JPH02167609A - Ultrasonic machining device - Google Patents

Ultrasonic machining device

Info

Publication number
JPH02167609A
JPH02167609A JP63320193A JP32019388A JPH02167609A JP H02167609 A JPH02167609 A JP H02167609A JP 63320193 A JP63320193 A JP 63320193A JP 32019388 A JP32019388 A JP 32019388A JP H02167609 A JPH02167609 A JP H02167609A
Authority
JP
Japan
Prior art keywords
drill
ultrasonic
fuel
vibrator
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63320193A
Other languages
Japanese (ja)
Other versions
JPH0712568B2 (en
Inventor
Shunichi Yuzuhara
柚原 俊一
Shigeo Nomura
茂雄 野村
Yoshinori Sato
義則 佐藤
Kiyoshi Sogabe
曽我部 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP63320193A priority Critical patent/JPH0712568B2/en
Publication of JPH02167609A publication Critical patent/JPH02167609A/en
Publication of JPH0712568B2 publication Critical patent/JPH0712568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/08Protective coverings for parts of machine tools; Splash guards

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Drilling And Boring (AREA)

Abstract

PURPOSE:To enable radiative work powder and fuel work powder to be recovered with high rate of recovery by carrying out the dry cutting or the like of pile fuel pellet or radiative material in a cell with remote control without using any abrasives. CONSTITUTION:A supersonic machining device is provided with a ultrasonic vibration drill working device body 11, vibrator cooling device 12 and workpiece sample dust collector device 13 which are provided in a cell 16 surrounded by a screen wall 14 and screen window 15 and connected to each other through cooling pipes 17 and dust collecting pipes 18. The respective devices are operatively supplied with electric power from the outside of the cell 16. A ultrasonic vibrator working part 21 is provided on the distal end of a longitudinal vibration horn tool 24 with a connected for connecting a cooling material pipe 17 between a sintered hard tipped drill 25 removably attached by a remote control manipulator and the vibrator cooling device 12.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、原子炉燃料ペレツトや放射性材料の穴開けあ
るいは切削加工等を、セル内で遠隔操作により乾式状態
で効率よ〈実施できる超音波加工装置に関するものであ
る。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention utilizes ultrasonic technology that enables efficient drilling or cutting of nuclear reactor fuel pellets and radioactive materials in a dry state by remote control within a cell. This relates to processing equipment.

本発明は例えば、 ■原子炉燃料ベレットの中空加工、 ■被覆管に内蔵される原子炉燃料ペレットに熱電対、S
iC温度モニタ、中性子照射量測定用ワイヤ・モニタ等
の各種センサを装着するためのペレット深入加工、 ■使用済原子炉燃料のうち特に高燃焼度のため被覆管内
面で焼き付き高硬度状態にある燃料の長尺被覆管からの
採取、完全除去、及び回収のための切削加工、 ■原子炉内で使用した高放射性で且つ高硬度の制御棒用
吸収材料B4C等のセラミックスの切削加工、 等を実施でき、原子炉燃料製造施設や燃料及び材料の照
射後試験施設、照射試験体の再組立施設等で利用できる
装置である。
The present invention includes, for example, (1) hollow processing of nuclear reactor fuel pellets, (2) thermocouples and S
Deep processing of pellets to attach various sensors such as iC temperature monitors and wire monitors for measuring neutron irradiation amount, ■ Spent reactor fuel that has a particularly high burnup and is baked on the inside of the cladding tube and has a high hardness. Collecting from long cladding tubes, completely removing them, and cutting for recovery; ■ Cutting of ceramics such as B4C, a highly radioactive and highly hard absorption material for control rods used in nuclear reactors, etc. This device can be used in nuclear reactor fuel manufacturing facilities, post-irradiation testing facilities for fuel and materials, and reassembly facilities for irradiated test specimens.

[従来の技術] 使用前あるいは使用済の固体状原子炉燃料の穴開け、切
削、除去等には、単なる湿式の旋盤ドリル加工装置、ま
たは湿式で且つ研磨材を使用する超音波振動ドリル加工
’装置が使用されている。
[Prior art] For drilling, cutting, removing, etc. of solid reactor fuel before use or spent, a simple wet-type lathe drilling machine or a wet-type ultrasonic vibration drilling process using an abrasive material is used. The device is in use.

[発明が解決しようとするi1題] しかし従来の湿式の加工装置では、加工燃料から冷却用
オイルや研磨材としての紙粉を分離するための処理が必
要なこと、核分裂生成物と冷却材水分との反応生成物に
より被覆管の腐食が生じること、加工燃料粉を含む放射
性廃棄物量が増加すること、燃料回収率が低いこと等の
問題があった。
[Problem to be solved by the invention] However, in conventional wet processing equipment, processing is required to separate cooling oil and paper powder as an abrasive from processing fuel, and fission products and coolant moisture are required. There were problems such as corrosion of the cladding due to reaction products with the fuel, an increase in the amount of radioactive waste including processed fuel powder, and a low fuel recovery rate.

このような問題は湿式加工法に起因するため、従来の装
置をそのまま乾式加工に用いることが考えられるが、以
下のような問題が生し実用化に至っていない。
Since such problems are caused by the wet processing method, it is conceivable to use conventional equipment as is for dry processing, but this has not been put into practical use due to the following problems.

