JPH02178715A - Control system for reactive power compensator - Google Patents

Control system for reactive power compensator

Info

Publication number
JPH02178715A
JPH02178715A JP33556388A JP33556388A JPH02178715A JP H02178715 A JPH02178715 A JP H02178715A JP 33556388 A JP33556388 A JP 33556388A JP 33556388 A JP33556388 A JP 33556388A JP H02178715 A JPH02178715 A JP H02178715A
Authority
JP
Japan
Prior art keywords
reactive power
signal
svc
power compensator
thyristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33556388A
Other languages
Japanese (ja)
Inventor
Hideki Yamamura
山村 英機
Takashi Masuda
隆 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP33556388A priority Critical patent/JPH02178715A/en
Publication of JPH02178715A publication Critical patent/JPH02178715A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To reduce a higher harmonic by phase-controlling a device based on a control signal which is biased so that it subtracts the added value of signals equivalent to respective capacities of certain compensators when plural numbers of reactive power compensators are operated. CONSTITUTION:Plural reactive power compensators are constituted, and a reactive power detection signal from a fluctuation load 4 is used as it is for the phase control of a thyristor 12 in the compensator in the first reactive power compensator SV, and the control signal which is biased so that it subtracts the signal equivalent to the capacity of the first reactive power compensator SVC 1 from the reactive power detection signal is used for the phase control of the thyristor 22 of the compensator in the second reactive power compensator SVC 2. Thus, the generating higher harmonic which occurs can be reduced by sequentially and simultaneously executing said operation.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はアーク炉、溶接機その他変動負荷から発生する
フリッカ−や電圧変動の抑制を目的とする無効電力補償
装置(以下svcと略す)において、SVCを複数台運
転する場合、フリッカ−抑制効果は従来と変らぬ°が、
SVCより発生する高調波を低減できる無効電力補償装
置の制御方式に関するものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a reactive power compensator (hereinafter abbreviated as SVC) for the purpose of suppressing flicker and voltage fluctuations generated from arc furnaces, welding machines, and other fluctuating loads. When operating multiple SVCs, the flicker suppression effect remains the same as before, but
The present invention relates to a control method for a reactive power compensator that can reduce harmonics generated by SVC.

[従来技術] 第5図は従来の5V(1! 2台運転の場合の制御ブロ
ック図を示す。
[Prior Art] Fig. 5 shows a control block diagram in the case of conventional 5V (1!2 unit operation).

1は電源、2は電源インピーダンス、3はフリッカ−や
電圧変動(以下フリッカ−という)の抑制対象となる系
統母線で、10.20で示す設備5YCI%5VC2が
接続される。5は4で示す変動負荷の電流を検出するC
Tで、6は系統母線3の電圧を検出するFTである。
1 is a power supply, 2 is a power supply impedance, and 3 is a system bus to which flicker and voltage fluctuations (hereinafter referred to as flicker) are to be suppressed, to which equipment 5YCI%5VC2 shown at 10.20 is connected. 5 is C that detects the current of the fluctuating load shown in 4.
6 is an FT that detects the voltage of the system bus 3.

5vctと5YC2は全く同一の構成からなる。5vct and 5YC2 have exactly the same configuration.

13、23は無効電力Q検出器で、変動負荷のQを直流
レベルで高速に検出する回路である。 14.24はQ
検出器13.23で検出されたQ信号に基づいてSvC
のサイリスタ点弧位相を決定する回路で、Is、 25
は12.32で示すサイリスタを実際に点弧するパルス
発生回路で、パルス信号16.28は、サイリスタ12
.32のゲートへ送られ点弧する。
Reference numerals 13 and 23 denote reactive power Q detectors, which are circuits that detect the Q of a fluctuating load at high speed at a DC level. 14.24 is Q
SvC based on the Q signal detected by the detector 13.23
A circuit that determines the thyristor firing phase of Is, 25
is the pulse generation circuit that actually fires the thyristor shown at 12.32, and the pulse signal 16.28 is the pulse generation circuit that actually fires the thyristor shown at 12.32.
.. It is sent to gate 32 and ignited.

この場合、変動負荷のQとSVCによるQの合成が一定
になるようにサイリスタ12.32の位相制御が行われ
る。
In this case, the phase of the thyristor 12.32 is controlled so that the combination of the variable load Q and the SVC Q is constant.

