JPH02179809A - Smelting reduction method for iron ore - Google Patents

Smelting reduction method for iron ore

Info

Publication number
JPH02179809A
JPH02179809A JP33165988A JP33165988A JPH02179809A JP H02179809 A JPH02179809 A JP H02179809A JP 33165988 A JP33165988 A JP 33165988A JP 33165988 A JP33165988 A JP 33165988A JP H02179809 A JPH02179809 A JP H02179809A
Authority
JP
Japan
Prior art keywords
furnace
amount
carbon
dust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33165988A
Other languages
Japanese (ja)
Other versions
JP2869987B2 (en
Inventor
Masahiro Kawakami
川上 正弘
Hitoshi Kawada
仁 川田
Haruyoshi Tanabe
治良 田辺
Masahiro Muroya
正廣 室屋
Kenji Takahashi
謙治 高橋
Toru Kitagawa
北川 融
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP33165988A priority Critical patent/JP2869987B2/en
Publication of JPH02179809A publication Critical patent/JPH02179809A/en
Application granted granted Critical
Publication of JP2869987B2 publication Critical patent/JP2869987B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To accurately calculate remaining C content in iron bath and to prevent the development of slopping and the lowering of OD ratio by obtaining powdery C content in waste gas from the dust collecting quantity in the waste gas from a furnace in the subject method with iron bath type smelting reduction furnace. CONSTITUTION:Iron ore and carbonaceous material are supplied in the reduction furnace 1 and the smelting reduction is executed to the iron ore with O2 blown into the furnace. In this case, the dust in the waste gas from the furnace is collected with a dry type dust collector 11 arranged on the way of a duct 9 and charged in a container 12, and the container 12 is weighed with a load cell 13 to measure wt. of the dust charged. In the dust, as the powdery C scattered from the carbonaceous material supplied in the furnace is contained at almost fixed ratio, the C content in the above waste gas is calculated from the above dust quantity. Further, gaseous C content in the waste gas is measured with a waste gas analyzer 10, and the remaining C content in the iron bath is calculated from the total C content, which is melted and consumed in the iron bath in the furnace, and the carbonaceous material quantity supplied in the furnace, and the supplying rate of the carbonaceous material is controlled so as to make the remaining C control the constant.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、鉄浴式溶融還元炉による鉄鉱石の溶融還元
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for melting and reducing iron ore using an iron bath type melting and reducing furnace.

[従来の技術] 鉄浴が収容された転炉型の溶融還元炉内に、鉄鉱石およ
び炭材を供給し、ランスを通して酸素を吹き込むことに
より鉄鉱石を溶融還元する、鉄浴式溶融還元炉による鉄
鉱石の溶融還元方法が知らる6第2図に示すように、溶
融還元炉は、転炉型の炉体1と、炉体1の開口1aを通
して炉内に垂直に挿入されるランス2と、炉体1の底壁
および/または側壁に設けられた撹拌用ガス吹込口3と
、炉口1aを覆うフード4に設けられた鉄鉱石供給用シ
ュート5および石炭等の炭材供給用シュート6とからな
っている。
[Prior Art] An iron bath-type smelting-reduction furnace in which iron ore and carbonaceous materials are fed into a converter-type smelting-reduction furnace containing an iron bath, and the iron ore is melted and reduced by blowing oxygen through a lance. As shown in Fig. 2, the smelting reduction furnace includes a converter-type furnace body 1 and a lance 2 inserted vertically into the furnace through an opening 1a of the furnace body 1. , a stirring gas inlet 3 provided on the bottom wall and/or side wall of the furnace body 1, a chute 5 for supplying iron ore and a chute for supplying carbonaceous materials such as coal, provided in the hood 4 covering the furnace mouth 1a. It consists of 6.

