JPH02180727A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPH02180727A
JPH02180727A JP61589A JP61589A JPH02180727A JP H02180727 A JPH02180727 A JP H02180727A JP 61589 A JP61589 A JP 61589A JP 61589 A JP61589 A JP 61589A JP H02180727 A JPH02180727 A JP H02180727A
Authority
JP
Japan
Prior art keywords
core
refractive index
optical fiber
rod
tubular member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61589A
Other languages
Japanese (ja)
Inventor
Tsugio Sato
継男 佐藤
Makoto Furuguchi
古口 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61589A priority Critical patent/JPH02180727A/en
Publication of JPH02180727A publication Critical patent/JPH02180727A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/22Radial profile of refractive index, composition or softening point
    • C03B2203/26Parabolic or graded index [GRIN] core profile

Abstract

PURPOSE:To improve the refractive index control precision and product yield by inserting the center of a core into a tubular member consisting of the periphery of the core and a clad to integrate the core and the tubular sheath material by melting at the time of producing the preform to obtain a GI-type optical fiber. CONSTITUTION:Silica is doped with GeO2, a core having a GI-type refractive index distribution is synthesized by VAD, and the core is heated by a heating furnace and vitrified to obtain a rod-shaped member corresponding to the center of the core. Silica is doped with GeO2 on the rod by OVD with a graphite rod, for example, as a target to form a porous preform corresponding to the periphery of the core and clad having a specified refractive index distribution. The porous preform is vitrified in the heating furnace filled with an atmosphere contg. a gaseous F compd. such as SiF4 and an inert gas such as He, and then the graphite rod is extracted to obtain a tubular member. The rod-shaped member is inserted into the tubular member, melted, and integrated to obtain the desired optical fiber preform.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、高N^のGI型光ファイバ用母材を得るため
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a manufacturing method for obtaining a preform for a high N^ GI type optical fiber.

〔従来技術〕[Prior art]

光ファイバ応用分野の1つにLANがある。ところで近
年の情報量の増大に伴い、LANにおいてもその伝送速
度を大幅に向上させることが象、務になってきた。加え
てシステムの経済性を考慮して、光ファイバも高NA、
大コア径のGI型光ファイバが要求されるようになって
きている。
One of the optical fiber application fields is LAN. However, with the increase in the amount of information in recent years, it has become an issue to significantly improve the transmission speed of LANs. In addition, considering the economic efficiency of the system, the optical fiber is also high NA,
GI type optical fibers with large core diameters are increasingly required.

ところで光ファイバを高NA化するためには、屈折率を
増大させるドーパントであるGeotを多量にコア部の
石英ガラスにドープさせる必要があるが、このGeO2
の含有量に比例して、コア部の線膨張係数が大きくなり
、クラッド部の石英ガラスのそれとの差が大きくなって
しまう。その結果コア部とクラッド部でミスマツチを起
こし、透明ガラス化の際に、例えば割れ易くなるといっ
た問題が生ずる。
By the way, in order to increase the NA of an optical fiber, it is necessary to dope a large amount of Geot, a dopant that increases the refractive index, into the quartz glass of the core.
The linear expansion coefficient of the core portion increases in proportion to the content of silica glass, and the difference from that of the quartz glass of the cladding portion increases. As a result, a mismatch occurs between the core portion and the cladding portion, resulting in a problem that, for example, the glass becomes easily broken during transparent vitrification.

この問題を解決すべ(Geoge、[!等は外付法(O
VD法)により第4図に示すように、コア部にGem。
This problem should be solved (George, [! etc. are external methods (O
As shown in FIG. 4, Gem was formed in the core part using VD method).

と共にB20.をドープし、更にクラッド部には前記B
tusと共にFをドープし、第5図に示す如きNAO,
4という光ファイバを得ている。 (Fabricat
ionof O,4NA fibers by out
 5ide process  TIJG30FC’ 
86) この方法のポイントとなる点は、コア部にドープするG
e01の量を抑えて、石英ガラスとの比屈折率差Δ゛を
目的値より下げ、一方クラッド部の比屈折率差Δ−をR
iotやFをドープすることでその絶対値を大きくし、
前記Δ゛を小さくした分を補い、全体としてコア部とク
ラッド部の屈折率差Δを確保する考え方をとっている。
Along with B20. The cladding part is doped with the above-mentioned B.
By doping F with tus, NAO as shown in FIG.
4 optical fiber was obtained. (Fabricat
ionof O,4NA fibers by out
5ide process TIJG30FC'
86) The key point of this method is that the G doped into the core
By suppressing the amount of e01, the relative refractive index difference Δ゛ with silica glass is lowered than the target value, while the relative refractive index difference Δ− of the cladding part is reduced to R
By doping iot or F, its absolute value is increased,
The idea is to compensate for the reduction in Δ゛ and ensure the refractive index difference Δ between the core portion and the cladding portion as a whole.