前記の例では、2台の5VC1,5VC2があたかも1
台のSVCのように動作し、フリッカ−を抑制する。し
かし、サイリスタ電流を位相制御することによって必然
的に高調波を発生する。この高調波の発生量は、各Sv
Cの容量によって異なるが、各SYCの定格容量に対す
る割合でみると、同じ割合の高調波を発生する。
In the above example, the two 5VC1 and 5VC2 are as if they were 1
It operates like a standard SVC and suppresses flicker. However, phase control of the thyristor current inevitably generates harmonics. The amount of harmonics generated is
Although it varies depending on the capacity of each SYC, harmonics are generated in the same proportion relative to the rated capacity of each SYC.

[発明の構成コ 本発明は、上記説明のように変動負荷から発生するフリ
ッカ−や電圧変動の抑制を目的として、SYCを複数台
運転する場合、上述のように、従来の複数台サイリスタ
制御によりサイリスタより発生する高調波成分を低減す
る目的でなされたものであり、またこれは見方をかえ1
台のSYC運転により前記フリッカ−や電圧変動の抑制
を行う場合、分割して複数台のSvCを用い高調波成分
の低減をはかることができるものであり、複数台のSv
Cで前記フリッカ−や電圧制御に対処できる容量のSv
Cを準備し、第1のSYCの制御では負荷検出信号を基
に、そのまま使用し、第2のSvCの制御では、それぞ
れ負荷検出信号から第1のSVCの容量に相当する信号
を差し引くようにバイアスされた制御信号を基に、更に
次のSvCの制御ではさきにあるSVCの各容量に相当
する信号の合算値を差し引くようにバイアスされた制御
信号を基に当該SvCの位相制御を行うものである。
[Structure of the Invention] As described above, when multiple SYCs are operated for the purpose of suppressing flicker and voltage fluctuations generated from fluctuating loads, the present invention is capable of controlling the conventional multiple thyristor control system as described above. This was done for the purpose of reducing harmonic components generated by the thyristor, and from a different perspective,
When suppressing flicker and voltage fluctuations by SYC operation of multiple units, it is possible to reduce harmonic components by dividing and using multiple units of SvC.
Sv with a capacity that can cope with the flicker and voltage control in C
In the control of the first SYC, the load detection signal is used as it is based on the load detection signal, and in the control of the second SvC, a signal corresponding to the capacity of the first SVC is subtracted from the load detection signal. Based on the biased control signal, the phase of the SvC is controlled based on the biased control signal so that in the next SvC control, the sum of the signals corresponding to each capacitance of the previous SVC is subtracted. It is.

以下図面に示す実施例により本発明を説明する。The present invention will be explained below with reference to embodiments shown in the drawings.

第1図は本発明の実施例を示す。第5図と同一部分は同
一符号を付している。
FIG. 1 shows an embodiment of the invention. The same parts as in FIG. 5 are given the same reference numerals.

電源インピーダンス2を有する電源1に抑制対象となる
系統母線3が接続され、同母線3に接続される変動負荷
4に対応し、設備5VCI、5VC2が接続される。こ
の5m’CIおよび5VC2の制御回路は、それぞれP
T8およびC70より電圧、電流を入力とする無効電力
Q検出器13.23を備え、出力のQ信号はそれぞれパ
ルス位相決定回路14.24に入力し、その出力信号は
ゲートパルス発生回路Is、 25に入力し、該ゲート
パルス発生回路Is、 25よりの出力信号は、それぞ
れ、高インピーダンス変圧器■、21又はリアクトルと
純逆並列接続のサイリスタ12.22の直列接続になる
SVC主回路の点弧極に与えられる。ここまでは第5図
のものと変るところはないが、本例では5VC2の無効
電力Q検出器23とパルス位相決定回路24との間にお
いて、5vC1容量相当の直流バイアスが、バイアス設
定器27から送られ、変動負荷4のQ検出器23の出力
信号から差し引く方にバイアスされる。
A system bus 3 to be suppressed is connected to a power supply 1 having a power supply impedance 2, and equipment 5VCI and 5VC2 are connected corresponding to the variable load 4 connected to the bus 3. The control circuits of this 5m'CI and 5VC2 are P
Equipped with a reactive power Q detector 13.23 that receives voltage and current from T8 and C70, the output Q signals are respectively input to pulse phase determination circuits 14.24, and the output signals are gate pulse generation circuits Is and 25. The output signal from the gate pulse generating circuit Is, 25 is the ignition of the SVC main circuit which is connected in series with the high impedance transformer 2, 21 or the reactor and the thyristor 12, 22 connected in pure anti-parallel. given to the pole. Up to this point, there is no difference from the one in FIG. 5, but in this example, between the 5VC2 reactive power Q detector 23 and the pulse phase determining circuit 24, a DC bias equivalent to a 5VC1 capacity is applied from the bias setting device 27. It is biased to be subtracted from the output signal of the Q detector 23 of the variable load 4.

このバイアス設定器27は5VCI側に接続してもよい
。但しこの場合は5VC2の容量によってバイアス設定
値が定まる。
This bias setting device 27 may be connected to the 5VCI side. However, in this case, the bias setting value is determined by the capacitance of 5VC2.

ここに、上記説明のSVC2台の場合、5VCIと5Y
C2の容量が等しく、2台合計の容量が負荷の最大無効
容量に等しいものとして説明する。
Here, in the case of the two SVCs explained above, 5VCI and 5Y
The description will be made assuming that the capacities of C2 are equal and the total capacity of the two units is equal to the maximum ineffective capacity of the load.

第3図(ム)、(B)、(C)、(D)、(E)、(F
)は動作例を示す。
Figure 3 (Mu), (B), (C), (D), (E), (F
) indicates an example of operation.

(ム)において■は負荷の無効電力変動を示し、SVC
は@の部分を発生するようにSvCを位相制御する。
In (m), ■ indicates the reactive power fluctuation of the load, and SVC
controls the phase of SvC to generate the @ part.

この結果(B)に示すようにSyCより無効電力が発生
するが、従来の制御においては(B)の無効電力を点線
で分けるように2台で発生していた。
As a result, as shown in (B), reactive power is generated from the SyC, but in conventional control, the reactive power in (B) was generated by two units as shown by the dotted line.

(C)は5vciのQ制御信号(パルス位相決定回路1
4の入力信号)である。5YCIはこの信号を基に斜線
Oの無効電力を発生するように制御する。
(C) is a 5vci Q control signal (pulse phase determination circuit 1
4 input signal). 5YCI controls to generate the reactive power indicated by the oblique line O based on this signal.

この結果は(D)に示される。The results are shown in (D).

(E)は5YC2のQ制御信号であるが、前記に説明の
ようにsvc tの容量に相当する信号をバイアスする
ため、このような信号がパルス位相決定回路24に入力
される。5YC2はこのため(E)の■に示す無効電力
を発生するように位相制御され、この結果、(F)の無
効電力を発生する。
(E) is a Q control signal of 5YC2, and in order to bias the signal corresponding to the capacitance of svct as described above, such a signal is input to the pulse phase determining circuit 24. Therefore, the phase of 5YC2 is controlled so as to generate the reactive power shown in (E) (■), and as a result, the reactive power shown in (F) is generated.

5VCI(7)無効電力(D)と5VC2ノ無効電力(
F)(0合或は従来のSvCの無効電力(B)と全く同
じで、従って無効電力補償、すなわち、フリッカ−抑制
効果については従来と変らない。
5VCI (7) reactive power (D) and 5VC2 reactive power (
F) (0 or exactly the same as the reactive power (B) of the conventional SvC, so the reactive power compensation, that is, the flicker suppression effect, is the same as the conventional one.

しかし、高調波発生の面から考察すると、例えは、第4
図(A)、(B)に示すようにSvC全容量の50%の
点[第3図(B)の(1)および同(D)、(F)の(
目)+(1目)を電流波形にしたものの略図コでみると
、従来例では、点弧角βを大きくしなければ、SVC容
量を絞ることができないが、本例によればSVC1は電
流が零、5VC2がβ=小で点弧することになる。βは
小はど基本波電流に近く、従って高調波を少なくするこ
とができる。
However, when considered from the perspective of harmonic generation, the fourth
As shown in Figures (A) and (B), the point at 50% of the total SvC capacity [(1) in Figure 3 (B) and (D) and (F) (
Looking at the schematic diagram of the current waveform of (eye) + (eye 1), in the conventional example, the SVC capacity cannot be reduced unless the firing angle β is increased, but in this example, the SVC1 has a current waveform of is zero, and 5VC2 is fired when β=small. β is close to the small fundamental wave current, so harmonics can be reduced.

フル電流のβをβ=34°とすると50%電流点では第
3高調波では従来の約70%に、第5高調波では約25
%、第7高調波では約60%に低減することができる。
If β of full current is β = 34°, at the 50% current point, the third harmonic is approximately 70% of the conventional value, and the fifth harmonic is approximately 25% of the conventional value.
%, and can be reduced to about 60% for the seventh harmonic.

第2図の実施例は3台のSVCによる制御を示すが、こ
のため一系列のQ検出器33、パルス位相決定回路34
、ゲートパルス発生回路35が高インピーダンス変圧器
31および純逆並列接続サイリスタ33よりなる5YC
3の主回路に対して用意され、Q検出器33とパルス位
相決定回路34に接続されるバイアス設定器37には5
VCI +’5VC2容量相当の直流バイアスが設定さ
れる。
The embodiment shown in FIG. 2 shows control by three SVCs; therefore, one series of Q detectors 33, pulse phase determining circuit 34,
, a 5YC in which the gate pulse generation circuit 35 consists of a high impedance transformer 31 and a pure anti-parallel connected thyristor 33.
The bias setting device 37 is prepared for the main circuit of No. 3 and connected to the Q detector 33 and the pulse phase determining circuit 34.
A DC bias equivalent to VCI +'5 VC2 capacity is set.

変動負荷よりのQ信号がない状態で、5VCI。5VCI without Q signal from fluctuating load.

5VC2,5VC3は許容される最大容量で運転され、
Q信号の増大とともにsvc +のみサイリスタの位相
制御が行われ、更にQ信号が増大したとき、5YCIは
休止し、 5YC2のみサイリスタの位相制御が行われ
、更にQ信号が増大したとき、5YCI、 5YC2は
休止し、5VC3のみサイリスタの位相側のが行われる
5VC2 and 5VC3 are operated at the maximum allowable capacity,
As the Q signal increases, thyristor phase control is performed only on svc+, and when the Q signal further increases, 5YCI is paused, and thyristor phase control is performed only on 5YC2, and when the Q signal further increases, 5YCI, 5YC2 is stopped, and only 5VC3 is operated on the phase side of the thyristor.

コノ間に5yct、 5YC2,5ycsノ運転状況を
みると、Q信号の変化によっである時点で変動位相制御
されるsycは5YCI −5YC3のいずれか−っで
あり、これを除< SVCはフル状態もしくは休止の状
態にある。従ってこの状態が常時維持されるので高調波
発生は装置全体として低減される。
Looking at the operating conditions of 5yct, 5YC2, and 5ycs between the two, the syc whose variable phase is controlled at a certain point by a change in the Q signal is either 5YCI - 5YC3, and excluding this < SVC is full state or in a state of rest. Therefore, since this state is always maintained, harmonic generation is reduced in the entire device.

[発明の効果] 以上説明のように、本発明の制御方式によれば、SVC
を複数台運転してフリッカ−制御は従来とかわらないが
、sycより発生する高調波を低減することができる。
[Effects of the Invention] As explained above, according to the control method of the present invention, the SVC
Flicker control is the same as before by operating multiple units, but harmonics generated by SYC can be reduced.

【図面の簡単な説明】 第1図、第2図は本発明の実施例を示す。 第3図(A)〜(F)は第1図装置の動作説明図を示す
。 第4図(A)は第3図(B)の(1)点におけるSVC
電流波形を示し、同(B)は第3図(D)の01)点お
よび(F)の(目1)点におけるSVC電流波形を示す
。 第5図は、従来の複数台による無効電力補償装置の制御
説明図を示す。 3・・・系統母線、4川変動負荷、10,20.30・
・・5VC1,2,3,11、21、31・・・高イン
ピーダンス変圧器、11.21.31・・・純逆並列接
続のサイリスタ、13,23.33・・・無効電力Q検
出器、14,24.34・・・パルス位相決定回路、I
s、25.35・・・パルス発生回路、18.28,3
18・・・サイリスタケートパルス、27.37・・・
バイアス設定器。 SVに 2 審 図 :3V%;を 畜 図
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 show embodiments of the present invention. 3(A) to 3(F) show diagrams for explaining the operation of the apparatus shown in FIG. 1. Figure 4 (A) shows the SVC at point (1) in Figure 3 (B).
3B shows the SVC current waveform at point 01) in FIG. 3D and point 1 in FIG. 3F. FIG. 5 shows a control explanatory diagram of a conventional reactive power compensator using a plurality of units. 3...System bus, 4 river fluctuating load, 10, 20.30.
...5VC1,2,3,11,21,31...High impedance transformer, 11.21.31...Thyristor with pure anti-parallel connection, 13,23.33...Reactive power Q detector, 14,24.34...Pulse phase determining circuit, I
s, 25.35...Pulse generation circuit, 18.28,3
18... Thyristacate pulse, 27.37...
Bias setting device. To SV 2 Juicuzu: 3V%;

Claims (1)

【特許請求の範囲】[Claims] (1)フリッカーや電圧変動抑制を目的として運転され
る無効電力補償装置を複数台で構成し、第1の無効電力
補償装置では変動負荷よりの無効電力検出信号をそのま
ま基に、当該装置のサイリスタの位相制御に使用し、第
2の無効電力補償装置では前記無効電力検出信号から前
記第1の無効電力補償装置の容量に相当する信号を差し
引くようにバイアスされた制御信号を当該装置のサイリ
スタの位相制御に使用し、更に、順に次にある無効電力
補償装置ではさきにある無効電力補償装置の各容量に相
当する信号の合算値信号を差し引くようにバイアスされ
た制御信号を当該装置のサイリスタを位相制御する方法
で自設備(SVC)より発生する高調波を低減すること
を特徴とする無効電力補償装置の制御方式。
(1) A plurality of reactive power compensators are configured to operate for the purpose of suppressing flicker and voltage fluctuations. The second reactive power compensator outputs a biased control signal so as to subtract a signal corresponding to the capacity of the first reactive power compensator from the reactive power detection signal to the thyristor of the second reactive power compensator. It is used for phase control, and furthermore, in the next reactive power compensator, a biased control signal is sent to the thyristor of the device so as to subtract the sum signal of the signals corresponding to the capacities of the previous reactive power compensator. A control method for a reactive power compensator characterized by reducing harmonics generated from its own equipment (SVC) using a phase control method.
JP33556388A 1988-12-28 1988-12-28 Control system for reactive power compensator Pending JPH02178715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33556388A JPH02178715A (en) 1988-12-28 1988-12-28 Control system for reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33556388A JPH02178715A (en) 1988-12-28 1988-12-28 Control system for reactive power compensator

Publications (1)

Publication Number Publication Date
JPH02178715A true JPH02178715A (en) 1990-07-11

Family

ID=18289980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33556388A Pending JPH02178715A (en) 1988-12-28 1988-12-28 Control system for reactive power compensator

Country Status (1)

Country Link
JP (1) JPH02178715A (en)

Similar Documents

Publication Publication Date Title
CA2057717C (en) Parallel inverter system
JPH04299027A (en) Inverter device
US4903184A (en) Reactive power controller
US5182463A (en) 3-Phase converter apparatus
US4234842A (en) Voltage regulator and flicker compensator
JPH06233464A (en) Apparatus for suppressing voltage fluctuations and harmonics
JP3343711B2 (en) Static var compensator
JPH02178715A (en) Control system for reactive power compensator
JPH0698469A (en) Control system of voltage detection-type reactive-power compensation apparatus
JPH0625951B2 (en) Reactive power compensator
JPH0731301Y2 (en) Controller for reactive power compensator
JPH03222016A (en) Control system for reactive power compensator
JP2000152504A (en) Reactive power compensating device
JPH07160346A (en) Stationary reactive power compensator
JPH0642183B2 (en) Coordinated operation control system of reactive power compensator
JPH0687631B2 (en) Control Method of Active Filter in Reactive Power Compensation System
JPS61264416A (en) Control system for reactive power compensating device
JPH04344128A (en) Unbalance compensator
JPS6086616A (en) Control method of reactive power compensating device
JPS6043720A (en) Static reactive power compensating device
JPH07104740B2 (en) Controller for reactive power compensator
JPS6367612A (en) Reactive power compensator
JPH02134574A (en) Ac voltage detector
JPS6295618A (en) Reactive power compensating device
JPS6265115A (en) Compensating device for reactive power