JPH02179855A - Free-cutting soft-magnetic stainless steel - Google Patents

Free-cutting soft-magnetic stainless steel

Info

Publication number
JPH02179855A
JPH02179855A JP33191488A JP33191488A JPH02179855A JP H02179855 A JPH02179855 A JP H02179855A JP 33191488 A JP33191488 A JP 33191488A JP 33191488 A JP33191488 A JP 33191488A JP H02179855 A JPH02179855 A JP H02179855A
Authority
JP
Japan
Prior art keywords
steel
less
magnetic
properties
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33191488A
Other languages
Japanese (ja)
Inventor
Yoshinobu Motokura
義信 本蔵
Koji Murata
村田 幸二
Takashi Yokoyama
孝 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP33191488A priority Critical patent/JPH02179855A/en
Publication of JPH02179855A publication Critical patent/JPH02179855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the magnetic properties, electric properties, weldability, corrosion resistance, machinability, etc., of the steel by adding specific amounts of Ti, etc., to a Cr steel and also reducing the total content of C and N and Al content, respectively. CONSTITUTION:A soft-magnetic stainless steel has a composition which consists of, by weight ratio, <=0.03% C, 2.0-3.0% Si, <=0.40% Mn, 0.015-0.050% S, 10-13% Cr, 0.05-0.20% Ti, <=0.03% N, <=0.010% Al, 0.10-0.30% Pb, and the balance Fe with impurity elements and in which C+N is regulated to <=0.05%. Further, 0.010-0.050% Se is incorporated to the above composition, if necessary. In this steel, magnetic properties are improved by the incorporation of Ti and the increase in Si quantity and also superior machinability is provided by means of Pb. This steel is suitable for fixed iron core, movable iron core, etc., for solenoid valve.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電磁弁の固定鉄芯、可動鉄芯等に用いられる磁
気特性、電気特性、溶接性、熱処理性、耐食性、機械的
性質、被剛性に優れた軟磁性ステンレス鋼に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the magnetic properties, electrical properties, weldability, heat treatability, corrosion resistance, mechanical properties, and Regarding soft magnetic stainless steel with excellent rigidity.

[従来の技術] 従来、電磁弁の固定鉄芯、可動鉄芯等は、最大透磁率、
磁束密度などの磁気特性と、電気抵抗、耐食性、機械的
性質などの性質が優れた軟磁性ステンレス鋼が使用され
ていた。
[Conventional technology] Conventionally, the fixed iron core, movable iron core, etc. of solenoid valves have a maximum magnetic permeability,
Soft magnetic stainless steel was used because it has excellent magnetic properties such as magnetic flux density, electrical resistance, corrosion resistance, and mechanical properties.

近年、さらに優れた磁気特性、電気特性を有する軟磁性
ステンレス鋼が要望され、Si量を2.2%まで増加さ
せた0、06C2,2Si  13Cr鋼が開発され、
一部実用に供されている。この軟磁性ステンレス鋼は最
大透磁率が2000以上、磁束密度がl100OG以上
と良好な磁気特性を有し、かつ電気抵抗が90μΩ−C
1と電気特性についても優れており、さらに耐食性、機
械的性質、加工性についても比較的良好であり、品質バ
ランス上からも優れた鋼であった。
In recent years, there has been a demand for soft magnetic stainless steel with even better magnetic and electrical properties, and 0,06C2,2Si 13Cr steel with an increased Si content of up to 2.2% has been developed.
Some of them are put into practical use. This soft magnetic stainless steel has good magnetic properties with a maximum magnetic permeability of 2000 or more, a magnetic flux density of 1100OG or more, and an electrical resistance of 90 μΩ-C.
1, the steel had excellent electrical properties, and was also relatively good in corrosion resistance, mechanical properties, and workability, making it an excellent steel in terms of quality balance.

[発明が解決しようとする課題〕 最近、電磁弁の小型化が図られるとともに、高出力化高
応答性化が要望されるについて、前記の軟磁性ステンレ
ス鋼では磁気特性、電気抵抗が不十分となり、より優れ
た磁気特性、電気抵抗を有し、さらに溶接用途が増加す
るについて溶接後の耐疲労強度についても優れた軟磁性
ステンレス鋼の開発が望まれていた。また、ステンレス
鋼は普通鋼材に比べて難削性であり、これら軟磁性ステ
ンレス鋼についても切削性の改善が強く望まれていた。
[Problem to be solved by the invention] Recently, solenoid valves have been made smaller, and there is a demand for higher output and higher response, but the soft magnetic stainless steel mentioned above has insufficient magnetic properties and electrical resistance. It has been desired to develop a soft magnetic stainless steel that has better magnetic properties and electrical resistance, and also has superior fatigue strength after welding as welding applications are increasing. Furthermore, stainless steel is more difficult to cut than ordinary steel, and it has been strongly desired to improve the machinability of these soft magnetic stainless steels as well.

