JPH02176599A - Ultrasonic working method for nuclear reactor fuel - Google Patents

Ultrasonic working method for nuclear reactor fuel

Info

Publication number
JPH02176599A
JPH02176599A JP63330815A JP33081588A JPH02176599A JP H02176599 A JPH02176599 A JP H02176599A JP 63330815 A JP63330815 A JP 63330815A JP 33081588 A JP33081588 A JP 33081588A JP H02176599 A JPH02176599 A JP H02176599A
Authority
JP
Japan
Prior art keywords
drill
fuel
ultrasonic
tip
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63330815A
Other languages
Japanese (ja)
Other versions
JPH0646233B2 (en
Inventor
Shunichi Yuzuhara
柚原 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP63330815A priority Critical patent/JPH0646233B2/en
Publication of JPH02176599A publication Critical patent/JPH02176599A/en
Publication of JPH0646233B2 publication Critical patent/JPH0646233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE:To prevent a work from deteriorating when worked by performing dry working of fuel in an atmosphere of high-purity inert gas of <=200wt.ppm moisture and oxygen concentration or gaseous nitrogen. CONSTITUTION:An ultrasonic working device is equipped with an ultrasonic vibration drill working device main body 11, a vibrator cooling device 12, and a worked fuel dust collecting device 13. This working device is installed in a cell 14 wherein the atmosphere of high-purity inert gas of <=200wt.ppm. water and oxygen concentration or gaseous nitrogen is produced. The fuel is dry- worked by the working device which has a drill 25 with a carbide tip mounted atop of an ultrasonic longitudinal vibration horn tool 24 with a low drill tip wear extent without any drill defective so that a drill blade edge pressing load does not become excessive.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原子炉燃料ベレットの穴開けあるいは切削加
工等を乾式で効率よ〈実施できる超音波加工方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ultrasonic machining method that allows drilling, cutting, etc. of nuclear reactor fuel pellets to be carried out dryly and efficiently.

本発明は例えば、 ■原子炉燃料の中空加工、 ■燃料ピン(細径被覆管と内蔵される固体燃料との構成
物)に熱電対、5iC4度モニタ、中性子照射量測定用
ワイヤ・モニタ等の各種センサを装着するための燃料深
穴加工、 ■使用済原子炉燃料のうち特に畜燃焼度のため被覆管内
面、で焼き付き高硬度状態にある燃料の長尺被覆管から
の採取、完全除去、及び回収のための切削加工、 等で有用な方法である。
The present invention includes, for example, ■ hollow processing of nuclear reactor fuel, ■ thermocouples, 5iC 4 degree monitors, wire monitors for neutron irradiation measurement, etc. on fuel pins (composition of small-diameter cladding tubes and built-in solid fuel). Processing of deep holes in the fuel to install various sensors; Collection and complete removal of spent nuclear fuel from long cladding tubes, which have been burned and hardened on the inside of the cladding tubes due to their extremely high burn-up; This is a useful method for processing and cutting for recovery.

[従来の技術] 使用前あるいは使用済の固体状原子炉燃料の穴開け、切
削、除去等には、単なる湿式の旋盤ドリル加工装置、ま
たは湿式で且つ研磨材を使用する超音波振動ドリル加工
装置が使用されている。
[Prior art] For drilling, cutting, removing, etc. of solid reactor fuel before use or spent, a simple wet-type lathe drilling device or a wet-type ultrasonic vibration drilling device that uses an abrasive material is used. is used.

[発明が解決しようとする課題] しかし従来の湿式の加工方法では、加工燃料から冷却用
オイルや研磨材としての砥扮を分離するための処理が必
要なこと、核分裂生成物と冷却材水分との反応生成物に
より被覆管の腐食が生じること、加工燃料粉を含む放射
性廃!IL物量が増加すること、燃料回収率が低いこと
等の問題があった。
[Problems to be solved by the invention] However, in the conventional wet processing method, processing is necessary to separate cooling oil and abrasive grains from the processing fuel, and fission products and coolant moisture are separated. Corrosion of the cladding occurs due to reaction products of radioactive waste including processed fuel powder! There were problems such as an increase in the amount of IL and a low fuel recovery rate.

このような問題は湿式加工法に起因するため、従来の装
置をそのまま乾式加工に用いることが考えられるが、以
下のような問題が生じ実用化に至っていない。
Since such problems are caused by the wet processing method, it is conceivable to use conventional equipment as is for dry processing, but the following problems have occurred and this has not been put to practical use.

■従来技術では、工具先端での燃料加工部で発生する熱
量が制御されないため、加工部が高温になり易く、ドリ
ル刃先の軟化変形と切削不能が生じる。
■With conventional technology, the amount of heat generated in the fuel machining section at the tip of the tool is not controlled, so the machining section tends to reach high temperatures, causing softening and deformation of the drill cutting edge and the inability to cut.

■従来の超音波WX動ドリル加工装置の場合には、上記
の問題に加えて、研磨材を使用しないとドリル刃先の摩
耗域…がより著しくなる問題もある。
In the case of conventional ultrasonic WX dynamic drilling equipment, in addition to the above-mentioned problems, there is also the problem that if an abrasive is not used, the wear area of the drill cutting edge becomes more significant.

■これらの加工装置ではドリル刃先が摩耗あるいは変形
すると、加工部での刃先の片当たりによるドリル欠i貝
が生じ易い。
- In these processing devices, if the drill cutting edge becomes worn or deformed, the cutting edge tends to hit unevenly in the processing area, causing drill chipping.

従って従来技術をそのまま乾式加工に適用したのでは、
何れにしてもドリル刃先の交換頻度が高くなるため実用
的なものにはならない。
Therefore, if the conventional technology was applied directly to dry processing,
In any case, the drill tip will have to be replaced more frequently, making it impractical.