炉内に所定量の溶鉄を収容し、シュート5を通して鉄鉱
石を、そして、シュート6を通して石炭等の炭材および
フラックスを炉内に供給する。炉口1aから炉体1内に
垂直に挿入されたランス2を通して、炉内のスラグ8上
に酸素ガスを吹き込み、そして、撹拌用ガス吹込口3を
通して、炉内の鉄浴7中に窒素等の撹拌用ガスを吹込む
A predetermined amount of molten iron is stored in the furnace, iron ore is supplied through a chute 5, and carbonaceous materials such as coal and flux are supplied through a chute 6 into the furnace. Oxygen gas is blown into the slag 8 in the furnace through the lance 2 vertically inserted into the furnace body 1 from the furnace mouth 1a, and nitrogen, etc. is injected into the iron bath 7 in the furnace through the stirring gas inlet 3. Blow in stirring gas.

その結果、溶鉄中の炭素および供給された炭材中の炭素
とランス2を通して吹き込まれた酸素ガスとが下記(1
)式のように反応して、COガスが生成する。
As a result, the following (1
) CO gas is generated by the reaction as shown in the equation.

C+−〇□=  CO・・・・・・・(1)上記により
生成したCOガスは、ランス2を通して吹き込まれた酸
素ガスと下記(2)式のように反応してCO□ガスとな
り、このときに高い熱量を有する熱が発生する。
C+-〇□=CO・・・・・・(1) The CO gas generated above reacts with the oxygen gas blown through the lance 2 as shown in equation (2) below to become CO□ gas, and this Sometimes heat with a high calorific value is generated.

CO+−〇2=co2  −  ・−・(2)このCO
□ガスの熱は、スラグ8を介して鉄浴7に伝達される。
CO+-〇2=co2- ・-・(2) This CO
□The heat of the gas is transferred to the iron bath 7 via the slag 8.

従って、鉄浴7中の鉄鉱石は溶融しそして炭材中の炭素
により還元されて溶銑となる。
Therefore, the iron ore in the iron bath 7 is melted and reduced by the carbon in the carbon material to become hot metal.

第2図において、9は、フード4にその一端が接続され
た排ガス排出用のダクトである。
In FIG. 2, reference numeral 9 denotes an exhaust gas exhaust duct whose one end is connected to the hood 4.

上述のような溶融還元による精錬中に、溶鉄やスラグが
噴出するスロッピングが発生する問題がある。スロッピ
ングが発生すると、噴出した溶鉄やスラグが炉口1aに
付着してこれを閉塞し、操業が不能になって生産性を阻
害し且つ鉄歩留が低下する。従って、溶融還元方法によ
る精錬に際し、スロッピングの発生を防止することが極
めて重要である。
During refining by smelting and reduction as described above, there is a problem in that slopping occurs in which molten iron and slag spew out. When slopping occurs, spouted molten iron and slag adhere to the furnace mouth 1a and block it, making operation impossible, inhibiting productivity, and reducing iron yield. Therefore, it is extremely important to prevent the occurrence of slopping during refining by the smelting reduction method.

[発明が解決しようとする課題] スロッピングが発生する原因は、次のように考えられる
。即ち、炉内に供給された炭材により鉄浴中に存在する
炭素の量が少ないと、鉄鉱石の還元が遅れてスラグ中の
FeO量が増大する結果、スラグがフォーミングしやす
くなって、スロッピングが発生する。
[Problems to be Solved by the Invention] The causes of slopping are considered to be as follows. In other words, if the amount of carbon present in the iron bath is small due to the carbonaceous material supplied into the furnace, the reduction of iron ore will be delayed and the amount of FeO in the slag will increase, making it easier for the slag to form, causing the slag to form. Lopping occurs.

従って、鉄浴中に常に適正量の炭素が存在するように炭
材を供給すれば、スロッピングの発生を防止することが
できる。
Therefore, if carbon material is supplied so that an appropriate amount of carbon is always present in the iron bath, slopping can be prevented from occurring.