本発明は従来の軟磁性ステンレス鋼の前記のごとき閏題
点に鑑みてなされたものであって、従来の軟磁性ステン
レス鋼よりも磁気特性、電気特性、溶接性、熱処理性、
耐食性、機械的性質、被剛性に優れた軟磁性ステンレス
鋼を提供することを目的とする。
The present invention was made in view of the above-mentioned problems with conventional soft magnetic stainless steels, and has better magnetic properties, electrical properties, weldability, and heat treatability than conventional soft magnetic stainless steels.
The purpose is to provide a soft magnetic stainless steel with excellent corrosion resistance, mechanical properties, and rigidity.

[課題を解決するための手段] 本発明はかかる従来鋼の欠点を解決すべく鋭意研究を重
ねたものであって、本発明者等は12Cr鋼の磁気特性
、溶接後の耐疲労強度、熱処理特性、耐食性に及ぼす各
種合金元素の影響について調査した結果、第1に磁気特
性はCr量を10〜13%とするとともにTi、Siの
添加と、低C十N化によって大巾に改善されること、第
2に溶接後の耐疲労強度は低A1、低CfN化と、Ti
添加によって改善されること、第3に熱処理特性はTi
添加と、低C十N化によって改善されること、第4に耐
食性は10〜13%のCrを含有させるとともにTi添
加と、低CfN化によって改善されること、第5に切削
性はpb、sおよびSeの添加により磁気特性および電
気特性を劣化させることなく改善できることを見い出し
た。
[Means for Solving the Problems] The present invention is the result of extensive research in order to solve the drawbacks of conventional steels, and the present inventors have developed the magnetic properties of 12Cr steel, fatigue strength after welding, and heat treatment. As a result of investigating the effects of various alloying elements on properties and corrosion resistance, firstly, the magnetic properties were significantly improved by increasing the Cr content to 10 to 13%, adding Ti and Si, and reducing C and N. Second, the fatigue strength after welding is low A1, low CfN, and Ti
Thirdly, the heat treatment properties are improved by adding Ti.
Fourthly, corrosion resistance is improved by adding 10 to 13% Cr, adding Ti, and reducing CfN. Fifthly, machinability is improved by adding 10 to 13% Cr and reducing CfN. It has been found that the addition of s and Se can improve the magnetic and electrical properties without deteriorating them.

即ち、最大透磁率、磁束密度などの磁気特性は、10〜
13Crステンレス鋼において、CfN量の低減ととも
にTi、Siの添加によって改善され、CfN量を0.
05%以下、T i 0 、1%程度、Si2%以上含
有することによって最大透磁率は4400以上と従来鋼
<0.06C−2,23i−13Cr)の2倍以上の優
れた磁気特性を得ることができ、かつ、溶接後の耐疲労
強度は、Ai量を0.010%以下と低Ai化すること
によって溶接部の溶は込み深さを増加させるとともに0
.1%程度のTiの含有とCfN量を0.05%以下と
低CfN化することによって、溶接後の靭性を向上する
ことによって溶接後の耐疲労強度を120 kgf /
 c種2以上と前記の従来鋼の2倍の浸れた溶接性を得
ることがでる。
That is, the magnetic properties such as maximum permeability and magnetic flux density are 10~
In 13Cr stainless steel, improvements were made by reducing the amount of CfN and adding Ti and Si, and the amount of CfN was reduced to 0.
By containing 0.05% or less, Ti 0 about 1%, and Si 2% or more, the maximum magnetic permeability is 4400 or more, which is more than twice that of conventional steel (<0.06C-2, 23i-13Cr), and provides excellent magnetic properties. In addition, the fatigue strength after welding can be reduced to 0 by increasing the penetration depth of the weld by reducing the Ai amount to 0.010% or less.
.. By reducing the Ti content to about 1% and reducing the CfN content to 0.05% or less, the toughness after welding is improved, and the fatigue strength after welding is increased to 120 kgf /
With C type 2 or higher, it is possible to obtain twice the immersion weldability of the above-mentioned conventional steel.