ところで使用済原子炉燃料ビンにおいて、被覆管から固
体燃料を除去する目的に対しては、燃料のみに一方向の
押出力を加えて燃料を除去する技術がある。低燃焼度燃
料の場合はこのような単純な押出式燃料除去方法によっ
て燃料の除去が可能であるが、高燃焼度燃料の場合には
燃料と被覆管が固着してしまい、その固着力が強いため
単純な常温での押出式加工では被覆管をtX傷させるこ
となく燃料を取り出すことば困難である。
By the way, for the purpose of removing solid fuel from the cladding tube in a spent nuclear reactor fuel bin, there is a technique of applying a unidirectional pushing force only to the fuel to remove the fuel. In the case of low-burnup fuel, fuel can be removed by such a simple extrusion fuel removal method, but in the case of high-burnup fuel, the fuel and cladding stick together, and the sticking force is strong. Therefore, it is difficult to extract the fuel without damaging the cladding tube using simple extrusion processing at room temperature.

本発明の目的は、上記のような技術的課題を解決するこ
とにある。即ち、ピンカース硬さで800以上の高硬度
状態にある燃料ベレットを内蔵する原子炉燃料の任意径
と長さのベレットの深穴加工、燃料付き被覆管からの燃
料の採取、除去、及び回収のための切削加工等を、被加
工材の健全性を維持しながら乾式で且つ研磨材を使用す
ることなく99%以上の燃料回収率で行うことを可能と
する原子炉燃料の超音波加工方法を提供することである
An object of the present invention is to solve the above technical problems. In other words, it is possible to drill deep holes into pellets of arbitrary diameter and length for reactor fuel containing fuel pellets with a high hardness of 800 or higher on the Pinkers hardness, and to extract, remove, and recover fuel from fuel-containing cladding tubes. We have developed an ultrasonic processing method for nuclear reactor fuel that allows cutting, etc., to be carried out dryly and without the use of abrasives, with a fuel recovery rate of 99% or more, while maintaining the integrity of the processed material. It is to provide.

[課題を解決するための手段] 上記のような技術的課題を解決できる本発明は、水分及
び酸素濃度がそれぞれ200重it ppm以下の高純
度の不活性ガスもしくは窒素ガス雰囲気中、または水分
及び酸素分圧がそれぞれ20Pa以下の真空中において
、超音波縦振動ホーンツールの先端に超硬チップ付きド
リル、あるいは先端を超硬処理したドリルを装着した超
音波加工装置により、ドリル先端摩耗度が低く、ドリル
欠を員が無く、且つドリル刃先押し当て荷重が過大にな
らない状態で燃料を乾式加工する原子炉燃料の超音波加
工方法である。
[Means for Solving the Problems] The present invention, which can solve the above-mentioned technical problems, can be carried out in a high-purity inert gas or nitrogen gas atmosphere with moisture and oxygen concentrations of 200 wt ppm or less, or in an atmosphere of moisture and oxygen. In a vacuum with an oxygen partial pressure of 20 Pa or less, an ultrasonic machining device equipped with a drill with a carbide tip or a drill with a carbide-treated tip on the tip of an ultrasonic longitudinal vibration horn tool can reduce wear on the drill tip. This is an ultrasonic processing method for nuclear reactor fuel in which the fuel is dry-processed in a state where there is no drill missing and the load applied to the drill tip does not become excessive.

ここで超音波加工装置は、セル(高放射性物質を取り扱
うために試験機器本体を収容する遮蔽壁で囲まれた区画
)内等に設置される。加工はドリルの先端摩耗度が60
%以下、より好ましくは40%以下である状態で行う。
Here, the ultrasonic processing device is installed in a cell (a compartment surrounded by a shielding wall that houses a test equipment body for handling highly radioactive substances) or the like. For machining, the wear rate of the drill tip is 60
% or less, more preferably 40% or less.

ドリルの欠損検出は超音波出力の異常低下を検出するこ
とによって行なえる。また加工時に過負荷防止スプリン
グ等によりドリル刃先が最適押し当て荷重となるように
調整し保持することによって過大な負荷が加わらないよ
うにする。
Drill damage can be detected by detecting an abnormal drop in ultrasonic output. Also, during machining, an overload prevention spring or the like is used to adjust and hold the drill tip to the optimum pressing load to prevent excessive load from being applied.

[作用] 本発明では超音波加工装置をセル内等に設置し、水分及
び酸素濃度がそれぞれ200重量ppm以下の高純度の
不活性ガスもしくは窒素ガス雰囲気中、またはそれと同
程度以下しか水分及び酸素を含まない真空中において乾
式加工するため、加工時に被加工物の劣化を防止できる
。本発明では乾式加工法であるから、不純物の混入がな
く湿式法に伴う様々な問題を全て解決できる。
[Function] In the present invention, an ultrasonic processing device is installed in a cell, etc., and the ultrasonic processing device is installed in a cell or the like in a high purity inert gas or nitrogen gas atmosphere with a moisture and oxygen concentration of 200 ppm by weight or less, or only a moisture and oxygen concentration of the same level or less. Since dry processing is performed in a vacuum containing no substances, deterioration of the workpiece can be prevented during processing. Since the present invention uses a dry processing method, there is no contamination of impurities and all the various problems associated with wet processing can be solved.

ドリル先端の摩耗度(%)は切削速度計によって検出で
きる。ドリル先端が太き(摩耗し加工燃料が異常な発熱
状態に近くなると切削速度が極端に低下することから、
切削速度を監視することによって異常発熱の開始を予知
しドリル交換時期を検知する。またドリル欠損が発生す
ると超音波出力が急激に低下することから、超音波出力
表示針で出力の異常低下を検出することによって欠損発
生時に加工動作を停止させる。
The wear degree (%) of the drill tip can be detected by a cutting speed meter. The tip of the drill is thick (if it wears out and the machining fuel approaches an abnormal heat generation state, the cutting speed will drop dramatically).
By monitoring cutting speed, it is possible to predict the start of abnormal heat generation and detect when it is time to replace the drill. Furthermore, since the ultrasonic output sharply decreases when a drill chipping occurs, the machining operation is stopped when a chipping occurs by detecting an abnormal drop in the output using the ultrasonic output display needle.

更にドリル刃先に過大な負荷が発生ずると刃先の損傷や
摩耗の進み、試料の異常発熱、試料損傷等が発生する。
Furthermore, if an excessive load is applied to the drill cutting edge, damage to the cutting edge, accelerated wear, abnormal heating of the sample, damage to the sample, etc. will occur.

本発明ではドリル刃先の押し当て荷重を適当な状態に保
持し過負荷を防止することで、それらの問題を解決して
いる。
The present invention solves these problems by maintaining the pressing load of the drill cutting edge in an appropriate state and preventing overload.

[実施例] 第1図は本発明方法で用いる装置の一例を示す構成図で
ある。同図に示すように本発明は、超音波振動ドリル加
工装置本体11と、振動子冷却装置12と、加工燃料集
塵装置13とを具備し、それらはセル14内に設置され
る。超音波振動ドリル加工装置本体11と振動子冷却装
置12及び加工燃料集塵装置13とはそれぞれ冷却材パ
イプ16及び集塵パイプ17で機械的に結合されている
。また各装置は何れもセル外から電力が供給されて動作
する。各装置の動作を制御し計測を行う制御装置18は
セル14の外部に設置される。
[Example] FIG. 1 is a block diagram showing an example of an apparatus used in the method of the present invention. As shown in the figure, the present invention includes an ultrasonic vibration drilling device main body 11, a vibrator cooling device 12, and a processing fuel dust collector 13, which are installed in a cell 14. The ultrasonic vibration drilling apparatus main body 11, the vibrator cooling device 12, and the processing fuel dust collector 13 are mechanically coupled through a coolant pipe 16 and a dust collecting pipe 17, respectively. Further, each device operates by being supplied with power from outside the cell. A control device 18 that controls the operation of each device and performs measurements is installed outside the cell 14.

超音波振動ドリル加工装置本体11を第2図に示す。こ
れは基盤となるベツド部20の一方の側に設けた超音波
振動子加工部21と、それと反対側に設けた燃料ビン保
持・駆動部22を備えており、遠隔操作が可能である。
The main body 11 of the ultrasonic vibration drilling device is shown in FIG. This includes an ultrasonic transducer processing section 21 provided on one side of a bed section 20 serving as a base, and a fuel bottle holding/driving section 22 provided on the opposite side, and can be remotely controlled.

超音波振動子加工部21は縦振動ホーンツール24、該
ホーンツールの先端に遠隔操作用マニピュレータで着脱
自在の超硬チップ付きドリル25、前記振動子冷却装置
との間で冷却材パイプを接続するための接続部を備えて
いる。燃料ピン保持部は、加工燃料26を固定するコレ
ットチャック28、コレットチャック締付はレバー コ
レットチャック取替え用ハンドル等からなり、また試料
駆動部は試料回転用モータ30、加工燃料ピンを送るス
テップモータ、各種リミットスイッチ及びストライカ−
等を備えている。
The ultrasonic transducer processing section 21 has a longitudinally vibrating horn tool 24, a drill 25 with a carbide tip that can be attached and detached by a remote control manipulator at the tip of the horn tool, and a coolant pipe connected to the transducer cooling device. It is equipped with a connection section for The fuel pin holding section consists of a collet chuck 28 that fixes the machining fuel 26, a lever for tightening the collet chuck, a handle for replacing the collet chuck, etc., and the sample drive section includes a sample rotation motor 30, a step motor that sends the machining fuel pin, Various limit switches and strikers
etc.

次に超音波振動子の一例を第3図A−Cに示す。この超
音波振動子は、縦振動ホーンツール24の先端にドリル
25を装着した構造であり、先端のドリル25を用途に
応じて取り替えることによって任意径、任意の硬さの試
料の加工を行なえるようになっている。このような工具
によってビッカース硬さHv=1000程度の原子炉燃
料までの加工が可能である。しかし加工試料が超硬度に
なるほどドリル先端の摩耗は大きくなり加工に時間を要
する。精密加工が要求されるような場合には粗加工と仕
上げ加工の2段階に分け、また試料のサンプリングを行
うような場合には中空円形のドリルを使用する。ドリル
とホーンツールとを分割構造にすると低コスト化を図る
ことができるが、遠隔操作性をより向上させ、振動エネ
ルギーのより有効な伝達を図るためにはドリルとホーン
ツールとを一体化してもよい。
Next, an example of an ultrasonic transducer is shown in FIGS. 3A to 3C. This ultrasonic transducer has a structure in which a drill 25 is attached to the tip of a longitudinally vibrating horn tool 24, and by replacing the drill 25 at the tip according to the purpose, it is possible to process samples of any diameter and any hardness. It looks like this. With such a tool, it is possible to process up to nuclear reactor fuel with a Vickers hardness of about 1000 Hv. However, the harder the sample to be processed, the greater the wear on the tip of the drill, and the longer it takes to process it. When precision machining is required, it is divided into two stages: rough machining and finishing machining, and when sampling samples, a hollow circular drill is used. Although cost reduction can be achieved by separating the drill and horn tool, it is also possible to integrate the drill and horn tool into one in order to further improve remote operability and transmit vibration energy more effectively. good.

ヘッド部20のほぼ中央には、第4図に示すように、加
工中に落下する燃料粉や破片等を回収するための加工燃
料受槽36とそれを覆う加工燃料飛散防止用のアクリル
樹脂製の集塵ボックス37が設けられ、該集塵ボックス
37の上部には前記加工燃料集塵装置との間に接続され
る集塵パイプ17が取り付けられる。集塵ボックス37
の両側壁にはそれぞれ加工燃料ビン部の出入口38とド
リル部の出入口39とが開口している。
As shown in FIG. 4, approximately in the center of the head section 20, there is a processing fuel receiver 36 for collecting fuel powder and debris that falls during processing, and an acrylic resin container covering it to prevent processing fuel from scattering. A dust collection box 37 is provided, and a dust collection pipe 17 connected to the processing fuel dust collection device is attached to the upper part of the dust collection box 37. Dust collection box 37
An entrance/exit 38 for the processing fuel bottle section and an entrance/exit 39 for the drill section are opened in both side walls of the machine.

上記の超音波振動ドリル加工装置本体11では、長尺試
料の加工を容易にするため、80〜100a++nに及
ぶ燃料ピンに対しては片側からの加工が燃料ビン中央部
付近まで到達したならば一旦加工を自動停止させ、コレ
ットチャンク部での燃料ピンの反転を行い再加工可能に
なっている。
In the above-mentioned ultrasonic vibration drilling apparatus main body 11, in order to facilitate the processing of long samples, once the fuel pins ranging from 80 to 100a++n are machined from one side, once they reach near the center of the fuel bottle. Machining is automatically stopped and the fuel pin is reversed at the collet chunk part, allowing re-machining.

加工燃料集塵装置13は、やや大きめの(粒径0.3μ
m程度かそれ以上の)微粒子をトラップするプレフィル
タと、それ以下の微粒子を収集する高性能エアフィルタ
とを2段直列に組み合わせて配置し、そのほか吸気用ブ
ロア及びフィルタの集塵状況を監視し自活まりに対する
フィルタ交換時期を指示する差圧計を備えている。プレ
フィルタとしては例えば0.3μmメツシュ程度のペー
パーフィルタを用いる。
The processing fuel dust collector 13 has a slightly larger particle size (0.3 μm particle size).
A pre-filter that traps particulate matter (about 500 yen or more) and a high-performance air filter that collects particulate matter less than that are arranged in two stages in series, and the dust collection status of the intake blower and filter is also monitored. Equipped with a differential pressure gauge to indicate when to replace the filter. For example, a paper filter with a mesh size of about 0.3 μm is used as the pre-filter.

上記のような各装置をセルの外部から計測・制御する制
御装置18は、振動子冷却装置駆動系、試料回転送り制
御系、及び超音波発振ill ?11系等から構成され
る。
The control device 18 that measures and controls each of the above devices from outside the cell includes a transducer cooling device drive system, a sample rotation feed control system, and an ultrasonic oscillation system. It consists of 11 series etc.

この装置は高放射線量率下で使用するため、超音波振動
ドリル加工装置本体11、振動子冷却装置12、加工燃
料集塵装置13のうち使用頻度や交換頻度が高いコレッ
トチャック操作部、ホーンツール部分等については、何
れも単純なレバー式やトルクレンチを用いた回転式とし
、また集塵用フィルタ類についてもマニピュレータによ
る分解・交換が可能な分割組立て方式が採用されている
Since this device is used under high radiation dose rate, among the ultrasonic vibration drilling device main body 11, vibrator cooling device 12, and processing fuel dust collector 13, the collet chuck operating section and horn tool are frequently used and replaced. All parts are of a simple lever type or rotary type using a torque wrench, and the dust collection filters are also divided and assembled so that they can be disassembled and replaced using a manipulator.

特に本発明における被加工材は原子炉燃料であり、燃料
中の核分裂生成物と加工時における雰囲気との反応によ
る影響が少ないことが要求される。第5図は使用済みの
原子炉燃料を内蔵するオーステナイト・ステンレス鋼被
覆管について、不純物としての酸素及び水分濃度をパラ
メータとする窒素雰囲気中で乾式加工した後に、同じ不
純物を含む窒素雰囲気中で、且つ高温における引張り破
断伸びを測定したものである。
In particular, the workpiece in the present invention is a nuclear reactor fuel, and is required to be less affected by the reaction between the fission products in the fuel and the atmosphere during processing. Figure 5 shows an austenitic stainless steel cladding tube containing spent reactor fuel, which was dry-processed in a nitrogen atmosphere with oxygen and moisture concentrations as impurities as parameters, and then processed in a nitrogen atmosphere containing the same impurities. In addition, the tensile elongation at break was measured at high temperatures.

同図から明らかなように、1000重量 p p m以
上の水分及び/又は酸素を含む雰囲気中では破断伸びが
低下する。これは燃料内部から表面に滲み出し被覆管内
面に付着した核分裂生成物が水分と反応して高温度下で
被覆管を劣化させるためと考えられる。従って原子炉燃
料に及ぼす加工雰囲気の影響を避けるために、加工雰囲
気として例えば高純度の不活性ガスもしくは反応性の低
い高純度の窒素ガスを使用する。雰囲気ガス中の不純物
である水分及び酸素濃度は、それぞれ、それらの影響が
少なくなる200重量ppm以下とする。
As is clear from the figure, the elongation at break decreases in an atmosphere containing 1000 ppm or more of moisture and/or oxygen. This is thought to be because fission products seeping from inside the fuel to the surface and adhering to the inner surface of the cladding react with moisture, causing the cladding to deteriorate under high temperatures. Therefore, in order to avoid the influence of the processing atmosphere on the reactor fuel, for example, a high purity inert gas or a highly purified nitrogen gas with low reactivity is used as the processing atmosphere. The concentrations of moisture and oxygen, which are impurities in the atmospheric gas, are each set to 200 ppm by weight or less so that their influence is reduced.

勿論、加工雰囲気は上記条件の他、それと同程度以下し
か水分及び酸素を含有しない真空中であってもよい。
Of course, in addition to the above-mentioned conditions, the processing atmosphere may also be a vacuum containing less than the same amount of moisture and oxygen.

さて本発明では乾式加工を行うために更に以下に述べる
ような対策が採られている。それらはドリルの摩耗状態
の監視、ドリルの欠損検出、加工時のドリル刃先の最適
押し当て荷重の保持・調整と過負荷の防止である。
Now, in the present invention, the following measures are further taken to perform dry processing. These are monitoring the wear condition of the drill, detecting drill breakage, maintaining and adjusting the optimal pressing load of the drill cutting edge during machining, and preventing overload.

高硬度の原子炉燃料を乾式で切削加工すると加工中に発
熱量が増大することがあり、昇温によるドリル刃の軟化
によって切削不能の状態になる。また昇温に伴い試料に
悪影響を及ぼす。
Dry cutting of highly hard nuclear reactor fuel may generate an increased amount of heat during processing, and the increased temperature will soften the drill bit, making it impossible to cut. Moreover, as the temperature rises, it has a negative effect on the sample.

これらを防止するため種々の検討を試みた結果、ドリル
先端での発熱量の増大とドリル摩耗が密接に関係してい
ることが明らかとなり、それを利用してドリルの状態を
適切に把握することで乾式加工が可能となる。
As a result of trying various studies to prevent these problems, it became clear that the increase in heat generation at the tip of the drill and drill wear are closely related, and it is important to use this to properly understand the condition of the drill. Dry processing becomes possible.

先ずドリル先端が40〜50%以上摩耗すると急激に切
削速度が低下し、60%以上では試料及びドリル先端で
の発熱が著しく増大することが判った。この関係を第6
図に示す。同図は硬さHv=830のアルミナ焼結体を
試料としてドリル先端摩耗度(%)に対する切削速度(
ffiIIl/分)の関係を示している。ドリル先端摩
耗度が60%を超えた領域が試料発熱域となる。
First, it was found that when the tip of the drill wears out by 40 to 50% or more, the cutting speed decreases rapidly, and if the tip wears out by 60% or more, the heat generation at the sample and the tip of the drill increases significantly. This relationship is the sixth
As shown in the figure. The figure shows cutting speed (%) versus drill tip wear (%) using an alumina sintered body with hardness Hv = 830 as a sample.
ffiIII/min). The region where the degree of wear of the drill tip exceeds 60% becomes the sample heating region.

そこで本発明では問題解決のためにドリルの摩耗程度を
切削速度計及び切削速度記録計で検出し、ドリル先端が
大きく摩耗して燃料が発熱状態に近くなると切削速度が
極端に低下することを利用して、異常発熱の開始を予知
しドリル交換時期を検知している。
Therefore, in order to solve this problem, the present invention uses a cutting speed meter and a cutting speed recorder to detect the degree of wear on the drill, and takes advantage of the fact that when the tip of the drill is heavily worn and the fuel approaches a heat-generating state, the cutting speed drops dramatically. The system predicts the start of abnormal heat generation and detects when it is time to replace the drill.

次に第7図に示すように、乾式加工時にドリル欠損が発
生すると超音波出力が約1/2に減少することが判った
。そこでこのことを利用して超音波出力表示計で出力の
異常低下を検知したとき加工動作を停止することによっ
て試料の燃料被覆管や燃零4の損傷を防止する。
Next, as shown in FIG. 7, it was found that when a drill breakage occurs during dry machining, the ultrasonic output decreases to about 1/2. Therefore, this fact can be used to prevent damage to the fuel cladding tube and fuel zero 4 of the sample by stopping the machining operation when an abnormal decrease in output is detected by the ultrasonic output indicator.

超音波振動が伝達されるドリル刃先に過大な荷重が加わ
ると、刃先損傷や摩耗の進行、燃料の異常発熱、燃料損
傷等が生じる。これらを防止するためには加工時のドリ
ル刃先の押し当て荷重を常時最適値に保つ必要がある。
If an excessive load is applied to the drill cutting edge through which ultrasonic vibrations are transmitted, damage to the cutting edge, progression of wear, abnormal heat generation of fuel, fuel damage, etc. will occur. In order to prevent these problems, it is necessary to keep the pressing load of the drill cutting edge at an optimum value at all times during machining.

第8図は模擬燃料としてHV=800のアルミナ焼結体
を使用して求めたドリル刃先押し当て荷重(kg)と切
削速度との関係を示している。同図から明らかなように
、ドリル刃先押し当て荷重が0.8〜1.2kgの範囲
において最も良好な切削効率を示し、0.7 kg以下
では切削速度が低く、逆に1.4kg以上ではドリルの
摩耗速度が増加し切削速度も急速に低下する。本発明で
はこのような関係をふまえ、ドリル刃先の加工燃料への
押し当て荷重が最適となるようにしている。その例を第
9図に示す。
FIG. 8 shows the relationship between the drill tip pressing load (kg) and the cutting speed, which was determined using an alumina sintered body of HV=800 as a simulated fuel. As is clear from the figure, the best cutting efficiency is shown when the drill tip pressing load is in the range of 0.8 to 1.2 kg, the cutting speed is low when it is less than 0.7 kg, and conversely when it is more than 1.4 kg. The wear rate of the drill increases and the cutting speed decreases rapidly. In the present invention, based on such a relationship, the pressing load of the drill cutting edge against the machining fuel is optimized. An example is shown in FIG.

この機構は、燃料ビン保持・駆動部22を搭載する上部
スライド盤43と、これらを搭載し定速駆動する下部ス
ライド盤42との間に設けられるものである。即ち両ス
ライド盤4243の間に過負荷防止スプリング44と、
そのスパン調整ネジ45と、過負荷防止スプリング44
に規定以上の加工部反力がかかった時に作動して加工動
作を停止させるリミットスイッチ46を設けたものであ
る。
This mechanism is provided between an upper slide board 43 on which the fuel bottle holding/driving section 22 is mounted and a lower slide board 42 on which these are mounted and driven at a constant speed. That is, an overload prevention spring 44 is provided between both slide plates 4243,
Its span adjustment screw 45 and overload prevention spring 44
A limit switch 46 is provided which is activated to stop the machining operation when a reaction force exceeding a specified value is applied to the machining part.

切削加工時にはステップモータにより下部スライド盤4
2を白抜き矢印a方向に定速駆動する。上部スライド盤
43には過負荷防止スプリング44を介して駆動力が加
わり、それと反対方向(白抜き矢印b)に加工部反力が
加わる。
During cutting, the lower slide plate 4 is moved by a step motor.
2 is driven at a constant speed in the direction of the outlined arrow a. A driving force is applied to the upper slide plate 43 via the overload prevention spring 44, and a reaction force of the processed portion is applied in the opposite direction (white arrow b).

過負荷防止スプリング44のスパンを調節ネジ45によ
り最適切削押し当て荷重に設定し切削加工を行わせる。
The span of the overload prevention spring 44 is set to the optimum cutting pressing load using the adjusting screw 45, and cutting is performed.

このように過負荷防止スプリング44はドリル先端への
最適押し当て荷重素子としての役割をも果たす。ドリル
刃先の押し当て荷重が規定以上になった場合は、過負荷
防止スプリング44が反力に応じて収縮し、リミットス
イッチ46が作動する。これによって加工燃料ピンの送
り用ステップモータ及び試料回転用モータ30が停止し
、加工動作が停止する。
In this way, the overload prevention spring 44 also serves as a load element that optimally presses against the tip of the drill. When the pressing load of the drill cutting edge exceeds a specified value, the overload prevention spring 44 contracts in response to the reaction force, and the limit switch 46 is activated. As a result, the step motor for feeding the machining fuel pin and the sample rotation motor 30 are stopped, and the machining operation is stopped.

さて一般に超音波による加工速度を増大させるためには
先端加工工具の超音波振動の振幅を大きくすればよく、
このためには振動子への電気入力を大きくするか振動子
の共振周波数をできる限り低くするのがよい。しかし振
動子周波数が低くなると可聴音となる虞れがあるため、
実用的には16〜30kllzの範囲の周波数が選ばれ
ている。本装置は気密型セル内に設置されることを考慮
し、共振周波数として16kllz近傍を選定し、この
条件で電気人力を最大にする超音波振動制御系を採用し
ている。実際には制御装置18に超音波振動調整切り換
えスイッチを設け、それによって最大出力を調整・保持
できるようになっている。
Now, generally speaking, in order to increase the machining speed using ultrasonic waves, it is sufficient to increase the amplitude of the ultrasonic vibrations of the tip machining tool.
For this purpose, it is best to increase the electrical input to the vibrator or to lower the resonant frequency of the vibrator as much as possible. However, if the transducer frequency becomes low, there is a risk that the sound will become audible.
Practically speaking, a frequency in the range of 16 to 30 kllz is chosen. Considering that this device will be installed in an airtight cell, a resonance frequency of around 16 kllz is selected, and an ultrasonic vibration control system is used to maximize electric power under this condition. In reality, the control device 18 is provided with an ultrasonic vibration adjustment switch, thereby making it possible to adjust and maintain the maximum output.

原子炉燃料ペレットの切削加工においては、燃料以外の
物質を混入させることなく、且つ加工により生じた燃料
破片、燃料粉等の燃料物質例えばウランとプルトニウム
の混合酸化物燃料の燃料除去加工においては、0.1g
のオーダーの回収が望まれている。また原子炉燃料加工
中における燃料粉の飛散による汚染の低レヘル化、汚染
除去時の放射性廃棄物の低減化も重要な課題をなしてい
る。本発明においては、超音波振動ドリル加工装置本体
の中央部に設けた加工燃料受槽内で加工燃料ピンを移動
・加工し、加工中に落下する燃料粉や破片を先ず回収し
、また微粉化した燃料粉は加工燃料集塵装置によって回
収率を高めるようになっている。本体の集塵ボックス3
7から吸引した燃料微粉はプレフィルタでトラップされ
る。プレフィルタに捕獲された微粉末はプレフィルタご
と取り出すことによって収集可能である。高性能エアフ
ィルタではプレフィルタをil!1遇した燃料粉をトラ
ップし、セル内での燃料微粉の飛散による汚染防止、ひ
いては汚染除去時の放射性廃棄物の低減化を図っている
In the cutting process of nuclear reactor fuel pellets, no substances other than fuel are mixed in, and in the process of removing fuel materials such as fuel fragments and fuel powder generated by the process, such as mixed oxide fuel of uranium and plutonium, 0.1g
It is hoped that orders will be collected. In addition, reducing the level of contamination caused by flying fuel powder during reactor fuel processing and reducing radioactive waste during decontamination are also important issues. In the present invention, the machining fuel pin is moved and machined in a machining fuel receiver provided in the center of the ultrasonic vibration drilling machine body, and fuel powder and debris that fall during machining are first collected and pulverized. The recovered fuel powder is collected using a processed fuel dust collector to increase the recovery rate. Main body dust collection box 3
The fine fuel particles sucked from 7 are trapped by the pre-filter. The fine powder trapped in the prefilter can be collected by taking out the entire prefilter. For high-performance air filters, use pre-filters! The system traps the contaminated fuel particles to prevent contamination caused by scattering of the fuel particles inside the cell, and to reduce the amount of radioactive waste produced during decontamination.

を高回収率で回収することが強く要請される。There is a strong need to recover the waste with a high recovery rate.

次に本発明方法によって模擬燃料であるアルミナ焼結ペ
レットを加工した場合の回収例を第1表に示す。同表に
示すように、回収率は非常に良好で、平均99%以上の
値になっている。
Next, Table 1 shows examples of recovery when alumina sintered pellets, which are simulated fuel, were processed by the method of the present invention. As shown in the table, the recovery rate was very good, with an average value of 99% or more.

第  1  表 試験に使用した模擬燃料ペレ7)はステンレス鋼被覆管
に焼き嵌めた均質の超硬アルミナ焼結体であり、微細ク
ランクは全くない稠密のものである。ところが実際の加
工対象物の代表的なものは、被覆管に酸化物燃料ペレッ
トを収めたものであり、このような使用済原子炉燃料ベ
レットでは微細な空孔やクランクが多数発生している。
Table 1 The simulated fuel pellet 7) used in the test was a homogeneous cemented carbide alumina sintered body shrink-fitted into a stainless steel cladding tube, and was dense with no fine cranks. However, a typical workpiece in reality is a cladding tube containing oxide fuel pellets, and such spent reactor fuel pellets have many minute holes and cranks.

このため極めて破片化、細粉化し易(、緻密な充填状態
の模凝燃料ペレフトの場合よりも容易に加工し得るもの
と判断できる。従って本発明方法によってビッカース硬
さ800以上の超硬度の原子炉燃料の深穴加工や切削加
工を、乾式で研磨材を使用することなく、遠隔操作用マ
ニピュレータにより行うことができ、しかも燃料加工粉
を99.9%以上の高効率で回収することができる。
For this reason, it is extremely easy to fragment and pulverize (it can be judged that it can be processed more easily than in the case of densely packed simulated solidified fuel pellets. Therefore, by the method of the present invention, ultra-hard atoms with a Vickers hardness of 800 or more can be processed. Deep hole machining and cutting of furnace fuel can be performed dryly using a remote control manipulator without using abrasive materials, and fuel processing powder can be recovered with a high efficiency of over 99.9%. .

なお上記の実施例では超音波振動ドリル加工装置本体を
横置型にしているが、超音波振動子加工部を垂直に設置
し、燃料ピン保持・駆動部を垂直に駆動する縦型構造に
してもよい。
In the above embodiment, the main body of the ultrasonic vibration drilling machine is installed horizontally, but it is also possible to use a vertical structure in which the ultrasonic vibrator processing section is installed vertically and the fuel pin holding/driving section is driven vertically. good.

本発明は次のような用途に利用できる。The present invention can be used for the following purposes.

■使用済原子炉燃料付き被覆管から、被覆管が健全なま
まの状態で燃料のみを効率よく回収し、材料の照射特性
を調べるための被覆管試料を採取すること、 ■燃料温度測定のための熱電対埋込み用穴加工や中性子
照射量測定のためのワイヤ・モニタ埋込み用穴を設ける
ための原子炉燃料加工、中空燃料ペレット作成のための
穴加工、その他の目的のための燃料深穴加工に利用する
こと。
■ Efficient recovery of only the fuel from spent reactor fuel-containing cladding while the cladding remains healthy, and collection of cladding samples to examine the irradiation characteristics of the material; ■ To measure fuel temperature. Reactor fuel processing to create holes for embedding thermocouples and wire monitors for neutron irradiation measurement, hole drilling for making hollow fuel pellets, and deep hole drilling for fuel for other purposes. to be used for.

[発明の効果1 本発明は上記のように、水分及び酸素濃度がそれぞれ2
00重量ppm以下の高純度の不活性ガスもしくは窒素
ガス雰囲気中、またはそれと同程度以下しか水分及び酸
素を含まない真空中において乾式加工するため、加工雰
囲気による被加工物の劣化を防止することができる。ま
たドリル先端摩耗度が低く、ドリル欠損が無く、且つド
リル刃先押し当て荷重が過大にならない状態で燃料を加
工するため、ピンカース硬さ800以上の超硬度の原子
炉燃料の深穴加工や切削加工等を乾式で研磨材を使用す
ることな〈実施でき、しかも燃料加工粉を99%以上の
高回収率で回収することが可能となった。
[Effect of the invention 1 As described above, the present invention has a water content and an oxygen concentration of 2.
Dry processing is performed in a high purity inert gas or nitrogen gas atmosphere of 00 ppm by weight or less, or in a vacuum containing moisture and oxygen to the same extent or less, so deterioration of the workpiece due to the processing atmosphere can be prevented. can. In addition, in order to process fuel with low drill tip wear, no drill breakage, and no excessive drill tip pressing load, it is possible to perform deep hole drilling and cutting of ultrahard nuclear reactor fuel with a Pinkers hardness of 800 or higher. This process can be carried out in a dry manner without the use of abrasives, and it has become possible to recover processed fuel powder with a high recovery rate of over 99%.

このような本発明を活用することによって、原子炉技術
の中でもキーテクノロジーである原子炉燃料集合体の長
寿命化、信頼性の高い高性能原子炉燃料の開発等を促進
できる。
By utilizing the present invention as described above, it is possible to promote the extension of the life of nuclear fuel assemblies, which are key technologies in nuclear reactor technology, and the development of highly reliable, high-performance nuclear reactor fuels.

更に極めて高回収率で燃料加工が可能であり、且つ乾式
のため不純物の混入が無い状態で原子炉燃料を回収でき
る結果、原子炉燃料の有効な再利用を図ることができる
。また、作業環境における原子炉燃料粉の飛散による放
射能汚染を防止し、原子炉燃料物質を含む放射性廃棄物
量を低減化でき、照射後試験施設周辺の環境に放出され
る放射性物質を極めて低く抑えることができる等、数々
の優れた効果を存するものである。
Furthermore, it is possible to process fuel with an extremely high recovery rate, and since it is a dry process, reactor fuel can be recovered without contamination with impurities, making it possible to effectively reuse the reactor fuel. It also prevents radioactive contamination due to the scattering of reactor fuel powder in the working environment, reduces the amount of radioactive waste including reactor fuel materials, and keeps the amount of radioactive materials released into the environment around the test facility extremely low after irradiation. It has many excellent effects, such as the ability to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を適用した超音波加工装置の一例を
示す構成図、第2図は超音波振動ドリル加工装置本体の
斜視図、第3図A、B、Cはそれぞれ超音波振動子部の
正面図とドリル刃先の拡大図及びその側面図、第4図は
集塵ボックスの説明図である。また第5図は加工時にお
ける雰囲気中の不純物濃度に対する材料特性を示す説明
図、第6図はドリル先端摩耗度と切削速度との関係を示
す説明図、第7図はドリル欠損発生時における出力変化
を示す説明図、第8図はドリル刃先押し当て荷重に対す
る切削速度の関係を示す説明図、第9図は加工時におけ
るドリル刃先の最適押し当て荷重の保持・調整と過負荷
を防止する機構を示す説明図である。 11・・・超音波振動ドリル加工装置本体、12・・振
動子冷却装置、13・・・加工燃料集塵装置、14・・
・セル、21・・・超音波振動子加工部、22・・・燃
料ビン保持・駆動部、24・・・ホーンツール、25・
・・超硬チフブ付きドリル、26・・・加工燃料。 特許出願人 動力炉・核燃料開発事業団代  理  人
     茂  見     種箱 図 第5図 酸素清IX (I量ppm) 水分j1度 (i貴pp+n )
Fig. 1 is a configuration diagram showing an example of an ultrasonic machining device to which the method of the present invention is applied, Fig. 2 is a perspective view of the main body of the ultrasonic vibration drilling device, and Fig. 3 A, B, and C are each an ultrasonic vibrator. A front view of the part, an enlarged view of the drill cutting edge, and a side view thereof, and FIG. 4 are explanatory views of the dust collection box. Furthermore, Fig. 5 is an explanatory diagram showing material characteristics with respect to impurity concentration in the atmosphere during machining, Fig. 6 is an explanatory diagram showing the relationship between drill tip wear and cutting speed, and Fig. 7 is an explanatory diagram showing the relationship between drill tip wear and cutting speed. Fig. 8 is an explanatory diagram showing the relationship between the cutting speed and the pressing load on the drill cutting edge, and Fig. 9 is a mechanism for maintaining and adjusting the optimum pressing load on the drill cutting edge during machining and preventing overload. FIG. DESCRIPTION OF SYMBOLS 11... Ultrasonic vibration drill processing device main body, 12... Vibrator cooling device, 13... Processing fuel dust collector, 14...
・Cell, 21... Ultrasonic vibrator processing section, 22... Fuel bottle holding/driving section, 24... Horn tool, 25.
... Drill with carbide tip, 26... Processing fuel. Patent applicant: Power Reactor and Nuclear Fuel Development Corporation Agent Shigeru Mi Seed box diagram Figure 5 Oxygen purity IX (I amount ppm) Moisture j1 degree (I precious ppm + n)

Claims (1)

【特許請求の範囲】 1、水分及び酸素濃度がそれぞれ200重量ppm以下
の高純度の不活性ガスもしくは窒素ガス雰囲気中におい
て、超音波縦振動ホーンツールの先端に超硬チップ付き
ドリルを装着した超音波加工装置により、ドリル先端摩
耗度が低く、ドリル欠損が無く、且つドリル刃先押し当
て荷重が過大にならない状態で燃料を乾式加工すること
を特徴とする原子炉燃料の超音波加工方法。 2、水分及び酸素分圧がそれぞれ20Pa以下の真空中
において、超音波縦振動ホーンツールの先端に超硬チッ
プ付きドリルを装着した超音波加工装置により、ドリル
先端摩耗度が低く、ドリル欠損が無く、且つドリル刃先
押し当て荷重が過大にならない状態で燃料を乾式加工す
ることを特徴とする原子炉燃料の超音波加工方法。 3、ドリルの先端摩耗度が60%以下で加工を行う請求
項1又は2記載の超音波加工方法。
[Claims] 1. In a high purity inert gas or nitrogen gas atmosphere with moisture and oxygen concentrations of 200 ppm or less by weight, an ultrasonic vibration horn tool with a drill with a carbide tip attached to the tip of the ultrasonic longitudinal vibration horn tool A method for ultrasonic machining of nuclear reactor fuel, characterized in that fuel is dry-processed using a sonic machining device with low drill tip wear, no drill breakage, and no excessive drill tip pressing load. 2. In a vacuum with moisture and oxygen partial pressures of 20 Pa or less, an ultrasonic machining device equipped with a carbide-tipped drill at the tip of an ultrasonic longitudinal vibration horn tool has low drill tip wear and no drill breakage. , and a method for ultrasonic processing of nuclear reactor fuel, characterized in that the fuel is dry-processed under a condition where the pressing load of the drill cutting edge does not become excessive. 3. The ultrasonic machining method according to claim 1 or 2, wherein the machining is performed with a wear degree of the tip of the drill being 60% or less.
JP63330815A 1988-12-28 1988-12-28 Ultrasonic processing method for nuclear reactor fuel Expired - Lifetime JPH0646233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63330815A JPH0646233B2 (en) 1988-12-28 1988-12-28 Ultrasonic processing method for nuclear reactor fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63330815A JPH0646233B2 (en) 1988-12-28 1988-12-28 Ultrasonic processing method for nuclear reactor fuel

Publications (2)

Publication Number Publication Date
JPH02176599A true JPH02176599A (en) 1990-07-09
JPH0646233B2 JPH0646233B2 (en) 1994-06-15

Family

ID=18236856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63330815A Expired - Lifetime JPH0646233B2 (en) 1988-12-28 1988-12-28 Ultrasonic processing method for nuclear reactor fuel

Country Status (1)

Country Link
JP (1) JPH0646233B2 (en)

Also Published As

Publication number Publication date
JPH0646233B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
CN110339894B (en) Quantitative jaw crusher with constant-granularity dust removal and vibration reduction functions and method thereof
JPS58186550A (en) Tool break preventive device
JPH02167609A (en) Ultrasonic machining device
JPH02176599A (en) Ultrasonic working method for nuclear reactor fuel
CN220345967U (en) Splash breaker is prevented to diamond
US3831248A (en) Nuclear reactor fuel rod splitter
KR101945455B1 (en) System for cutting drum
CN111744790A (en) Accurate numerically control grinder piece collection device
CN207204225U (en) A kind of rock rapid cracking machine
KR101031356B1 (en) Installation having paddle type rotational impact device for volume reduction and separation of radionuclide from dismantled concrete wastes
CN210159680U (en) Waste recovery device for toughened glass processing
CN218902150U (en) Anti-blocking jet mill
CN211389609U (en) Diamond cutting device with crushed aggregates collecting mechanism
JP2004058007A (en) Urethane crusher
CN213726922U (en) Commercial fly ash grinding device
CN218837042U (en) Full-automatic drill bit grinding machine for circuit board
CN211801077U (en) Diamond synthetic column breaker
RU2814651C1 (en) Machine for grinding radioactive long elements
CN216322159U (en) Underground coal block crusher for coal mining
CN214439338U (en) Electronic information safety crushing apparatus
CN212142795U (en) High-pressure soil sampling grinder
CN217223617U (en) Vertical numerical control lathe for machining automobile steel plate
JP2761321B2 (en) Abrasive
CN221159557U (en) Chip removal protector of digit control machine tool
CN212859089U (en) Motorcycle starting rod spline seat grinding device