すなわち、Δ−Δ゛+Δ−であるから、前者の絶対値を
小さくした分、後者の絶対値を大きくして、全体として
Δの値を所定値にしようという考え方である。
That is, since it is Δ-Δ゛+Δ-, the idea is to increase the absolute value of the latter by an amount equal to the decrease in the absolute value of the former, so that the value of Δ as a whole is set to a predetermined value.

ところが前記方法では、コア部及びクラッド部に複数の
ドーパントを添加すること、及び画部分を一括合成する
こと、から各ドーパントの添加量制御が難しく、その結
果Δ0やΔ−の制御が非常に難しいという問題と、また
制御に失敗した場合、コア部、クラッド部が共に使用で
きなくなる等歩留りが悪いという問題もあった。更にこ
の方法を採用してもΔ−2,5%以上になると、コア部
とクラッド部の界面のところで割れが発生し易いという
問題が依然として残っている。
However, in the above method, it is difficult to control the amount of each dopant added because multiple dopants are added to the core part and cladding part, and the image part is synthesized all at once, and as a result, it is very difficult to control Δ0 and Δ-. In addition, if control fails, both the core part and the cladding part become unusable, resulting in poor yield. Furthermore, even if this method is adopted, there still remains the problem that cracks are likely to occur at the interface between the core and cladding parts when Δ-2.5% or more.

〔発明の目的〕[Purpose of the invention]

前記問題に鑑み本発明の目的は、高HAの61型光ファ
イバを得るための母材を製造するに際し、その屈折率分
布の制御精度を高め、しかも効率良く製造する方法を提
供することにある。
In view of the above-mentioned problems, an object of the present invention is to provide a method for increasing the control accuracy of the refractive index distribution and efficiently manufacturing a base material for obtaining a high HA 61 type optical fiber. .

〔発明の構成〕[Structure of the invention]

前記目的を達成すべく本発明は、GI型の屈折率分布を
有する光ファイバを得るための光ファイバ用母材を製造
する方法おいて、コアの中心部分に相当する棒状部材を
、コアの周辺部分及びクラッド部分に相当する管状部材
内に挿入し、これを溶融一体化することを特徴とするも
のである。
In order to achieve the above object, the present invention provides a method for manufacturing an optical fiber preform for obtaining an optical fiber having a GI type refractive index distribution. It is characterized in that it is inserted into a tubular member corresponding to the section and the cladding section, and is melted and integrated.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例を図面を参照して詳細に説明する
。まずシリカにGeO2をドープして、第1図に示すよ
うなGI型の屈折率分布を有するコア部をVAD法にて
合成し、これを加熱炉により加熱して透明ガラス化し、
コアの中心部分に相当する棒状部材を得る0次に例えば
黒鉛ロンドをターゲットにして、該黒鉛ロンド上にOV
D法により、シリカにGem@をドープして第2図(a
)に示すような屈折率分布を有するコアの周辺部及びク
ラッド部分に相当する多孔質母材を作製し、これをSi
F4等のフッ素化合物ガスとHe等の不活性ガスを含む
雰囲気を有する加熱炉内に挿入して透明ガラス化する。
Embodiments of the present invention will be described in detail below with reference to the drawings. First, silica is doped with GeO2, a core part having a GI type refractive index distribution as shown in Fig. 1 is synthesized by the VAD method, and this is heated in a heating furnace to make transparent glass.
To obtain a rod-shaped member corresponding to the central part of the core, for example, a graphite iron is targeted, and an OV is placed on the graphite iron.
By method D, silica was doped with Gem@ to form a
) A porous base material corresponding to the peripheral part and cladding part of the core having a refractive index distribution as shown in FIG.
It is inserted into a heating furnace having an atmosphere containing a fluorine compound gas such as F4 and an inert gas such as He to form transparent glass.

しかる後前記黒鉛ロンドを引き抜いて管状部材を得る。Thereafter, the graphite iron is pulled out to obtain a tubular member.

尚、該管状部材にはその半径方向に透明ガラス化の際F
がドープされ、その屈折率分布は第2図(b)のように
なっている。
Note that the tubular member has F in its radial direction during transparent vitrification.
is doped, and its refractive index distribution is as shown in FIG. 2(b).