そこで、従来は、鉄浴中に適正量の炭素が存在するよう
に、次のようにして炭材を炉内に供給していた。即ち、
炉内からダクト9を通って排出される排ガス即ちCOガ
スおよびCO2ガス中のガス状の炭素の量を、ダクト9
の途中に設けられた排ガス分析計10によって測定する
。得られた排ガス中のガス状の炭素量、溶鉄中に溶解し
て消費されると、炉内への炭材の供給量とから、鉄浴中
に残存する炭素の量、を算出する。このようにして得ら
れた鉄浴中の残存炭素量が、スロッピングの発生しない
適正値となるように、炭材を炉内に供給する。
Therefore, conventionally, carbonaceous material was supplied into the furnace in the following manner so that an appropriate amount of carbon was present in the iron bath. That is,
The amount of gaseous carbon in the exhaust gas, that is, CO gas and CO2 gas discharged from the furnace through the duct 9, is
It is measured by an exhaust gas analyzer 10 installed in the middle of the road. The amount of carbon remaining in the iron bath is calculated from the amount of gaseous carbon in the obtained exhaust gas and the amount of carbon material fed into the furnace once dissolved and consumed in the molten iron. Carbon material is fed into the furnace so that the amount of residual carbon in the iron bath thus obtained is an appropriate value that does not cause slopping.

しかしながら、上述の従来の方法においては、排ガス中
にダストとして混入し排出される粉末状の炭素量は、経
験的な推定値によらざるを得ない。
However, in the conventional method described above, the amount of powdered carbon that is mixed in the exhaust gas as dust and discharged must be based on an empirical estimate.

従って、上述のようにして算出された溶鉄中の残存炭素
量の精度が低い。
Therefore, the accuracy of the amount of residual carbon in the molten iron calculated as described above is low.

この結果、適量の炭素を鉄浴中に残存させることができ
ず、残存炭素量が少ないとスロッピングが発生する。一
方、過剰に炭材を装入すると、石炭中からの揮発炭素に
より、CO,+ C→2COの反応が生じ、OD比(還
元炉内における生成ガスの酸化度)が下がる。この結果
、溶鉄の温度の低下により、銑鉄I Ton当りの炭材
の原単位が上昇する。
As a result, an appropriate amount of carbon cannot remain in the iron bath, and if the amount of remaining carbon is small, slopping occurs. On the other hand, if excessive carbon material is charged, volatile carbon from the coal causes a reaction of CO, + C→2CO, and the OD ratio (the degree of oxidation of the generated gas in the reduction furnace) decreases. As a result, due to a decrease in the temperature of molten iron, the basic unit of carbon material per ton of pig iron increases.

従って、この発明の目的は、鉄浴中の残存炭素量が適正
値となるように適量の炭材を炉内に供給し、これによっ
て、スロッピングの発生およびOD比の低下を防止し得
る、鉄浴式溶融還元炉による鉄鉱石の溶融還元方法を提
供することにある。
Therefore, an object of the present invention is to supply an appropriate amount of carbon material into the furnace so that the amount of residual carbon in the iron bath becomes an appropriate value, thereby preventing the occurrence of slopping and a decrease in the OD ratio. An object of the present invention is to provide a method for melting and reducing iron ore using an iron bath type melting and reducing furnace.

[課題を解決するための手段] この発明は、鉄浴式溶融還元炉内に鉄鉱石および炭材を
供給し、炉内に吹き込まれる酸素により前記鉄鉱石を溶
融還元する方法において、前記還元炉からの排ガスを排
出するダクトの途中に設けられた乾式集塵機により前記
排ガス中のダストを捕集し、その重量により前記排ガス
中に混入している粉末状の炭素量を算出し、更に、前記
ダクトの途中に設けられた排ガス分析計により前記排ガ
ス中に含有されているガス状の炭素量を測定し。
[Means for Solving the Problems] The present invention provides a method for supplying iron ore and carbonaceous material into an iron bath type smelting reduction furnace and melting and reducing the iron ore with oxygen blown into the furnace. The dust in the exhaust gas is collected by a dry dust collector installed in the middle of the duct discharging the exhaust gas from the exhaust gas, and the amount of powdered carbon mixed in the exhaust gas is calculated based on the weight of the dust. The amount of gaseous carbon contained in the exhaust gas is measured by an exhaust gas analyzer installed in the middle of the exhaust gas.

