 g of palladium-carbon,
Hydrogen was introduced into this and heated to 120 ° C. and 25 atm. Then, a catalytic reduction reaction was performed while supplying 184 g (2.1 mol) of a 50% acetaldehyde aqueous solution to the autoclave over 3 hours by using a high-pressure metering pump and maintaining hydrogen at 25 atm. After cooling the reaction solution, filtration was performed to separate the catalyst, and the oil layer of the filtrate separated into two layers was distilled to obtain 210.0 g of DIPEA.
(Yield 81.4%) and 17.8g of unreacted DIPA (8.8% recovery)
Obtained. In addition, 10.4 g (10.8% yield) of ethanol was produced as a by-product.

実施例6 パラジウム−カーボンはを7.7g及び50%アセトアルデ
ヒド水溶液を228g(2.6モル)に代えた他は実施例5と
同様にして反応及び後処理を行ない、DIPEAを236.1g
(収率91.5%)得、未反応DIPAは0.6g(回収率0.3%)
とほとんど残っていなかった。他にエタノールが10.5g
(収率8.8%)副生していた。
Example 6 Palladium-carbon was reacted and worked up in the same manner as in Example 5 except that 7.7 g of palladium and 228 g (2.6 mol) of 50% acetaldehyde aqueous solution were used, and 236.1 g of DIPEA was used.
(Yield 91.5%), 0.6g unreacted DIPA (recovery 0.3%)
And there were few left. 10.5g of other ethanol
(8.8% yield).

比較例1 容量1の電磁式攪拌式オートクレーブにDIPA202g
(2.0モル)、50%アセトアルデヒド水溶液184g(2.1モ
ル)及びパラジウム−カーボン7.7gを仕込み、これに水
素を導入しながら120℃、25気圧で接触還元反応を行な
ったところ、1時間30分で水素の吸収が止まり反応は終
了した。反応液を冷却後、濾過して触媒を濾別し、2層
に分液した濾液のオイル層を蒸留してDIPEAを23.5g(収
率9.1%)及び未反応DIPAを68.3g(回収率33.8%)得
た。他に高沸物が多種多量に副生していた。
Comparative Example 1 DIPA202g in a magnetic stirring autoclave with a capacity of 1
(2.0 mol), 184 g (2.1 mol) of a 50% aqueous solution of acetaldehyde and 7.7 g of palladium-carbon were subjected to a catalytic reduction reaction at 120 ° C. and 25 atm while introducing hydrogen thereinto. Was stopped and the reaction was completed. After cooling the reaction solution, filtration was performed to separate the catalyst, and the oil layer of the filtrate separated into two layers was distilled to obtain 23.5 g of DIPEA (yield 9.1%) and 68.3 g of unreacted DIPA (recovery rate of 33.8%). %)Obtained. In addition, many high-boiling substances were by-produced.

比較例2 パラジウム−カーボンをラネーNi52gに代えた他は実
施例6と同様にして反応及び後処理を行なった。DIPEA
の生成量はトレースであり、未反応DIPAを194.9g(回収
率96.5%)及びエタノールを118g(収率98.7%)得た。
Comparative Example 2 The reaction and post-treatment were carried out in the same manner as in Example 6, except that 52 g of Raney Ni was used instead of palladium-carbon. DIPEA
Was a trace, and 194.9 g of unreacted DIPA (recovery rate 96.5%) and 118 g of ethanol (yield 98.7%) were obtained.