このようにコアの中心部分に相当する棒状部材と、コア
の周辺部分及びクラッド部分に相当する管状部材を各々
作製したら、公知のロンドインチューブ法を利用して、
後者の管状部材中に前者の棒状部材を挿入し、これを溶
融一体化し、全体として第3図に示すような屈折率分布
を有する光ファイバ用母材を得る。′尚、従来からコア
部全体に相当する棒状部材をクラッド部に相当する管状
部材中に挿入し、これを溶融一体化する方法が公知であ
るが、この従来法では管状部材にFをドープすると、コ
ア部の最外部の屈折率とクラッド部の屈折率との間に急
激な屈折率段差ができ、伝送上、例えば帯域が制限を受
ける等の問題になってしまう、これに対して本願のよう
に管状部材にコア部周辺部分とクラッド部とを含ませる
と、前述のような伝送特性への影響を少なくできるとい
う利点がある。
After producing the rod-like member corresponding to the central part of the core and the tubular member corresponding to the peripheral part and cladding part of the core, using the known Rondo-in-tube method,
The former rod-like member is inserted into the latter tubular member and melted and integrated to obtain an optical fiber preform having a refractive index distribution as shown in FIG. 3 as a whole. 'In addition, there is a conventionally known method in which a rod-shaped member corresponding to the entire core part is inserted into a tubular member corresponding to the cladding part and then melted and integrated. However, in this conventional method, when the tubular member is doped with F, , a sharp refractive index step occurs between the refractive index of the outermost part of the core part and the refractive index of the cladding part, which causes problems in transmission, such as limiting the band. When the tubular member includes the peripheral portion of the core portion and the cladding portion, there is an advantage that the above-mentioned influence on the transmission characteristics can be reduced.

以下に本発明の具体例及び比較例を示す。Specific examples and comparative examples of the present invention are shown below.

〔具体例〕〔Concrete example〕

GI型で屈折率分布係数α=2で、Δ0が2.2%にな
るようにGangをドープした多孔質母材をVAD法に
て作製し、該多孔質母材を1350″C1He雰囲気の
加熱炉中にゆっくり挿入し、透明ガラス化せしめた。こ
れを必要に応じて延伸し第1図に示すような屈折率分布
を有する棒状部材を得た。
A porous base material of GI type doped with Gang so that the refractive index distribution coefficient α=2 and Δ0 is 2.2% was prepared by the VAD method, and the porous base material was heated to 1350″ in a C1He atmosphere. The material was slowly inserted into a furnace and turned into transparent vitrification.This was stretched as necessary to obtain a rod-shaped member having a refractive index distribution as shown in FIG.

次にOvO法により、外径22vwの黒鉛ロンド上にα
=2になるようにGeO1濃度を制御してコアの周辺部
に相当する多孔質体を堆積せしめ、続いて前記Ge0t
をドープせずに純粋シリカのみを堆積せしめ、クランド
部に相当する多孔質体を形成し、その屈折率分布が第2
図(a)に相当する多孔質母材を得た。クラッド部の堆
積が完了したら、この多孔質母材全体をSiF4及びH
eを含む雰囲気を有し、その最高温度部が1300°C
である加熱炉にゆっくり挿入し、透明ガラス化及びFド
ープを図る。透明ガラス化後これを冷却し室温に達した
ところで前記黒鉛ロンドを引き抜いて内径22m+*、
外径37+amでその屈折率分布が第2図(b)に示す
管状部材を得た0次に前記棒状部材の表面を火炎研磨し
た後、これを前記管状部材内に挿入し、公知のロンドイ
ンチューブ法を用いて、例えば一方の端から他端に向け
て順次酸水素バーナで加熱して全体をコラプスせしめる
Next, by the OvO method, α
A porous material corresponding to the peripheral part of the core was deposited by controlling the GeO1 concentration so that the GeO1 concentration was 2, and then the GeOt
By depositing only pure silica without doping, a porous body corresponding to the crund part is formed, and its refractive index distribution is
A porous base material corresponding to Figure (a) was obtained. Once the cladding has been deposited, the entire porous matrix is coated with SiF4 and H
It has an atmosphere containing e, and its maximum temperature is 1300°C.
The sample was slowly inserted into a heating furnace to achieve transparent vitrification and F doping. After turning it into transparent vitrification, it was cooled and when it reached room temperature, the graphite rond was pulled out and had an inner diameter of 22 m+*.
A tubular member with an outer diameter of 37+am and a refractive index distribution as shown in FIG. Using the tube method, for example, the entire structure is collapsed by successively heating it with an oxyhydrogen burner from one end to the other.