このようにして得られた、炉内から排出された排ガス中
に存在する粉末状およびガス状の炭素の量、および、炉
内の鉄浴中に溶解し消費された炭素の量の合計量と、炉
内に供給された炭材の量とから、前記鉄浴中の残存炭素
量を算出し、前記残存炭素量がスロッピングの発生しな
い適正値になるよう↓こ、前記炭材の供給量を制御する
ることに特徴を有するものである。
The total amount of powdered and gaseous carbon present in the exhaust gas discharged from the furnace and the amount of carbon dissolved and consumed in the iron bath in the furnace obtained in this way. , Calculate the amount of residual carbon in the iron bath from the amount of carbon material supplied into the furnace, and adjust the amount of carbon material supplied so that the amount of residual carbon is an appropriate value that does not cause slopping. It is characterized by its ability to control.

次に、この発明を、図面を参照しながら説明する。第1
図は、この発明の方法の一実施態様を示す説明図である
。第1図に示すように、溶融還元炉は、転炉型の炉体1
と、炉体1の開口1aを通して炉内に垂直に挿入される
ランス2と、炉体1の底壁および/または側壁に設けら
れた撹拌用ガス吹込口3と、炉口1aを覆うフード4に
設けられた鉄鉱石装入用シュート5および石炭等の炭材
装入用シュート6とからなることは、従来と同様である
Next, the present invention will be explained with reference to the drawings. 1st
The figure is an explanatory diagram showing one embodiment of the method of the present invention. As shown in Fig. 1, the melting reduction furnace has a converter type furnace body 1.
, a lance 2 vertically inserted into the furnace through the opening 1a of the furnace body 1, a stirring gas inlet 3 provided on the bottom wall and/or side wall of the furnace body 1, and a hood 4 covering the furnace mouth 1a. The chute 5 for charging iron ore and the chute 6 for charging carbonaceous material such as coal are provided in the same way as in the prior art.

フード4にその一端が接続された排ガス排出用のダクト
9の途中には、排ガス中のダストを集塵するための乾式
集塵機11と、前記排ガス中の炭素量を測定するための
排ガス分析計10とが設けけられている。乾式集塵機1
1には、捕集したダストを収容するための容器12が設
けられている。
A dry dust collector 11 for collecting dust in the exhaust gas and an exhaust gas analyzer 10 for measuring the amount of carbon in the exhaust gas are installed in the middle of the exhaust gas discharge duct 9 whose one end is connected to the hood 4. is provided. Dry dust collector 1
1 is provided with a container 12 for accommodating the collected dust.

容器12には、ロードセル13が取り付けられており、
ロードセル13によって容器12の重量を測定し得るよ
うになっている。
A load cell 13 is attached to the container 12,
The weight of the container 12 can be measured by a load cell 13.

この発明においては、炉内から排出された排ガス中のダ
ストを、ダクト9の途中に設けられた乾式集塵機11に
よって捕集し、容器12内に収容する。そして、容器1
2をロードセル13で計量することによって、容器12
内に収容されたダストの重量を測定する。ダスト中には
、炉内に供給された炭材から飛散した粉末状の炭素がほ
ぼ一定の割合で含有されている。従って、上述のダスト
量によって、炉内から排出された排ガス中に存在する粉
末状の炭素の量を、下記(1)式により算出することが
できる。
In this invention, dust in the exhaust gas discharged from the inside of the furnace is collected by a dry dust collector 11 provided in the middle of the duct 9 and stored in a container 12. And container 1
2 by the load cell 13, the container 12
Measure the weight of the dust contained within. The dust contains powdered carbon scattered from the carbon material supplied into the furnace at a substantially constant rate. Therefore, based on the amount of dust described above, the amount of powdered carbon present in the exhaust gas discharged from the inside of the furnace can be calculated using the following equation (1).

D dC1/dt= −x(ダスト中の0%)/1.00・
・・(1)t 但し、dCよ/dt ニ一定時間当りの排ガス中の粉末
状の炭素量 D m:発生ダスト量 t 更に、前記排ガス中に含有されている、一定時間当りの
ガス状の炭素量(dC2/dt)を、ダクト9の途中に
設けられた排ガス分析計10によって測定する。
D dC1/dt= -x (0% in dust)/1.00・
...(1) t However, dC/dt is the amount of powdered carbon in the exhaust gas per fixed time D m: the amount of dust generated t Furthermore, the amount of gaseous carbon contained in the exhaust gas per fixed time The amount of carbon (dC2/dt) is measured by an exhaust gas analyzer 10 installed in the middle of the duct 9.

炉内に供給された炭材が鉄浴中において溶解し消費され
る一定時間当りの量(dC3/dt)は計算によって求
めることができるから、上述のように、炉内から排出さ
れた。一定時間当りの排ガス中の粉末状の炭素量(dC
1/dt)、一定時間当りの排ガス中のガス状の炭素量
(dC,/dt)、および、一定時間当りの炭素消費量
(dC,/dt)の合計量(dCi/dt)と、炉内に
供給された一定時間当りの炭材中の炭素量とから、下記
(2)式によりスロッピングの発生しない炭材供給量を
算出することができる。
Since the amount (dC3/dt) of the carbonaceous material supplied into the furnace dissolved and consumed per certain time in the iron bath can be determined by calculation, it was discharged from the furnace as described above. The amount of powdered carbon in the exhaust gas per certain period of time (dC
1/dt), the amount of gaseous carbon in the exhaust gas per certain time (dC, /dt), the total amount (dCi/dt) of the carbon consumption per certain time (dC, /dt), and the furnace From the amount of carbon in the carbon material supplied per certain period of time, the amount of carbon material supplied without causing slopping can be calculated using the following equation (2).

[実施例] 次に、この発明を実施例により説明する。[Example] Next, the present invention will be explained using examples.

鉄浴式溶融還元炉(5ton)を使用し、第1図に示す
方法によって、下記条件により溶融還元を行なった。即
ち、炉内に溶鉄5〜6tを収容し、炉体1の底壁および
側壁に設けられた撹拌用ガス吹込口3から窒素ガスを3
00 Nm’ / Ir4の量で吹き込み、ランス2か
ら酸素ガスを2,0OONrri’/)Irの炭 (炭
素含有量73%)を次に述べるように供給した。
Using an iron bath type melting reduction furnace (5 tons), melting reduction was carried out according to the method shown in FIG. 1 under the following conditions. That is, 5 to 6 tons of molten iron is stored in the furnace, and 3 tons of nitrogen gas is supplied from the stirring gas inlet 3 provided on the bottom wall and side wall of the furnace body 1.
Oxygen gas was injected from lance 2 at an amount of 00 Nm'/Ir4, and charcoal (carbon content 73%) of 2,000 Nm'/)Ir was supplied as described below.

即ち、鉄浴中の残存炭素量を、スロッピングが発生しな
い200kgに設定した。そして、上述の残存炭素量と
なるように、本発明の方法によって、30秒当u (7
)dC,/dt、 dC,/dtおよびdC,/dtの
合計量dCi/dtを算出し、シュート6から石炭を4
0〜50 kg / winの量で供給した。
That is, the amount of residual carbon in the iron bath was set to 200 kg, which would prevent slopping. Then, by the method of the present invention, u (7
)dC,/dt, calculate the total amount dCi/dt of dC,/dt and dC,/dt, and transfer the coal from chute 6 to 4
Supplied in amounts of 0-50 kg/win.