さらに、加工後の焼なましにおいても、0.1%程度の
T1の含有によって920℃という高温で行っても磁気
特性が低下することがなく、かつ高温での結晶粒の粗大
化が抑制されて、延性、靭性が改善される。したがって
、従来バッチ炉で850℃で4時間保持していたものを
、高温化することによって30分程度の保持時間ででき
、連続炉で焼なましが可能である。連続炉を採用するこ
とによって生産性を大巾に向上でき熱処理コストの低減
に寄与するものである。
Furthermore, even in post-processing annealing, the magnetic properties do not deteriorate even when annealing is carried out at a high temperature of 920°C due to the inclusion of approximately 0.1% T1, and coarsening of crystal grains at high temperatures is suppressed. ductility and toughness are improved. Therefore, what was conventionally held at 850° C. for 4 hours in a batch furnace can be annealed in a holding time of about 30 minutes by increasing the temperature, and can be annealed in a continuous furnace. By adopting a continuous furnace, productivity can be greatly improved and contribute to reducing heat treatment costs.

また、耐食性はCfN量の低減と、0.1%程度のTi
の含有によって大巾に改善したものである。さらに切削
性については、第1図に示したように、pbを添加する
ことによって磁気特性および電気特性を劣化させること
なく改善できるものである。
In addition, corrosion resistance is improved by reducing the amount of CfN and by using about 0.1% Ti.
This was greatly improved by the inclusion of . Furthermore, as shown in FIG. 1, the machinability can be improved by adding PB without deteriorating the magnetic and electrical properties.

本発明はこれらの知見をもとに12Cr鋼においてC十
Nfiを0.05%以下とするとともにSi量を増加し
2,0〜3.0%とし、かつ0.05〜0.20%のT
iと、0.015〜0.050%のSおよび0.10〜
0.30%のpbを含有させ、さらにA1量を0.01
0%以下とその含有量を規制することによって、磁気特
性を大巾に改善するとともに溶接後の耐疲労強度、熱処
理特性、耐食性、電気抵抗、機械的性質、被剛性を改善
したものであり、本発明鋼は4400以上の最大透磁率
と、12000以上の磁束密度と優れた磁気特性を有し
溶接後の耐疲労強度についても120 kBf/ cm
2以上と優れており、さらに920℃という高温で焼な
ましを行っても磁気特性が低下することなく、従来バッ
チ炉で処理していたものを連続炉で処理でき生産性を大
幅に向上できるものであり、さらに電気抵抗、耐食性、
機械的性質、被剛性についても優れた軟磁性ステンレス
鋼であり、本発明は電磁弁の小形化、高出力化、高応答
性化に充分対応し得るものである。
Based on these findings, the present invention aims to reduce C+Nfi to 0.05% or less in 12Cr steel, increase the amount of Si to 2.0 to 3.0%, and increase the amount of Si to 2.0 to 3.0%. T
i, 0.015~0.050% S and 0.10~
Contain 0.30% pb and further increase the amount of A1 to 0.01
By regulating the content to 0% or less, the magnetic properties are greatly improved, as well as the fatigue strength after welding, heat treatment properties, corrosion resistance, electrical resistance, mechanical properties, and rigidity. The steel of the present invention has a maximum magnetic permeability of 4,400 or more, a magnetic flux density of 12,000 or more, and excellent magnetic properties, and has a fatigue strength of 120 kBf/cm after welding.
2 or higher, and even when annealed at a high temperature of 920°C, the magnetic properties do not deteriorate, and what was conventionally processed in a batch furnace can be processed in a continuous furnace, greatly improving productivity. It also has electrical resistance, corrosion resistance,
It is a soft magnetic stainless steel with excellent mechanical properties and rigidity, and the present invention can fully respond to miniaturization, high output, and high response of electromagnetic valves.

すなわち、本発明鋼は第1発明鋼として、重量比にし”
(C;0.03%以下、Si;2.0〜3.0%、Mn
;0.40%以下、S;0.015〜0.050%、C
「;10〜13%、Ti;0.05〜0.20%、N、
0.03%以下、Al;0.010%以下、Pb;O。
That is, the steel of the present invention is the first steel of the invention, and the weight ratio is ``
(C: 0.03% or less, Si: 2.0-3.0%, Mn
; 0.40% or less, S; 0.015 to 0.050%, C
"; 10-13%, Ti; 0.05-0.20%, N,
0.03% or less, Al; 0.010% or less, Pb; O.

10〜0.30%を含有し、かつc+N;0.05%以
下で、残部Feならびに不純物元素からなることを要旨
とする。第2発明鋼は第1発明鋼の被剛性をさらに改善
するため第1発明鋼にさらにSego 、010〜0.
050%を含有し、第3発明は第1発明の耐食性をさら
に改善するため第1発明にさらにMo;3%以下、N 
i;0.50%以下、Cu、0.50%以下、S:0.
005%以下のうち1種または2種以上を含有したこと
を要旨とする。
10 to 0.30%, c+N: 0.05% or less, and the remainder consists of Fe and impurity elements. In order to further improve the stiffness of the first invention steel, the second invention steel is further coated with Sego, 010 to 0.
In order to further improve the corrosion resistance of the first invention, the third invention further contains Mo; 3% or less, N
i; 0.50% or less, Cu, 0.50% or less, S: 0.
0.005% or less.

以下に本発明鋼の成分限定理由について説明する。The reasons for limiting the composition of the steel of the present invention will be explained below.

Cは磁気特性、溶接後の疲労強度、熱処理性、耐食性を
損なう元素であり、本発明のおいてはできるだけ低下さ
せることが望ましく、その上限を0.03%とした。な
お、磁気特性、溶接性、熱処理性をより向上させるため
には、0.015%以下にすることが望ましい。
C is an element that impairs magnetic properties, fatigue strength after welding, heat treatability, and corrosion resistance, and in the present invention, it is desirable to reduce it as much as possible, and the upper limit is set to 0.03%. Note that in order to further improve magnetic properties, weldability, and heat treatability, it is desirable that the content be 0.015% or less.

Siは最大透磁率、磁束密度などの磁気特性を改善し、
かつ電気抵抗を増加させる元素であり、軟磁性鋼として
は重要な元素であり、少なくとも2.0%以上含有させ
る必要がある。しかし3゜0%を超えてSiを含有させ
ても、磁気特性の向上は少なく、延性および靭性を損な
うので、上限を3.0%とした。
Si improves magnetic properties such as maximum permeability and magnetic flux density,
It is an element that increases electrical resistance, and is an important element for soft magnetic steel, and must be contained in an amount of at least 2.0%. However, even if Si is contained in an amount exceeding 3.0%, there is little improvement in magnetic properties and the ductility and toughness are impaired, so the upper limit was set at 3.0%.

MnはSiと同様に製鋼時の脱酸に必要な元素であり、
磁気特性を損なうことのない範囲とし、その上限を0.
40%とした。
Like Si, Mn is an element necessary for deoxidation during steel manufacturing,
The upper limit is 0.
It was set at 40%.

Crはステンレス鋼の耐食性をf1与する基本的な元素
であり、少なくとも10%以上含有させる必要がある。
Cr is a basic element that gives stainless steel corrosion resistance f1, and must be contained in an amount of at least 10% or more.

しかしながら、その含有量が増加すると磁束密度など磁
気特性を損なうので、その上限を13%とした。
However, if the content increases, magnetic properties such as magnetic flux density will be impaired, so the upper limit was set at 13%.

Tiは最大透磁率、磁束密度などの磁気特性を大幅に改
善するとともに、熱処理特性についても改善する。さら
にTiは耐食性についても改善する元素であり、本発明
のおいては最も重要な元素である。これらの効果を得る
には、少なくとも0゜05%以上含有させる必要があり
、その下限を0゜05%とした。しかし、0.20%を
超えてTiを含有させても、その効果が飽和するので、
その上限を0,20%とした。
Ti significantly improves magnetic properties such as maximum permeability and magnetic flux density, and also improves heat treatment properties. Furthermore, Ti is an element that also improves corrosion resistance, and is the most important element in the present invention. In order to obtain these effects, it is necessary to contain at least 0°05% or more, and the lower limit is set at 0°05%. However, even if it contains more than 0.20% of Ti, the effect will be saturated, so
The upper limit was set at 0.20%.

Nは磁気特性、溶接後の疲労強度、熱処理特性を損なう
元素であり、その含有量をできるだけ低下させることが
望ましく、その上限を0,03%とした。
N is an element that impairs magnetic properties, fatigue strength after welding, and heat treatment properties, and it is desirable to reduce its content as much as possible, with the upper limit set at 0.03%.

CfNはいずれも磁気特性、溶接後の耐疲労強度、熱処
理特性を損なう元素である6本発明においてはCfN量
をできるだけ低下させることが必要であり、その上限を
0.05%とした。
CfN is an element that impairs magnetic properties, fatigue strength after welding, and heat treatment properties.6 In the present invention, it is necessary to reduce the amount of CfN as much as possible, and the upper limit is set to 0.05%.

Sは耐食性を損なう反面被削性を改善する元素である。S is an element that impairs corrosion resistance but improves machinability.

ffれた被剛性を得るなめには0.015%以上含有さ
せる必要があり、その下限をo、015%とした。しか
し、Sは0.050%を超えて含有させると、耐食性を
損なうのでその上限を0.05%とした。
In order to obtain the stiffness that is ff, it is necessary to contain 0.015% or more, and the lower limit is set to 0.015%. However, if S is contained in an amount exceeding 0.050%, corrosion resistance will be impaired, so the upper limit was set at 0.05%.

A1は溶接後の耐疲労強度を損なう元素である。A1 is an element that impairs fatigue strength after welding.

しかし、低A1化することによって、その溶接部の溶は
込み深さを増し、耐疲労強度を改善することができる元
素でもある0本発明ではその含有量をできるだけ低下さ
せることが望ましく、その上限を0.010%とした。
However, by lowering A1, it is an element that can increase the penetration depth of the weld and improve the fatigue strength.In the present invention, it is desirable to reduce its content as much as possible, and its upper limit was set to 0.010%.

Seおよびpbは被削性を改善する元素である。Se and pb are elements that improve machinability.

優れた被剛性を得るには、Seについては0.010%
以上、pbについては0.10%以上含有させる必要が
あり、その下限をSeは0.010%、Pbは0.10
%とした。しかし、Seを0.050%、PbI2.3
0%を超えて含有させると、磁気特性を損なうので、そ
の上限t3e0.050′A、PbO130%とした。
To obtain excellent stiffness, Se should be 0.010%
As mentioned above, it is necessary to contain Pb at least 0.10%, and the lower limit is 0.010% for Se and 0.10% for Pb.
%. However, Se 0.050%, PbI2.3
If the content exceeds 0%, the magnetic properties will be impaired, so the upper limit was set at t3e0.050'A and PbO130%.

Mo、Ni、Cu、Sは本発明においては耐食性を改善
する元素である。しかし、Moは3%、NiとCuはそ
れぞれ0.5%を超えて含有させると、いずれも磁気特
性を損なうので、その上限はM。
Mo, Ni, Cu, and S are elements that improve corrosion resistance in the present invention. However, if Mo exceeds 3% and Ni and Cu exceed 0.5% each, the magnetic properties will be impaired, so the upper limit is M.

は3%、NiおよびCuは0.5%とした。また、Sは
被削性を改善する元素であるが、反面耐食性を低下させ
る元素でもある。優れた耐食性を得るためには、0.0
05%に低下する必要があり、その上限を0.005%
とした。
was 3%, and Ni and Cu were 0.5%. Further, although S is an element that improves machinability, it is also an element that reduces corrosion resistance. In order to obtain excellent corrosion resistance, 0.0
0.05%, and the upper limit is 0.005%.
And so.

[実施例] 次に本発明の特徴を従来鋼、比較鋼と比べて実施例で以
て明らかにする。
[Example] Next, the characteristics of the present invention will be clarified by comparing the characteristics with conventional steel and comparative steel using examples.

第1表はこれら供試鋼の化学成分を示すものである。Table 1 shows the chemical composition of these test steels.

第1表において、A〜L鋼は発明鋼で、A−C鋼は第1
発明鋼、D〜F鋼は第2発明鋼、G〜L鋼は第3発明鋼
である。M〜P鋼は比較鋼で、M鋼はA1の含有量が高
いもの、N鋼はTiを含有しないもの、0w4はFC系
含有Iの高いもの、e鋼はS;の低いものである。また
、Q〜S鋼は従来鋼である。
In Table 1, steels A to L are invention steels, and steels A to C are first steels.
The invention steels, D to F steels, are second invention steels, and G to L steels are third invention steels. M to P steels are comparative steels, M steel has a high A1 content, N steel does not contain Ti, 0w4 has a high FC system content I, and e steel has a low S;. Further, Q to S steels are conventional steels.

(以  下  余  白  ) 第2表は第1表の供試鋼について、900℃×2Hr保
持し、次いで冷却速度100℃/Hrという熱処理を施
したA−9鋼の最大透磁率、磁束密度、電気抵抗、硬さ
、耐食性、被剛性、溶接後の耐疲労強度を示したもので
ある。磁気特性については、直流型BH)レーザを用い
て試験片として外径24φ、内径16φ、厚さ16m1
*のリングを作成し、最大透磁率、磁束密度を測定した
ものである。flXlX抗抵抗いては、ホビーストンブ
リッジ法により、試験片として1.2φX50C1am
線を用いて測定したものである。耐食性については、3
.5%NaCl水溶液を用いて60分塩水噴霧試験を行
い、その発錆率を測定し、発錆率が1%未満のものを評
点5とし、発錆率が1〜10%未満のものを評点4とし
、発錆率が10〜30%未満のものを評点3とし、発錆
率が30〜60%未満のものを評点2とし、発錆率が6
0〜100%のものを評点1とした。さらに被剛性につ
いては、ドリル寿命を測定したものであり、溶接後の疲
労強度については、5US304のなめ付は溶接を、プ
ラズマ53AX100V、t=2mmで行った耐圧疲労
試験を行い、 その強度を測定したものであ 第2表より知られるように、従来鋼であるQ鋼は電気抵
抗が92μΩ−ell、硬さがHv1種8と、電気抵抗
および硬さについては優れているが、必要量のTiを含
有しないとともに、C十N量とA量が高いことによって
、最大透磁率が2300、磁束密度が11200Gと磁
気特性については十分でなく、かつ溶接後の疲労強度に
ついても、90kgf/em”と劣っており、さらに耐
食性、被削性についても十分ではないものであり、また
R31lはSi量が0.45%と低く、かつ所望のTi
量を含有しなく、さらにAl量、C+N量およびCrJ
iが高いことによって、最大透磁率が900、磁束密度
が7800Gと磁気特性が大幅に劣るものであり、かつ
電気抵抗についても、60μΩ−elmと低いものであ
り、さらに溶接後の耐疲労強度、硬さ、被剛性について
も劣るものであり、さらにS#lについてもR鋼と同様
に、Si量が低いとともに所望のTi量を含有しなく、
さらにAl量、C+N量が高いことによって、磁気特性
、電気抵抗、硬さ、被剛性について劣るものである。
(Margins below) Table 2 shows the maximum magnetic permeability, magnetic flux density, and It shows electrical resistance, hardness, corrosion resistance, rigidity, and fatigue strength after welding. Regarding the magnetic properties, a test piece was prepared using a direct current BH) laser with an outer diameter of 24φ, an inner diameter of 16φ, and a thickness of 16m1.
A ring marked * was created and the maximum magnetic permeability and magnetic flux density were measured. flXlX resistance was measured using the hobby stone bridge method as a test piece of 1.2φX50C1am.
It was measured using a line. Regarding corrosion resistance, 3
.. A 60-minute salt spray test was conducted using a 5% NaCl aqueous solution, and the rusting rate was measured. Those with a rusting rate of less than 1% were given a rating of 5, and those with a rusting rate of less than 1% to 10% were given a rating. 4, those with a rusting rate of less than 10 to 30% are given a rating of 3, those with a rusting rate of less than 30 to 60% are given a rating of 2, and those with a rusting rate of less than 60% are given a rating of 3.
A score of 1 was given as 0% to 100%. Furthermore, the rigidity was measured by drill life, and the fatigue strength after welding was measured by welding 5US304 and performing a pressure fatigue test at plasma 53AX 100V and t = 2mm. As is known from Table 2, Q steel, which is a conventional steel, has an electrical resistance of 92 μΩ-ell and a hardness of Hv1 type 8, which is excellent in terms of electrical resistance and hardness, but it does not meet the required amount. Because it does not contain Ti and has a high C1N and A content, it has insufficient magnetic properties with a maximum permeability of 2300 and a magnetic flux density of 11200G, and the fatigue strength after welding is 90kgf/em. In addition, R31l has a low Si content of 0.45% and does not have the desired Ti content.
In addition, it contains no amount of Al, C+N, and CrJ.
Due to the high i, the magnetic properties are significantly inferior, with a maximum magnetic permeability of 900 and a magnetic flux density of 7800 G, and the electrical resistance is also low at 60 μΩ-elm, and the fatigue strength after welding is low. It is inferior in hardness and stiffness, and like R steel, S#l has a low Si content and does not contain the desired Ti content,
Furthermore, due to the high Al content and C+N content, magnetic properties, electrical resistance, hardness, and stiffness are inferior.

また、比較鋼であるM鋼は多くのA1を含有することに
よって、溶接後の耐疲労強度が40kgf/cIl12
と大幅に低いものであり、NaについてはTiを含有し
ないことによって、最大透磁率が3200、磁束密度が
11200Gと低く、かつ溶接後の耐疲労強度について
も低いものであり、Q鋼については、C量とC+Nil
が高いことにより、最大透磁率が3000.磁束密度が
11400Gと磁気特性が低く、かつ溶接後の耐疲労強
度が100kgf/am2と低いものであり、さらに耐
食性、被剛性についても劣るものであり、P鋼は必要量
のSiを含有しないことにより、最大透磁率は3800
、磁束密度が10600Gと磁気特性が低く、さらに電
気抵抗についても80μΩ−ellと低いものである。
In addition, M steel, which is a comparative steel, has a fatigue strength of 40 kgf/cIl12 after welding because it contains a large amount of A1.
As for Na, by not containing Ti, the maximum magnetic permeability is low at 3200, the magnetic flux density is low at 11200G, and the fatigue strength after welding is also low.As for Q steel, C amount and C+Nil
The maximum magnetic permeability is 3000. It has low magnetic properties with a magnetic flux density of 11,400G, and a low fatigue strength of 100 kgf/am2 after welding, and is also poor in corrosion resistance and rigidity, and P steel does not contain the necessary amount of Si. Therefore, the maximum permeability is 3800
Its magnetic properties are low, with a magnetic flux density of 10,600 G, and its electrical resistance is also low, at 80 μΩ-ell.

これらに対して本発明鋼であるA〜Mw4はC十N量お
よびAl量を極力低下させるとともに、0゜05〜0.
20%のTiを含有させ、かつSi量を2.0〜3.0
%、SをO,O]、5〜0.050%、Crを10〜1
3%とすることによって、最大透磁率が4400以上、
磁束密度が12000G以上と優れた磁気特性を有して
おり、かつ電気抵抗についても92μΩ−crm以上、
溶接後の耐疲労強度については120 kgf / c
m”以上と電気特性、溶接性についても優れており、さ
らに耐食性についてはその発錆率が10%以下、硬さが
Hv1種0以上、被削性が500論−以上と耐食性、機
械的性質、被剛性についても優れているものである。
On the other hand, A to Mw4, which are the steels of the present invention, reduce the amount of C0N and the amount of Al as much as possible, and have a 0.05~0.0.
Contains 20% Ti and the amount of Si is 2.0 to 3.0
%, S to O, O], 5 to 0.050%, Cr to 10 to 1
By setting it to 3%, the maximum magnetic permeability is 4400 or more,
It has excellent magnetic properties with a magnetic flux density of 12,000 G or more, and an electrical resistance of 92 μΩ-cr or more.
120 kgf/c for fatigue strength after welding
It has excellent electrical properties and weldability, with a value of over 100 m'', and corrosion resistance with a rusting rate of less than 10%, hardness of Hv 1 type 0 or more, and machinability of 500 theory or more. It also has excellent rigidity.

[発明の効果] 上述のように本発明鋼は、C+N含有量を低減するとと
もに、適量のTiを含有させかつSiを増加させること
により、磁気特性を大幅に改善し、かつ適量のPb含有
によって切削性を改善し、さらに熱処理特性、耐食性、
電気特性、機械的性質、被剛性についても優れており、
本発明鋼は電磁弁の固定鉄芯、可動鉄芯等に適した快削
軟磁性ステンレス鋼であり、高い実用性を有するもので
ある。
[Effects of the Invention] As described above, the steel of the present invention significantly improves magnetic properties by reducing the C+N content, by containing an appropriate amount of Ti, and by increasing Si, and by containing an appropriate amount of Pb. Improved machinability, heat treatment properties, corrosion resistance,
It also has excellent electrical properties, mechanical properties, and stiffness.
The steel of the present invention is a free-cutting soft magnetic stainless steel suitable for fixed iron cores, movable iron cores, etc. of electromagnetic valves, and has high practicality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はpb含有量と磁気特性の関係を示す図である。 第1図 pb量(・ム) FIG. 1 is a diagram showing the relationship between Pb content and magnetic properties. Figure 1 PB amount (・mu)

Claims (3)

【特許請求の範囲】[Claims] (1)重量比にしてC;0.03%以下、Si;2.0
〜3.0%、Mn;0.40%以下、S;0.015〜
0.050%、Cr;10〜13%、Ti;0.05〜
0.20%、N;0.03%以下、Al;0.010%
以下、Pb;0.10〜0.30%を含有し、かつC+
N;0.05%以下で、残部Feならびに不純物元素か
らなることを特徴とする快削軟磁性ステンレス鋼。
(1) C: 0.03% or less, Si: 2.0 in terms of weight ratio
~3.0%, Mn; 0.40% or less, S; 0.015~
0.050%, Cr; 10-13%, Ti; 0.05-
0.20%, N; 0.03% or less, Al; 0.010%
Below, Pb; contains 0.10 to 0.30%, and C +
A free-cutting soft magnetic stainless steel characterized by containing N: 0.05% or less, with the remainder consisting of Fe and impurity elements.
(2)重量比にしてC;0.03%以下、Si;2.0
〜3.0%、Mn;0.40%以下、S;0.015〜
0.050%、Cr;10〜13%、Ti;0.05〜
0.20%、N;0.03%以下、Al;0.010%
以下、Pb;0.10〜0.30%、Se;0.010
〜0.050%を含有し、かつC+N;0.05%以下
で、残部Feならびに不純物元素からなることを特徴と
する快削軟磁性ステンレス鋼。
(2) C: 0.03% or less, Si: 2.0 in terms of weight ratio
~3.0%, Mn; 0.40% or less, S; 0.015~
0.050%, Cr; 10-13%, Ti; 0.05-
0.20%, N; 0.03% or less, Al; 0.010%
Hereinafter, Pb; 0.10 to 0.30%, Se; 0.010
A free-cutting soft magnetic stainless steel characterized by containing ~0.050%, C+N: 0.05% or less, and the remainder consisting of Fe and impurity elements.
(3)重量比にしてC;0.03%以下、Si;2.0
〜3.0%、Mn;0.40%以下、Cr;10〜13
%、Ti;0.05〜0.20%、N;0.03%以下
、Al;0.010%以下、Pb;0.10〜0.30
%を含有し、かつC+N;0.05%以下で、さらにM
o;3%以下、Ni;0.50%以下、Cu;0.50
%以下、S;0.005%以下のうち1種または2種以
上を含有し、残部Feならびに不純物元素からなること
を特徴とする快削軟磁性ステンレス鋼。
(3) C: 0.03% or less, Si: 2.0 in terms of weight ratio
~3.0%, Mn; 0.40% or less, Cr; 10-13
%, Ti: 0.05-0.20%, N: 0.03% or less, Al: 0.010% or less, Pb: 0.10-0.30
%, and C+N; 0.05% or less, and further contains M
o: 3% or less, Ni: 0.50% or less, Cu: 0.50
% or less, S: 0.005% or less, and the free-cutting soft magnetic stainless steel is characterized by containing one or more of S;
JP33191488A 1988-12-29 1988-12-29 Free-cutting soft-magnetic stainless steel Pending JPH02179855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33191488A JPH02179855A (en) 1988-12-29 1988-12-29 Free-cutting soft-magnetic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33191488A JPH02179855A (en) 1988-12-29 1988-12-29 Free-cutting soft-magnetic stainless steel

Publications (1)

Publication Number Publication Date
JPH02179855A true JPH02179855A (en) 1990-07-12

Family

ID=18249046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33191488A Pending JPH02179855A (en) 1988-12-29 1988-12-29 Free-cutting soft-magnetic stainless steel

Country Status (1)

Country Link
JP (1) JPH02179855A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001140034A (en) * 1999-09-03 2001-05-22 Kiyohito Ishida Free-cutting alloy material
US7297214B2 (en) 1999-09-03 2007-11-20 Kiyohito Ishida Free cutting alloy
US7381369B2 (en) 1999-09-03 2008-06-03 Kiyohito Ishida Free cutting alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125639A (en) * 1985-04-16 1988-05-28 Aichi Steel Works Ltd Soft magnetic stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125639A (en) * 1985-04-16 1988-05-28 Aichi Steel Works Ltd Soft magnetic stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001140034A (en) * 1999-09-03 2001-05-22 Kiyohito Ishida Free-cutting alloy material
US7297214B2 (en) 1999-09-03 2007-11-20 Kiyohito Ishida Free cutting alloy
US7381369B2 (en) 1999-09-03 2008-06-03 Kiyohito Ishida Free cutting alloy

Similar Documents

Publication Publication Date Title
JPH0215143A (en) Soft magnetic stainless steel for cold forging
US4705581A (en) Soft magnetic stainless steel
JP2533481B2 (en) Non-magnetic high strength stainless steel and method for producing the same
JPH06228717A (en) Silicon stainless steel
JPH02179855A (en) Free-cutting soft-magnetic stainless steel
JPH09195007A (en) Chromium-manganese-nitrogen base austenitic stainless steel excellent in corrosion resistance
JPS589962A (en) High-strength stainless steel with superior intergranular corrosion cracking resistance and workability
JP2000008145A (en) Ferritic stainless steel excellent in antifungal property and its production
JP2000336461A (en) High hardness stainless steel superior in antibacterial property and corrosion resistance
JPH0250937A (en) Free cutting stainless steel for header
JPS6335757A (en) Corrosion-resisting soft-magnetic steel
JPS62156257A (en) High strength, nonmagnetic cold rolled steel sheet
JPH0931603A (en) Free cutting ferritic stainless steel
JPS61213353A (en) Non-magnetic stainless steel excelling in spring characteristic
JP3387235B2 (en) Precipitation hardening stainless steel
JPH02115346A (en) Ferritic stainless steel having excellent corrosion resistance in high concentrated halide
JPH02301544A (en) Soft-magnetic alloy with high electric resistance for cold forging
JPH0610102A (en) High cold forgeability magnetic stainless steel
JPH108219A (en) Soft magnetic material having high magnetic flux density and corrosion resistance
JPH07188866A (en) Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid
JPH0320449A (en) Soft-magnetic stainless steel for cold forging
JPS6043467A (en) Two-phase stainless steel
JPH0390545A (en) Soft magnetic and high strength steel
JPH02190444A (en) Corrosion-resisting high-mn nonmagnetic steel having excellent workability
JPS61147855A (en) Precipitation hardening stainless steel