(発明の効果) 本発明の第1及び第2発明によれば、従来法に比べ安
価な原料で良好な収率でDIPEAが得られる。
(Effects of the Invention) According to the first and second inventions of the present invention, DIPEA can be obtained at a good yield with less expensive raw materials than the conventional method.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エチルアミンとアセトンを貴金属触媒の存
在下、接触還元反応させることを特徴とするN,N−ジイ
ソプロピルエチルアミンの製造法。
1. A process for producing N, N-diisopropylethylamine, comprising subjecting ethylamine and acetone to a catalytic reduction reaction in the presence of a noble metal catalyst.
JP63333974A 1988-12-29 1988-12-29 Method for producing N, N-diisopropylethylamine Expired - Fee Related JP2740828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63333974A JP2740828B2 (en) 1988-12-29 1988-12-29 Method for producing N, N-diisopropylethylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63333974A JP2740828B2 (en) 1988-12-29 1988-12-29 Method for producing N, N-diisopropylethylamine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9260814A Division JP2851274B2 (en) 1997-09-08 1997-09-08 Method for producing N, N-diisopropylethylamine

Publications (2)

Publication Number Publication Date
JPH02180854A JPH02180854A (en) 1990-07-13
JP2740828B2 true JP2740828B2 (en) 1998-04-15

Family

ID=18272073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63333974A Expired - Fee Related JP2740828B2 (en) 1988-12-29 1988-12-29 Method for producing N, N-diisopropylethylamine

Country Status (1)

Country Link
JP (1) JP2740828B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9884805B2 (en) 2014-02-18 2018-02-06 Basf Antwerpen Nv Method for producing N-ethyl-diisopropylamine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6834939B2 (en) 2002-11-23 2004-12-28 Silverbrook Research Pty Ltd Micro-electromechanical device that incorporates covering formations for actuators of the device
DE19901135A1 (en) * 1999-01-14 2000-07-20 Basf Ag Process for the preparation of N-ethyl-diisopropylamine
CN101460445B (en) 2006-05-31 2013-06-05 巴斯夫欧洲公司 Process for the preparation of an amine
DE112012007268T5 (en) 2012-12-28 2015-10-08 Nittan Valve Co., Ltd. A method and apparatus for controlling a phase change device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9884805B2 (en) 2014-02-18 2018-02-06 Basf Antwerpen Nv Method for producing N-ethyl-diisopropylamine

Also Published As

Publication number Publication date
JPH02180854A (en) 1990-07-13

Similar Documents

Publication Publication Date Title
US9783506B2 (en) Process for the large scale production of 1H-[1,2,3]triazole and its intermediate 1-benzyl-1H-[1,2,3]triazole
EP2700630A2 (en) Method for producing substituted biphenyls
KR20060132860A (en) Methods for preparing 1,3-butylene glycol
JP2740828B2 (en) Method for producing N, N-diisopropylethylamine
JP3001685B2 (en) Diamine production method
KR20030078038A (en) Process for producing diamines
JP2851274B2 (en) Method for producing N, N-diisopropylethylamine
JP3422331B2 (en) Method for producing N, N-disubstituted ethylenediamine
JP3038271B2 (en) Method for producing 3-aminopropanol
US7459467B2 (en) Manufacturing process for methyl phenidate and intermediates thereof
CA1250311A (en) Process for the preparation of methyl n- methylanthranilate
JP3031727B2 (en) Process for producing aminomethylpyridines having a chlorine atom at the α-position
JPH04149160A (en) Production of 1-amino-4-alkoxybenzene compounds
EP1405843B1 (en) Method for producing aminostilbene derivative
JPS6311346B2 (en)
JPH07138209A (en) Production of halogen-containing aminomethyl compound
JPH0359887B2 (en)
CN111018664B (en) Synthesis method of 2-alkyl-1, 3-propanediol compound
JPH078839B2 (en) Method for producing N, N, N ', N'-tetramethyl-1.6-hexanediamine
JPH08143500A (en) Production of hydroxyalkanal
JPH08109170A (en) Production of hexahydropyridazine
JPH0816101B2 (en) Process for producing 3,5-dichloropyridine
JPS62164656A (en) Production of cyanoisophorone
JPH0725745B2 (en) Method for producing amine compound
JPH05294933A (en) Halogenated pyridinecarbaldehyde derivative and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees