JPH0217697A - Manufacture of high-density printed circuit board - Google Patents

Manufacture of high-density printed circuit board

Info

Publication number
JPH0217697A
JPH0217697A JP16845488A JP16845488A JPH0217697A JP H0217697 A JPH0217697 A JP H0217697A JP 16845488 A JP16845488 A JP 16845488A JP 16845488 A JP16845488 A JP 16845488A JP H0217697 A JPH0217697 A JP H0217697A
Authority
JP
Japan
Prior art keywords
resist
electroless copper
copper plating
printed circuit
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16845488A
Other languages
Japanese (ja)
Other versions
JPH0561795B2 (en
Inventor
Shigeru Kubota
繁 久保田
Norimoto Moriwaki
森脇 紀元
Shohei Eto
江藤 昌平
Isao Kobayashi
功 小林
Hiroshi Hishiki
菱木 宏
Yuichi Ikeda
裕一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16845488A priority Critical patent/JPH0217697A/en
Publication of JPH0217697A publication Critical patent/JPH0217697A/en
Publication of JPH0561795B2 publication Critical patent/JPH0561795B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/428Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in substrates having a metal pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemically Coating (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PURPOSE:To manufacture a high-density printed circuit board extremely easily by using a photo-resist having resistance against an electroless copper plating solution as a masking resist at the time of electroless copper plating. CONSTITUTION:A high-density printed circuit board is manufactured through the following six processes. A through-hole is bored to a copper-clad laminated board 1. Activation treatment for electroless copper plating is executed. Circuit patterns 4 are formed by employing an etching resist. The etching resist is removed, and a photo-resist 5 having resistance against an electroless copper plating solution is mounted. The photo-resist 5 is exposed and developed and a resist pattern 6 is shaped. The internal surface of the through-hole 2 is electroless copper-plated in specified thickness, thus forming a plating layer 7. The photo-resist 5 mainly comprises three kinds of 10-60 pts. polyurethane polyacrylate, 5-45 pts. bisphenol type epoxy acrylate and a 20-60 pts. linear polymer compound and has excellent alkali resistance. The density of small- diameter through-holes and wirings among pins can be increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高密度プリント回路板の製造方法、特にス
ルーホールの内面のみに選択的にめっきを行う工程を有
する同回路板の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a high-density printed circuit board, and particularly to a method for manufacturing the same circuit board that includes a step of selectively plating only the inner surfaces of through holes. It is something.

〔従来の技術〕[Conventional technology]

多層基板のスルーホールの内面に銅めっきを施す場合、
従来は、孔あけした銅張積層板にめっき核処理を施し、
薄く無電解銅めっきを行って電気的な導通を得た後、電
気めっきによって所望の厚さのめっきを行う方法がとら
れてきた。
When applying copper plating to the inner surface of the through-hole of a multilayer board,
Conventionally, plating core treatment was applied to perforated copper-clad laminates.
A method has been used in which electroless copper plating is performed thinly to obtain electrical continuity, and then plating is performed to a desired thickness by electroplating.

この方法では、実装密度が増すに伴いスルーホール径が
小さくなり、また積層数が増して板厚が厚くなると、電
気めっきの厚さが、スルーホールの開口部付近で厚く、
奥になるにつれて薄くなるという問題があった。しかし
、この問題は無電解銅めっきの採用によって解決できた
In this method, as the mounting density increases, the through-hole diameter becomes smaller, and as the number of laminated layers increases and the plate thickness increases, the electroplating becomes thicker near the opening of the through-hole.
The problem was that it became thinner as it went deeper. However, this problem could be solved by using electroless copper plating.

ところが、この無電解銅めっきによれば、スルーホール
内面に析出した分と同じ厚さの銅が表面にも析出するた
め、回路パターン形成のためのエツチング量が増えて、
エツチングに時間を要するだけでなく、サイドエツチン
グやアンダーカットによってパターン精度が低下するこ
とがあった。
However, with this electroless copper plating, the same thickness of copper deposited on the inner surface of the through hole is deposited on the surface, which increases the amount of etching required to form a circuit pattern.
Not only does etching take time, but pattern accuracy may be reduced due to side etching or undercuts.

このため、無電解銅めっきは、高密度プリント回銘板の
製造には不向であった。
For this reason, electroless copper plating is not suitable for manufacturing high-density printed nameplates.

そこで、こうした問題を解決するために、いくつかの提
案がなされている。
Therefore, several proposals have been made to solve these problems.

たとえば、特開昭48−8063号公報には、スルーホ
ールをあけてからパターンエツチングを行い、その後め
っき核処理を施し、ついで耐めっきソルダーレジストを
塗布して無電解めっきを行う方法が提案されている。
For example, Japanese Patent Application Laid-open No. 48-8063 proposes a method in which pattern etching is performed after making through holes, followed by plating nucleation treatment, and then applying a plating-resistant solder resist to perform electroless plating. There is.

また、特開昭48−8062号公報には、孔あけした銅
張積層板に、めっき核処理を施してからパターンエツチ
ングを行い、ついで耐めっきソルダーレジストを塗布し
た後、無電解銅めっきを行う方法が提案されている。
Furthermore, Japanese Patent Application Laid-Open No. 48-8062 discloses that a perforated copper-clad laminate is subjected to plating nucleation treatment, pattern etching is then applied, a plating-resistant solder resist is applied, and then electroless copper plating is performed. A method is proposed.

さらに、特開昭61−70790号公報には、孔あけし
た銅張積層板に、めっき核処理を施し、無電解銅めっき
をスルーホール内の所望厚さよりも薄く施し、パターン
エツチングを行い、耐めっきソルダーレジストを塗布し
た後、少なくともスルーホールの内面を所望厚さまで無
電解めっきする方法が提案されている。
Furthermore, Japanese Patent Application Laid-open No. 61-70790 discloses that a perforated copper-clad laminate is subjected to plating nucleation treatment, electroless copper plating is applied to a thickness thinner than the desired thickness inside the through-hole, and pattern etching is performed to ensure durability. A method has been proposed in which after applying a plating solder resist, at least the inner surface of the through hole is electrolessly plated to a desired thickness.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、Cれらの提案にも次のような問題がある。 However, these proposals also have the following problems.

すなわち、特開昭48−8063号公報の方法では、銅
配線パターンの精度は高くなるが、基材表面にめっき核
金属粒子が残留するため、マイグレーシツンを生じて回
路パターン間の絶縁性が低下する。
In other words, the method disclosed in JP-A-48-8063 improves the precision of the copper wiring pattern, but since the plating core metal particles remain on the surface of the base material, migration occurs and the insulation between the circuit patterns decreases. do.

また、特開昭48−8062号公報の方法では、種々の
処理工程においてめっき核が脱離したり、その機能が低
下することがある。
Furthermore, in the method disclosed in Japanese Patent Application Laid-Open No. 48-8062, plating nuclei may be detached during various treatment steps, or their functionality may deteriorate.

さらに、特開昭48−8062号公報や特開昭61−7
0790号公報の方法では、ソルダーレジストはインク
として供給されるため、必要部分に無電解銅めっきを行
うときのマスキングは、スクリーン印刷で行われる。と
ころが、このスクリーン印刷の精度には限界がある。こ
のため、この方法では、小径スルーホールやピン間配線
数の増加には対応しきれず、高密度プリント回路板の作
製は困難である。
Furthermore, JP-A-48-8062 and JP-A-61-7
In the method of Publication No. 0790, since the solder resist is supplied as ink, masking when electroless copper plating is performed on necessary portions is performed by screen printing. However, there are limits to the accuracy of this screen printing. Therefore, this method cannot cope with small-diameter through holes and an increase in the number of wires between pins, making it difficult to produce a high-density printed circuit board.

この発明は、このような従来の問題点に着目してなされ
たもので、無電解銅めっきをするときのマスキングレジ
ストとして無電解めっき液に耐性のあるホトレジストを
使用することにより、小径スルーホールや高密度のピン
間配線を有する高密度プリント回路板を容易に製造する
ことができる同回路板の製造方法を提供することを目的
とする。
This invention was made by focusing on these conventional problems, and by using a photoresist that is resistant to electroless plating solution as a masking resist when performing electroless copper plating, small-diameter through holes and It is an object of the present invention to provide a method for manufacturing a high-density printed circuit board that can easily manufacture a high-density printed circuit board having high-density wiring between pins.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る高密度プリント回路板の製造方法は、次
の6エ程を備えたものである。各工程は、それらを模式
的に示した第1〜6図によって説明する。
The method for manufacturing a high-density printed circuit board according to the present invention includes the following six steps. Each step will be explained with reference to FIGS. 1 to 6 which schematically show them.

(1)内層加工を行った銅張積層板lに、第1図のよう
に、スルーホール2をあける工程。
(1) Step of drilling through-holes 2 in the copper-clad laminate l that has been subjected to inner layer processing, as shown in Fig. 1.

(2)スルーホール2をあけた銅張積層板lに、無電解
銅めっきのための活性化処理を施す工程、すなわち、同
積層板1に脱脂、酸化膜除去、粗化などの処理を行った
後、第2図のように、めっき核3(通常パラジウム)を
付与する工程。
(2) A step of applying activation treatment for electroless copper plating to the copper-clad laminate 1 with through holes 2 drilled, that is, the same laminate 1 is subjected to treatments such as degreasing, oxide film removal, and roughening. After that, as shown in FIG. 2, there is a step of applying plating nuclei 3 (usually palladium).

(3)活性化処理をしだ銅張積層板1の表面に、エツチ
ングレジストを用いて、第3図のように、回路パターン
4をエツチングで形成する工程。
(3) A step of forming a circuit pattern 4 on the surface of the activated copper-clad laminate 1 using an etching resist, as shown in FIG. 3.

(4)エツチングレジストを除去してから、第4図のよ
うに、無電解銅めっき液に耐性のあるホトレジスト5を
装着する工程。
(4) After removing the etching resist, as shown in FIG. 4, a step of attaching a photoresist 5 that is resistant to electroless copper plating solution.

(5)写真製版技術を用いてホトレジスト5を露光し、
続いて現像し、第5図のように、レジストパターン6を
形成する工程。
(5) Expose the photoresist 5 using photolithography technology,
This is followed by a step of developing and forming a resist pattern 6 as shown in FIG.

(6)少なくともスルーホール2の内面に、第6図のよ
うに、所定の厚さまで無電解銅めっきを行い、無電解銅
めっき層7(厚さは信頼性の観点から15μm以上)を
形成する工程。
(6) At least on the inner surface of the through hole 2, as shown in FIG. 6, perform electroless copper plating to a predetermined thickness to form an electroless copper plating layer 7 (thickness is 15 μm or more from the viewpoint of reliability). Process.

なお、(4)〜(6)の工程で使用した無電解銅めっき
時のマスキングのためのホトレジスト5は、ソルダーマ
スクとして使用される。
Note that the photoresist 5 used for masking during electroless copper plating used in steps (4) to (6) is used as a solder mask.

この発明で使用する上記ホトレジスト5は、無電解銅め
っき液に耐性を有することが必要である。
The photoresist 5 used in this invention needs to have resistance to electroless copper plating solution.

通常知られているエツチングのためのドライフィルムレ
ジストやソルダーマスク用ポトレジスト等はアルカリ耐
性が不十分であり、この発明での使用は困難である。
Generally known dry film resists for etching, potresists for solder masks, etc. have insufficient alkali resistance and are difficult to use in the present invention.

この発明で使用できるホトレジストとしては、例えば、
次の(a)〜(e)の組成分で構成されるものをあげる
ことができる。すなわち、 (a)  一般式 (式中、には1又は2.lは1又は2.mは1又は2.
P1〜(5−k)は水素原子又はメチル基。
Examples of photoresists that can be used in this invention include:
Examples include those composed of the following components (a) to (e). That is, (a) General formula (wherein is 1 or 2.l is 1 or 2.m is 1 or 2.
P1 to (5-k) are hydrogen atoms or methyl groups.

Qs〜(4−1)ハ水素原子又はメチル基、R,〜(5
−m)は水素原子又はメチル基、nは0〜20の整数を
示す)で示される多価芳香族イソシアネートおよび2価
アルコールの(メタ)アクリル酸モノエステルを反応さ
せてえられ、1分子中に2個以上の(メタ)アクリロイ
ル基及び2個以上のウレタン結合を有するポリウレタン
ポリ(メタ)アクリレ−) 10〜60部。
Qs ~ (4-1) ha hydrogen atom or methyl group, R, ~ (5
- m) is a hydrogen atom or a methyl group, n is an integer of 0 to 20)) and (meth)acrylic acid monoester of dihydric alcohol are reacted, and in one molecule 10 to 60 parts of a polyurethane (poly(meth)acrylate) having two or more (meth)acryloyl groups and two or more urethane bonds.

(b)ビスフェノール型エポキシ(メタ)アクレート5
〜45部と、 (C)線状高分子化合物20〜60部と、(d)光照射
を受けて遊離ラジカルを生成する重合開始剤1〜10部
と、 (e)必要に応じて添加される着色剤、密着性向上剤、
熱重合安定剤、 とで組成され(a) + (b) 十(c)の合計量が
100部であるホトレジストをあげることができる。こ
のフォトレジストは、アルカリ耐性に特に優れており、
この発明の実施を可能にする。
(b) Bisphenol type epoxy (meth)aclate 5
~45 parts, (C) 20 to 60 parts of a linear polymer compound, (d) 1 to 10 parts of a polymerization initiator that generates free radicals upon irradiation with light, and (e) optionally added. colorants, adhesion improvers,
A photoresist may be mentioned which is composed of a thermal polymerization stabilizer, and the total amount of (a) + (b) and (c) is 100 parts. This photoresist has particularly good alkali resistance,
Enables implementation of this invention.

なお、上記ホトレジストについては、同一発明者の同日
出願特願昭第何号(AP841 s 7 )感光性樹脂
組成物および感光性エレメントに詳しく説明している。
The above-mentioned photoresist is described in detail in Japanese Patent Application No. 1987 (AP841 s 7) filed on the same day by the same inventor, Photosensitive Resin Composition and Photosensitive Element.

上記ホトレジストは、液状レジストとして塗布すること
ができるが、液状レジストは、塗布時に、スルーホール
2の内部に入りこむので、現像でこれを完全に除去する
ことは困難である。特に、0.3■以下の小径スルーホ
ール2の場合は不可能である。このため、液状レジスト
として塗布する場合は、穴うめ法によるレジスト塗布な
どのように、煩雑なプロセス工程で処理しなければなら
ない。
The above-mentioned photoresist can be applied as a liquid resist, but since the liquid resist enters the inside of the through hole 2 during application, it is difficult to completely remove it by development. In particular, this is not possible in the case of a small diameter through hole 2 of 0.3 square centimeters or less. Therefore, when applying it as a liquid resist, it must be processed through complicated process steps, such as resist application by a hole-filling method.

したがって、この方法は効率的なプリント回路の製造の
点からみて好ましくない。
Therefore, this method is not preferred from the point of view of efficient printed circuit manufacturing.

しかし、この問題点は、液状レジストをドライ化してフ
ィルムとし、これをラミネートすることで回避すること
ができる。フィルムのラミネートによれば、スルーホー
ル2にレジストが浸入するおそれはないし、現像処理で
完全に除去することもできるからである。
However, this problem can be avoided by drying the liquid resist to form a film and laminating the film. This is because if the film is laminated, there is no fear that the resist will enter the through holes 2, and it can be completely removed by development.

このため、この発明においては、上記組成のホトレジス
トをドライ化した感光性エレメントの状態で使用するの
が好ましい。
Therefore, in the present invention, it is preferable to use the photoresist having the above composition in the form of a dry photosensitive element.

感光性エレメントは、真空ラミネーターを用いて処理す
れば、配線間に空気を巻き込むことはないので、良好な
配線被覆性をもって積層板1に装着することができる。
If the photosensitive element is processed using a vacuum laminator, air will not be trapped between the wires, so that it can be mounted on the laminate 1 with good wire coverage.

〔作用〕[Effect]

この発明においては、無電解銅めっき用レジストとして
、アルカリ耐性の高いホトレジストを使用し、これを写
真製版技術で露光、現像してマスキングのためのパター
ニングを行うので、小径スルーホールやビン間配線の高
密度化が可能になり、したがって、高密度プリント回路
板を容易に作製することができる。
In this invention, a photoresist with high alkali resistance is used as a resist for electroless copper plating, and this is exposed and developed using photolithography technology to perform patterning for masking, so it is possible to create small-diameter through holes and wiring between bins. High densification is possible and therefore high density printed circuit boards can be easily produced.

〔実施例〕〔Example〕

以下、この発明の詳細な説明する。 The present invention will be described in detail below.

実施例1 (1)ポリウレタンポリアクリレートの合成一般式(1
)で示される多価芳香族イソシアネートとして、ミリオ
ネートMR−400(日本ポリウレタン工業(株)製)
 450 gと、2−ヒドロキシエチルアクリレート4
00 gとメチルエチルケトン400gとを24のフラ
スコに入れ、これにオクチル酸亜鉛1.9gを添加して
、60°Cで8時間反応させた。
Example 1 (1) Synthesis of polyurethane polyacrylate General formula (1
) as the polyvalent aromatic isocyanate, Millionate MR-400 (manufactured by Nippon Polyurethane Kogyo Co., Ltd.)
450 g and 2-hydroxyethyl acrylate 4
00 g and 400 g of methyl ethyl ketone were placed in a No. 24 flask, 1.9 g of zinc octylate was added thereto, and the mixture was reacted at 60° C. for 8 hours.

このとき、重合を防止するため、空気を1ml/min
の流量で吹き込みながら反応を行った。NGOの測定を
常法によって行い、0.2以下になった時点を反応の終
了とした。得られたポリウレタンポリアクリレートは7
0重量%の固形部を含んでいた。
At this time, to prevent polymerization, air was added at 1 ml/min.
The reaction was carried out while blowing at a flow rate of . The NGO was measured by a conventional method, and the reaction was terminated when it became 0.2 or less. The obtained polyurethane polyacrylate was 7
It contained 0% solids by weight.

(2)ビスフェノール型エポキシアクリレートの合成 エピコート828(油化シェル社製、エポキシ当量19
0 ) 570g (3当量)およびアクリル酸201
g(28モル)をllのフラスコに入れ、重合禁止剤と
してメトキシフェノール0.77g (0,1重量%)
、ベンジルジメチルアミン3.9g(0,5重量%)を
加えて、90°Cで6時間反応させた。その後、常法に
より酸価を測定し、その値が1以下になったときに終点
とした。
(2) Synthesis of bisphenol-type epoxy acrylate Epicote 828 (manufactured by Yuka Shell Co., Ltd., epoxy equivalent: 19
0 ) 570 g (3 equivalents) and 201 acrylic acid
g (28 mol) into a 1 liter flask, and 0.77 g (0.1% by weight) of methoxyphenol as a polymerization inhibitor.
, 3.9 g (0.5% by weight) of benzyldimethylamine were added, and the mixture was reacted at 90°C for 6 hours. Thereafter, the acid value was measured by a conventional method, and when the value became 1 or less, it was considered as the end point.

(3)感光性エレメントの作製 上記(1)のウレタンアクリレート     40部(
固形部は60%(24部)) 上記(2)のエポキシアクリレート25部メタクリル酸
メチル・メタクリル酸 ブチル・メタクリル酸(重量比: 8o/1s/2共重合物、分子量約15万   40部
2−エチルアントラキノン       4.5 部p
−メトキシフェノール        0.1部メチル
エチルケトン          45部上記組成の感
光性樹脂組成物の溶液を調製した。
(3) Preparation of photosensitive element 40 parts of the urethane acrylate of (1) above (
Solid content: 60% (24 parts)) 25 parts of the epoxy acrylate from (2) above Methyl methacrylate/butyl methacrylate/methacrylic acid (weight ratio: 8o/1s/2 copolymer, molecular weight approximately 150,000 40 parts 2- Ethylanthraquinone 4.5 parts p
-Methoxyphenol 0.1 part Methyl ethyl ketone 45 parts A solution of a photosensitive resin composition having the above composition was prepared.

この樹脂液を厚さ25μmのポリエチレンテレフタレー
トフィルム上に塗布し、室温で20分間、70°Cで1
0分間、100’Cで5分間乾燥し、感光性樹脂組成物
の層の厚さが約70μmの感光性エレメントを得た。
This resin solution was applied onto a polyethylene terephthalate film with a thickness of 25 μm, and then heated at room temperature for 20 minutes and at 70°C for 1 hour.
The photosensitive element was dried at 100'C for 5 minutes to obtain a photosensitive element having a photosensitive resin composition layer thickness of about 70 μm.

(4)プリント回路板の作製 基板の厚さ1.6 口、銅箔厚さ18μmのガラスエポ
キシ銅張積層板に、スルーホールおよび部品孔を形成し
た。ついで、無電解めっき用の触媒処理を行ったのち、
エツチングレジストを施し、配線パターンを形成した。
(4) Preparation of printed circuit board Through holes and component holes were formed in a glass epoxy copper-clad laminate with a substrate thickness of 1.6 mm and a copper foil thickness of 18 μm. Next, after performing catalyst treatment for electroless plating,
Etching resist was applied to form a wiring pattern.

この基板上に上記(3)で得た感光性エレメントを、真
空ラミネータを用いて積層した。積層後、ネガマスクを
用いて露光し、次いで80°Cで10分間加熱したのち
、1,1.1−)リクロロエタンを用いてスプレー現像
を行った(20℃、80秒間)。現像後、80°Cで5
分間乾燥し、高圧水銀灯(s oW/an )を用いて
2..5J/ad照射した。その後、150℃で30分
間加熱処理を行い保護膜を形成した。
The photosensitive element obtained in (3) above was laminated on this substrate using a vacuum laminator. After lamination, it was exposed using a negative mask, then heated at 80°C for 10 minutes, and then spray developed using 1,1.1-)lichloroethane (20°C, 80 seconds). After development, heat at 80°C for 5
Dry for 2 minutes using a high pressure mercury lamp (soW/an). .. It was irradiated with 5 J/ad. Thereafter, heat treatment was performed at 150° C. for 30 minutes to form a protective film.

つぎに、無電解銅めっき浴(pH12,0,80’C)
に基板を16時間浸漬し、厚さ約25μmの銅めっきを
スルーホールおよび部品孔に施した。無電解めっき処理
後、充分水洗を行ったのち、80°Cで10分間乾燥し
、さらに130°Cで60分間加熱処理を行った。
Next, electroless copper plating bath (pH 12,0,80'C)
The substrate was immersed in water for 16 hours, and copper plating with a thickness of about 25 μm was applied to the through holes and component holes. After electroless plating, it was thoroughly washed with water, dried at 80°C for 10 minutes, and further heat-treated at 130°C for 60 minutes.

この一連の無電解めっき処理の間、保護膜の劣化。During this series of electroless plating processes, the protective film deteriorates.

ふくれ、剥離は起こらず、充分な耐性を示した。No blistering or peeling occurred, and sufficient resistance was exhibited.

以上の工程を経て作製したプリント回路板のスルーホー
ルには、良好なめっきが施されていた。
The through holes of the printed circuit board produced through the above steps were plated with good quality.

半田耐熱試験として255〜265°Cの半田浴で10
秒間浸漬したが、めっき膜の剥離は発生しなかった。
10 in a solder bath at 255-265°C as a solder heat resistance test.
Although it was immersed for a second, no peeling of the plating film occurred.

また、ホトレジストも安定であり、クラックの発生およ
び剥離は認められず、半田マスクとして充分用いること
が判明した。
Furthermore, the photoresist was also stable, with no cracking or peeling observed, and it was found that it could be used satisfactorily as a solder mask.

実施例2 (υビスフェノール型エポキシアクリレートの合成 エピコート5050 (油化シェル社製、ブロム化含有
エポキシ樹脂、エポキシ当1390 ) 390g(1
当員)、アクリル酸67g (0,94当jl)および
メチルエチルケトン460gを14のフラスコに入れ、
重合禁止剤としてノナキシフェノール0.45g1イミ
ダゾール22gを加え、実施例1と同様にしてエポキシ
アクリレートを得た。生成物は約50%重量の固形部を
含んでいた。
Example 2 (Synthesis of υ bisphenol type epoxy acrylate Epicoat 5050 (manufactured by Yuka Shell Co., Ltd., brominated epoxy resin, epoxy weight 1390) 390 g (1
), 67 g (0.94 equivalent jl) of acrylic acid and 460 g of methyl ethyl ketone were placed in 14 flasks.
Epoxy acrylate was obtained in the same manner as in Example 1 by adding 0.45 g of nonaxyphenol and 22 g of imidazole as a polymerization inhibitor. The product contained approximately 50% solids by weight.

(2)感光性エレメントの作製 実施例1のウレタンアクリレート   66部(固形部
は40部) 上記(1)のエポキシアクリレート     30部(
固形部は15部) メタクリル酸メチル・アクリル酸メチルの共重合体(重
翫比1/20.分子量約15万)40部2−エチルアン
トラキノン       5部I)−メトキシフェノー
ル        0.1部フタロシアニングリーン 
      O−4部ベンゾトリアゾール      
   0.1部メチルエチルケトン         
 40部上記組成の感光性樹脂組成物の溶液を調製した
(2) Preparation of photosensitive element Urethane acrylate of Example 1: 66 parts (solid part: 40 parts) Epoxy acrylate of (1) above: 30 parts (
Solid portion: 15 parts) Copolymer of methyl methacrylate and methyl acrylate (heavy weight ratio 1/20, molecular weight approximately 150,000) 40 parts 2-ethylanthraquinone 5 parts I)-methoxyphenol 0.1 part Phthalocyanine green
O-4-part benzotriazole
0.1 part methyl ethyl ketone
A solution of 40 parts of the photosensitive resin composition having the above composition was prepared.

この樹脂液を厚さ25μmのポリエチレンテレフタレー
トフィルム上に塗布し、室温で20分間、70Cで10
分間、100°Cで5分間乾燥し、感光性樹脂組成物の
層の厚さが約70μmの感光性エレメントを得た。
This resin liquid was applied onto a polyethylene terephthalate film with a thickness of 25 μm, and then heated at 70C for 20 minutes at room temperature.
The photosensitive element was dried at 100° C. for 5 minutes to obtain a photosensitive element having a photosensitive resin composition layer thickness of about 70 μm.

(3)プリント回路板の作製 実施例1と同様の基板を用いて、同様の工程を経て、プ
リント回路板を作製した。仁の一連の無電解めっき処理
の間、保護膜の劣化、ふくれ、剥離は起こらず、充分な
耐性を示した。
(3) Preparation of printed circuit board A printed circuit board was prepared using the same substrate as in Example 1 and through the same steps. During a series of electroless plating treatments, the protective film did not deteriorate, blister, or peel off, and showed sufficient resistance.

以上の工程を経て作製したプリント回路板のスルーホー
ルには、良好なめっきが施されていた。
The through holes of the printed circuit board produced through the above steps were plated with good quality.

半田耐熱試験として255〜265°Cの半田浴で10
秒間浸漬したが、めっき膜の剥離は発生しなかった。
10 in a solder bath at 255-265°C as a solder heat resistance test.
Although it was immersed for a second, no peeling of the plating film occurred.

また、ホトレジストも安定であり、クラックの発生およ
び剥離は認められず、半田マスクとして充分用いうろこ
とが判明した。
The photoresist was also stable, with no cracking or peeling observed, and it was found to be suitable for use as a solder mask.

比較例 基板の厚さ1.6鵬*銅箔厚さ18μmのガラスエポキ
シ銅張積層板に、スルーホールおよび部品孔を形成し、
無電解銅めっき用の触媒処理を行ったのち、常法に従い
配線パターンを形成した。
Through-holes and component holes were formed in a glass epoxy copper-clad laminate with a comparative example board thickness of 1.6 μm * copper foil thickness of 18 μm,
After performing a catalyst treatment for electroless copper plating, a wiring pattern was formed according to a conventional method.

得られた基板に、溶媒現像型のエツチング用ドライフィ
ルムを、真空ラミネータを用いて積JfA L、常法で
マスキングパターンを作製した。その後、実施例1と同
様−こ、高圧水銀炉の照射、加熱処理を行い、無電解銅
めっきを行った。
A masking pattern was formed on the obtained substrate using a solvent-developed dry film for etching using a vacuum laminator to a thickness of JfAL in a conventional manner. Thereafter, in the same manner as in Example 1, irradiation with a high-pressure mercury furnace and heat treatment were performed to perform electroless copper plating.

・1〜6時間後、基板をひき上げて銅の析出性を調べた
が、銅の析出は良好であったが、マスキングの保護膜は
白化した。さらに、無電解銅めっきを続行したところ、
保護膜の剥離、めっき液のもぐり込み等が発生した。こ
のことから、エツチング用のホトレジストは、この発明
には適用できないことが明らかとなった。
- After 1 to 6 hours, the substrate was pulled up and the copper precipitation was examined, and although the copper precipitation was good, the masking protective film turned white. Furthermore, when electroless copper plating was continued,
Peeling of the protective film and penetration of the plating solution occurred. From this, it has become clear that photoresists for etching cannot be applied to this invention.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によオtば、無電解銅めっきを
Tるときのマスキングレジストとして、□無r!を鋳銅
めっき液に耐性のあるホトレジストを使用するので、小
径スルーホールや高密度のピン間配線を有する高密度プ
リント回路板を極めて容易に製造することができる。
As described above, according to the present invention, □Free! can be used as a masking resist when performing electroless copper plating. Since a photoresist that is resistant to cast copper plating solution is used, high-density printed circuit boards with small-diameter through holes and high-density wiring between pins can be manufactured extremely easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は、この発明による高密度プリント回路
板の製造方法を工程順に示す断面図である。 図において、lは銅張積層板、2はスルーホール、3は
めっき核、4は回路パターン、5はホトレジスト、6は
レジストパターン、7は無電解銅めっき層を示す。
1 to 6 are cross-sectional views showing the method of manufacturing a high-density printed circuit board according to the present invention in order of steps. In the figure, 1 is a copper-clad laminate, 2 is a through hole, 3 is a plating core, 4 is a circuit pattern, 5 is a photoresist, 6 is a resist pattern, and 7 is an electroless copper plating layer.

Claims (1)

【特許請求の範囲】[Claims] 銅張積層板にスルーホールを形成する工程と、その積層
板に無電解銅めっきのための活性化処理を施す工程と、
その積層板の表面にエッチングにより回路パターンを形
成する工程と、その積層板に無電解銅めっき液に耐性の
あるホトレジストを装着する工程と、その積層板に写真
製版技術を用いてレジストパターンを形成する工程と、
その積層板の少なくともスルーホールの内面に、無電解
銅めっきを施して所定の厚さの無電解銅めっき層を形成
する工程とを有する高密度プリント回路板の製造方法。
a step of forming a through hole in a copper-clad laminate, a step of subjecting the laminate to activation treatment for electroless copper plating,
A process of forming a circuit pattern on the surface of the laminate by etching, a process of attaching a photoresist that is resistant to electroless copper plating solution to the laminate, and a process of forming a resist pattern on the laminate using photolithography. The process of
A method for manufacturing a high-density printed circuit board, comprising the step of applying electroless copper plating to at least the inner surface of the through hole of the laminate to form an electroless copper plating layer of a predetermined thickness.
JP16845488A 1988-07-05 1988-07-05 Manufacture of high-density printed circuit board Granted JPH0217697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16845488A JPH0217697A (en) 1988-07-05 1988-07-05 Manufacture of high-density printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16845488A JPH0217697A (en) 1988-07-05 1988-07-05 Manufacture of high-density printed circuit board

Publications (2)

Publication Number Publication Date
JPH0217697A true JPH0217697A (en) 1990-01-22
JPH0561795B2 JPH0561795B2 (en) 1993-09-07

Family

ID=15868408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16845488A Granted JPH0217697A (en) 1988-07-05 1988-07-05 Manufacture of high-density printed circuit board

Country Status (1)

Country Link
JP (1) JPH0217697A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936246A (en) * 1975-12-19 1984-02-28 バイエル・アクチエンゲゼルシヤフト Resin composition
JPS59125726A (en) * 1983-01-06 1984-07-20 Mitsubishi Rayon Co Ltd Photopolymerizable resin composition
JPS62295487A (en) * 1986-06-16 1987-12-22 株式会社日立製作所 Manufacture of printed circuit board
JPS6392089A (en) * 1986-10-06 1988-04-22 イビデン株式会社 Printed wiring board and manufacture of the same
JPS6481299A (en) * 1987-09-22 1989-03-27 Hitachi Ltd Manufacture of surface-mounting printed circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936246A (en) * 1975-12-19 1984-02-28 バイエル・アクチエンゲゼルシヤフト Resin composition
JPS59125726A (en) * 1983-01-06 1984-07-20 Mitsubishi Rayon Co Ltd Photopolymerizable resin composition
JPS62295487A (en) * 1986-06-16 1987-12-22 株式会社日立製作所 Manufacture of printed circuit board
JPS6392089A (en) * 1986-10-06 1988-04-22 イビデン株式会社 Printed wiring board and manufacture of the same
JPS6481299A (en) * 1987-09-22 1989-03-27 Hitachi Ltd Manufacture of surface-mounting printed circuit board

Also Published As

Publication number Publication date
JPH0561795B2 (en) 1993-09-07

Similar Documents

Publication Publication Date Title
EP0428870B1 (en) Photosensitive resin composition for forming conductor patterns and multilayer circuit boards using same
WO2005120142A1 (en) Multilayer wiring board and method for manufacturing the same
TWI496521B (en) Printed wiring board and manufacturing method thereof
JPH09298362A (en) Manufacture of build-up multilayer printed-circuit board
EP0735809A2 (en) Photodefinable dielectric composition useful in the manufacture of printed circuits
EP0947124B1 (en) A method for adding layers to a pwb which yields high levels of copper to dielectric adhesion
JPH07106767A (en) Multilayered wiring board and its manufacture
TW200407057A (en) Method for the manufacture of printed circuit boards with integral plated resistors
KR900003848B1 (en) Manufacture of printed wiring board
JPH09331140A (en) Manufacture of printed-wiring board
JPH05198909A (en) High density printed board and manufacture thereof
TW202218492A (en) Method for producing wiring board, and wiring board
KR100199539B1 (en) A fabrication method of multi-layer pcb
JPH06260763A (en) Manufacture of multilayer wiring board
JPH0217697A (en) Manufacture of high-density printed circuit board
JP3637613B2 (en) Manufacturing method of multilayer wiring board
JP3593351B2 (en) Method for manufacturing multilayer wiring board
JP4759883B2 (en) Insulating resin composition and method for producing multilayer wiring board using the same
JPH0217698A (en) Manufacture of high-density printed circuit board
JP3773567B2 (en) Method for manufacturing printed wiring board
JPS5817696A (en) Method of producing multilayer printed circuit board
KR20230022669A (en) Method for manufacturing insulating film, insulating film, method for manufacturing multilayered printed circuit board and multilayered printed circuit board
JPH03278591A (en) Manufacture of high density printed circuit board
KR20170050913A (en) Method for manufacturing insulating film and multilayered printed circuit board
JPH02251197A (en) Manufacture of high-density printed circuit board

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 15

EXPY Cancellation because of completion of term