このようにして得られた母材の屈折率分布は第3図のよ
うになっていて、α−2、Δ=3%、コア/クラッド=
 13/25で、その内部に全く気泡等の欠陥のないも
のが得られた。尚、この方法でサンプル数n−15の母
材を製造したが、いづれの場合も母材が割れたり、内部
に気泡が入る等のトラブルは起こらなかった。
The refractive index distribution of the base material obtained in this way is as shown in Figure 3, α-2, Δ = 3%, core/cladding =
At 13/25, a product with no defects such as bubbles inside was obtained. Incidentally, a sample number n-15 of base materials was produced using this method, and in none of the cases were problems such as cracking of the base materials or air bubbles entering inside the base materials.

また屈折率差Δのばらつきも棒状部材により製造される
コア部のそれの場合、Δ=2.2±0.2%、管状部材
により製造される部分に相当するΔは、Δ=0.8±0
.05%と極めて制御精度が良かった。
In addition, the variation in the refractive index difference Δ is Δ=2.2±0.2% in the case of the core part manufactured by a rod-shaped member, and Δ=0.8% corresponding to the part manufactured by a tubular member. ±0
.. The control accuracy was extremely good at 0.05%.

またその結果である全体のΔも、Δ−3±0.06%と
非常に良好であった。
Further, the overall Δ as a result was also very good at Δ−3±0.06%.

〔比較例〕[Comparative example]

前述したGeoge、E等の文献に基づき、ovo法に
て一括して前述の具体例に相当するGI型の光ファイバ
用母材を合成した。このときのΔ・及びΔ−の各目標値
はΔ”−2,2%、Δ−=0.8%である。
Based on the above-mentioned literature by George, E., etc., a GI-type optical fiber base material corresponding to the above-mentioned example was synthesized in one batch by the ovo method. At this time, the respective target values of Δ· and Δ− are Δ”−2.2% and Δ−=0.8%.

またコアの周辺部からクラッド部にかけてはB、0゜も
ドープした。
Further, from the peripheral part of the core to the cladding part, B was also doped at 0°.

サンプル数n−10を評価したところ、母材全体の屈折
率差Δのばらつきは、Δ=3±0.2%と前記本発明の
方法により得たものと比較して大幅に大きかった。また
、これら10本の母材中、そのうち2本は透明ガラス化
中に割れてしまった。
When the number of samples n-10 was evaluated, the variation in the refractive index difference Δ of the entire base material was Δ=3±0.2%, which was significantly larger than that obtained by the method of the present invention. Furthermore, among these 10 base materials, 2 of them broke during the process of transparent vitrification.

以上のように本発明によれば、母材を棒状部材と管状部
材に分け、各々を別工程で製造するため、屈折率分布制
御精度の良いGI型高NA光ファイバ母材を容易に得る
ことができる。また棒状部材と管状部材の界面をコア部
内に設けたことにより、この界面の両側の線膨張係数差
は小さく、その結果1!!に一体化が容易であるという
利点もある。
As described above, according to the present invention, the base material is divided into a rod-shaped member and a tubular member, and each is manufactured in a separate process, so that it is possible to easily obtain a GI type high NA optical fiber base material with good refractive index distribution control accuracy. Can be done. Furthermore, by providing the interface between the rod-shaped member and the tubular member within the core, the difference in linear expansion coefficient on both sides of this interface is small, resulting in a difference of 1! ! It also has the advantage of being easy to integrate.

尚、前記実施例では、ドーパントとしてGeO□、Fに
ついてのみ述べたが、この他B!01、AI!03やT
iOx等のドーパントも使用できる。また棒状部材、管
状部材の製法もVAD法、OVD法に限らず、例えば内
付法であるMCVD法も適用できる。
In the above embodiment, only GeO□ and F were described as dopants, but in addition, B! 01, AI! 03 and T
Dopants such as iOx can also be used. Further, the manufacturing method of the rod-shaped member and the tubular member is not limited to the VAD method or the OVD method, but also the MCVD method, which is an internal attachment method, can also be applied.