第1表には、この結果得られた設定値(200kg)に
対する残存炭素量の変動量およびスロッピング発生回数
と、従来方法即ちdCよ/dtを経験的な推定値として
dCi/dtを算出し1石炭を供給した場合の、設定値
に対する残存炭素量の変動量およびスロッピング発生回
数とが示されている。
Table 1 shows the amount of variation in the amount of residual carbon and the number of occurrences of slopping with respect to the set value (200 kg) obtained as a result, and dCi/dt calculated using the conventional method, that is, dCi/dt as an empirical estimate. The amount of variation in the amount of residual carbon and the number of occurrences of slopping with respect to the set value when one coal is supplied are shown.

第1表 には、設定値に対する残存炭素量の変動量が少なく、ス
ロッピングは全く発生しながった。これに1.5回発生
した。
Table 1 shows that the amount of variation in the amount of residual carbon with respect to the set value was small, and no slopping occurred. This occurred 1.5 times.

なお、上述の容量の還元炉の場合、スロッピングが発生
しない残存炭素量は、100kg以上である。
In addition, in the case of a reduction furnace having the above-mentioned capacity, the amount of residual carbon at which slopping does not occur is 100 kg or more.

[発明の効果コ 以上述べたように、この発明の方法によれば、鉄浴式溶
融還元炉内に鉄鉱石および炭材を供給し、炉内に上方か
ら垂直に挿入されたランスを通して吹き込まれる酸素に
より鉄鉱石を溶融還元するに際し、スロッピングが発生
することなく円滑に操業することができ、鉄歩留は向上
し且つOD比の低下が防止され、炭材原単位を効果的に
低減し得る等、工業上有用な効果がもたらされる。
[Effects of the Invention] As described above, according to the method of the present invention, iron ore and carbonaceous materials are supplied into an iron bath type smelting reduction furnace, and are blown into the furnace through a lance vertically inserted from above. When melting and reducing iron ore using oxygen, it can be operated smoothly without slopping, the iron yield is improved, the OD ratio is prevented from decreasing, and the carbon material consumption rate is effectively reduced. This brings about industrially useful effects such as obtaining

第1表から明らかなように、本発明方法の場合As is clear from Table 1, in the case of the method of the present invention

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法の一実施態様を示す説明図、第
2図は鉄浴式溶融還元炉の概略縦断面図である0図面に
おいて、 ■・・・炉体、      2・・・ランス、3・・・
撹拌用ガス吹込口、4・・・フード。 5.6・・・シュート、   7・・・溶鉄、8・・・
スラグ、      9・・・ダクト、10・・・排ガ
ス分析計、  11・・・乾式集塵機、12・・・容器
、      13・・・ロードセル。 第1図 n
Fig. 1 is an explanatory diagram showing one embodiment of the method of the present invention, and Fig. 2 is a schematic vertical cross-sectional view of an iron bath type smelting reduction furnace. , 3...
Gas inlet for stirring, 4...hood. 5.6... Shoot, 7... Molten iron, 8...
Slag, 9... Duct, 10... Exhaust gas analyzer, 11... Dry dust collector, 12... Container, 13... Load cell. Figure 1 n

Claims (1)

【特許請求の範囲】 1、鉄浴式溶融還元炉内に鉄鉱石および炭材を供給し、
炉内に吹き込まれる酸素により前記鉄鉱石を溶融還元す
る方法において、 前記還元炉からの排ガスを排出するダクトの途中に設け
られた乾式集塵機により前記排ガス中のダストを捕集し
、その重量により前記排ガス中に混入している粉末状の
炭素量を算出し、更に、前記ダクトの途中に設けられた
排ガス分析計により前記排ガス中に含有されているガス
状の炭素量を測定し、 このようにして得られた、炉内から排出された排ガス中
に存在する粉末状およびガス状の炭素の量、および、炉
内の鉄浴中に溶解し消費された炭素の量の合計量と、炉
内に供給された炭材の量とから、前記鉄浴中の残存炭素
量を算出し、前記残存炭素量が一定値になるように、前
記炭材の供給量を制御することを特徴とする、鉄鉱石の
溶融還元方法。
[Claims] 1. Supplying iron ore and carbonaceous material into an iron bath type smelting reduction furnace,
In the method of melting and reducing the iron ore with oxygen blown into the furnace, dust in the exhaust gas is collected by a dry dust collector installed in the middle of a duct discharging exhaust gas from the reduction furnace, and the dust is reduced by the weight of the dust. Calculate the amount of powdered carbon mixed in the exhaust gas, and further measure the amount of gaseous carbon contained in the exhaust gas using an exhaust gas analyzer installed in the middle of the duct. The amount of powdered and gaseous carbon present in the exhaust gas discharged from the furnace, the total amount of carbon dissolved and consumed in the iron bath in the furnace, and the amount of carbon in the furnace The amount of carbon remaining in the iron bath is calculated from the amount of carbon material supplied to the iron bath, and the amount of carbon material supplied is controlled so that the amount of residual carbon becomes a constant value. Method for melting and reducing iron ore.
JP33165988A 1988-12-28 1988-12-28 Smelting reduction method of iron ore Expired - Lifetime JP2869987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33165988A JP2869987B2 (en) 1988-12-28 1988-12-28 Smelting reduction method of iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33165988A JP2869987B2 (en) 1988-12-28 1988-12-28 Smelting reduction method of iron ore

Publications (2)

Publication Number Publication Date
JPH02179809A true JPH02179809A (en) 1990-07-12
JP2869987B2 JP2869987B2 (en) 1999-03-10

Family

ID=18246142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33165988A Expired - Lifetime JP2869987B2 (en) 1988-12-28 1988-12-28 Smelting reduction method of iron ore

Country Status (1)

Country Link
JP (1) JP2869987B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035038A1 (en) * 1996-03-22 1997-09-25 Steel Technology Corporation Stable operation of a smelter reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035038A1 (en) * 1996-03-22 1997-09-25 Steel Technology Corporation Stable operation of a smelter reactor
US6171364B1 (en) 1996-03-22 2001-01-09 Steel Technology Corporation Method for stable operation of a smelter reactor

Also Published As

Publication number Publication date
JP2869987B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US3565605A (en) Process for the continuous refining of metals
JPH02179809A (en) Smelting reduction method for iron ore
US8475561B2 (en) Method for producing molten iron
AU724385B2 (en) Method for controlling a smelting reduction process
JP2869986B2 (en) Smelting reduction method of iron ore
US5084093A (en) Method for manufacturing molten pig iron
CN113566579B (en) Smelting system
JPH01116018A (en) Converter steelmaking method
JP2897363B2 (en) Hot metal production method
JP2843604B2 (en) Production method of molten iron by combined smelting reduction and scrap melting method
WO1997012066A1 (en) Chromium ore smelting reduction process
JPH01283309A (en) Method for operating smelting reduction furnace
JPH01247516A (en) Method for supplying raw material in smelting reduction
JP2668912B2 (en) Smelting reduction method
JPS62224618A (en) Melting and reduction refining method
JPH05239522A (en) Production of molten iron
JP2897362B2 (en) Hot metal production method
JPH05239521A (en) Production of molten iron
Waladan et al. The effect of injection parameters on slag fuming
JP2770305B2 (en) Feeding method for smelting reduction of iron ore
JP3873356B2 (en) Operation method of vertical smelting reduction furnace
JP3787960B2 (en) Smelting reduction smelting method
JPH01195212A (en) Method for using powdered coal in iron bath type melting and reducing furnace
CN116050085A (en) Vanadium titanium ore blast furnace smelting regulation and control method based on heat balance calculation
JPH0517809A (en) Hearth desulfurization method for blast furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term