〔発明の効果〕〔Effect of the invention〕

前述の如く本発明によれば、コアの中心部と、コアの周
辺部及びクラッド部分とを各々別々に作製するため、屈
折率分布の制御がやり易く、またそれ故に歩留りを向上
させることができる。加えて各々を別々に作製するため
Δ゛、Δ−の選択自由度が広がり、任意のΔのものを製
造できるという利点もある。
As described above, according to the present invention, since the central portion of the core, the peripheral portion of the core, and the cladding portion are each manufactured separately, it is easy to control the refractive index distribution, and therefore the yield can be improved. . In addition, since each is manufactured separately, there is a greater degree of freedom in selecting Δ゛ and Δ-, and there is an advantage that one having an arbitrary Δ can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で使用する棒状部材の屈折率分布を示す
図、第2図(a)、(b)は各々本発明で使用する管状
部材の透明ガラス化前の屈折率分布及び透明ガラス後の
屈折率分布を示す図、第3図は本発明により得られた光
ファイバの屈折率分布を示す図、第4図は従来法による
光ファイバ母材のドーパント濃度分布を示す図、第5図
はGi型光ファイバの屈折率分布を示す図である°。
Figure 1 is a diagram showing the refractive index distribution of the rod-shaped member used in the present invention, and Figures 2 (a) and (b) are the refractive index distribution of the tubular member used in the present invention before transparent vitrification and the transparent glass, respectively. 3 is a diagram showing the refractive index distribution of the optical fiber obtained by the present invention. FIG. 4 is a diagram showing the dopant concentration distribution of the optical fiber base material obtained by the conventional method. The figure is a diagram showing the refractive index distribution of a Gi-type optical fiber.

Claims (1)

【特許請求の範囲】[Claims] GI型の屈折率分布を有する光ファイバを得るための光
ファイバ用母材を製造する方法おいて、コアの中心部分
に相当する棒状部材を、コアの周辺部分及びクラッド部
分に相当する管状部材内に挿入し、これを溶融一体化す
ることを特徴とする光ファイバ用母材の製造方法。
In a method for manufacturing an optical fiber preform for obtaining an optical fiber having a GI-type refractive index distribution, a rod-shaped member corresponding to the central portion of the core is inserted into a tubular member corresponding to the peripheral portion and cladding portion of the core. 1. A method for manufacturing an optical fiber base material, which comprises inserting the fiber into a base material and melting and integrating the fiber.
JP61589A 1989-01-05 1989-01-05 Production of optical fiber preform Pending JPH02180727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61589A JPH02180727A (en) 1989-01-05 1989-01-05 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61589A JPH02180727A (en) 1989-01-05 1989-01-05 Production of optical fiber preform

Publications (1)

Publication Number Publication Date
JPH02180727A true JPH02180727A (en) 1990-07-13

Family

ID=11478637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61589A Pending JPH02180727A (en) 1989-01-05 1989-01-05 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPH02180727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915064A1 (en) * 1997-10-29 1999-05-12 Corning Incorporated Method of making segmented core optical waveguide preforms
WO1999040037A1 (en) * 1998-02-03 1999-08-12 Sumitomo Electric Industries, Ltd. Method of manufacturing optical fiber base material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915064A1 (en) * 1997-10-29 1999-05-12 Corning Incorporated Method of making segmented core optical waveguide preforms
WO1999040037A1 (en) * 1998-02-03 1999-08-12 Sumitomo Electric Industries, Ltd. Method of manufacturing optical fiber base material
US6474108B2 (en) * 1998-02-03 2002-11-05 Sumitomo Electric Industries, Ltd. Fiber preform method with a hot drill-in step for a Ge-doped tube and an F-doped rod

Similar Documents

Publication Publication Date Title
WO2005021455A2 (en) Optical fiber containing an alkali metal oxide and methods and apparatus for manufacturing same
US4737179A (en) Method for producing glass preform for optical fiber
JPS60257408A (en) Optical fiber and its production
JPH044986B2 (en)
KR100426385B1 (en) Optical fiber and how to make it
KR890003704B1 (en) A preparation method of preform for optical fiber
CN109942182B (en) Optical fiber preform manufacturing method based on sleeve method
JP3098828B2 (en) Dispersion shifted fiber and method of manufacturing the same
US8689587B2 (en) Polarization controlling optical fiber preform and preform fabrication methods
JPS61191543A (en) Quartz base optical fiber
JPH02180727A (en) Production of optical fiber preform
KR100345358B1 (en) Quartz glass tube for optical fiber preform and manufacturing method therefor
US4318726A (en) Process for producing optical fiber preform
JP2521186B2 (en) Glass body manufacturing method
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
WO2002049977A2 (en) Method of doping an optical fiber preform with fluorine
DK180664B1 (en) Method for producing optical fiber preform, and optical fiber preform
JPS60180928A (en) Production of quartz base material for optical fiber
JPH0327491B2 (en)
JPS6127721B2 (en)
JPH02201403A (en) Optical fiber and production of base material thereof as well as production of optical fiber
JPS61251539A (en) Optical fiber
JPS60231435A (en) Manufacture of preform rod
JPH0826763A (en) Optical fiber and its production
JPS62283838A (en) Production of optical fiber