■従来の装置では、工具先端での燃料加工部で発生する
熱量が制御されないため、加工部が高温になり易く、ド
リル刃先の軟化変形と切削不能が生じる。
■With conventional equipment, the amount of heat generated in the fuel machining section at the tip of the tool is not controlled, so the machining section tends to reach high temperatures, resulting in softening and deformation of the drill cutting edge and the inability to cut.

■従来の超音波振動ドリル加工装置の場合には、上記の
問題に加えて、研磨材を使用しないとドリル刃先の摩耗
減損がより著しくなる問題もある。
In the case of conventional ultrasonic vibration drilling equipment, in addition to the above-mentioned problems, there is also the problem that if an abrasive is not used, the wear and loss of the drill cutting edge becomes more significant.

■これらの加工装置で、はドリル刃先が摩耗あるいは変
形すると、加工部での刃先の片当たりによりドリル欠損
が生じ易い。
- In these processing devices, if the drill cutting edge becomes worn or deformed, the cutting edge is likely to hit unevenly in the processing area, causing drill breakage.

このように従来装置をそのまま乾式加工に用いたのでは
、何れにしてもドリル刃先の交換頻度が高くなるため実
用的なものにはならない。
In this way, if the conventional device is used as is for dry machining, the drill cutting edge will have to be replaced frequently, so it will not be practical.

また従来の湿式及び乾式装置ともマニピュレータによる
遠隔操作は考慮されていないため、セル(高放射性物質
を取り扱うために試験機器本体を収容する遮蔽壁で囲ま
れた区画)内に設置することができない。
In addition, conventional wet-type and dry-type devices do not allow for remote control using a manipulator, so they cannot be installed inside a cell (a compartment surrounded by a shielding wall that houses the test equipment for handling highly radioactive materials).

使用済原子炉燃料において、被覆管から固体燃料を除去
する目的に対しては、燃料のみに一方向の押出力を加え
て燃料を除去する技術がある。低燃焼度燃料の場合はこ
のような単純な押出式燃料除去装置によって燃料の除去
が可能であるが、高燃焼度燃料の場合には燃料と被覆管
が固着してしまい、その固着力が強いため単純な常温で
の押出式加工では被覆管を損傷させることなく燃料を取
り出すことは困難である。
For the purpose of removing solid fuel from the cladding tube of spent nuclear reactor fuel, there is a technique for removing the fuel by applying a unidirectional pushing force only to the fuel. In the case of low-burnup fuel, it is possible to remove the fuel using a simple extrusion-type fuel removal device like this, but in the case of high-burnup fuel, the fuel and cladding stick together, and the sticking force is strong. Therefore, it is difficult to extract the fuel without damaging the cladding by simple extrusion processing at room temperature.

本発明の目的は、上記のような技術的課題を解決するこ
とにある。即ち、ピンカース硬さで800以上の高硬度
状態を含む原子炉燃料の任意径と長さのペレットの深穴
加工、燃料付き被覆管からの燃料の採取、除去、及び回
収のための切削加工等を、被加工材の健全性を維持しな
がら乾式で且つ研磨材を使用することなく99%以上の
燃料回収率で行うことを可能とする遠隔操作型の超音波
加工装置を提供することである。
An object of the present invention is to solve the above technical problems. That is, deep drilling of pellets of any diameter and length of reactor fuel, including high hardness states of 800 or higher on the Pinkers hardness, cutting for extraction, removal, and recovery of fuel from fuel-containing cladding tubes, etc. An object of the present invention is to provide a remote-controlled ultrasonic machining device that can perform this process dryly and with a fuel recovery rate of 99% or more without using an abrasive while maintaining the integrity of the workpiece. .

[!1ullを解決するための手段] 上記のような技術的inを解決できる本発明は、 fat超音波縦振動ホーンツールの先端に遠隔操作用マ
ニピュレータで着脱自在の超硬チンプ付きドリルを装着
した超音波振動子加工部、同様に遠隔操作可能なコレッ
トチャック式試料保持部、加工試料粉受槽を有する乾式
の超音波振動ドリル加工装置本体と、 山)冷却材を循環して前記超音波振動子加工部を冷却す
る振動子冷却装置と、 [Clプレフィルタと高性能エアフィルタを備えた加工
試料集塵装置と、 をセル内に設置すると共に、ドリルの摩耗状態の監視機
構、ドリルの欠損検出機構、加工時のドリル刃先の最適
押し当て荷重の保持・調整と過負荷を防止する機構を設
けた超音波加工装置である。
[! 1ull] The present invention, which can solve the above-mentioned technical problems, is an ultrasonic horn tool with a carbide chimp drill attached to the tip of a fat ultrasonic longitudinal vibration horn tool, which can be freely attached and detached using a remote control manipulator. A dry-type ultrasonic vibration drilling machine main body having a vibrator processing section, a collet chuck-type sample holding section that can also be remotely controlled, and a processing sample powder receiving tank; A vibrator cooling device that cools the oscillator, a processed sample dust collector equipped with a Cl pre-filter and a high-performance air filter, and a drill wear condition monitoring mechanism, a drill defect detection mechanism, This is an ultrasonic machining device equipped with a mechanism that maintains and adjusts the optimal pressing load of the drill cutting edge during machining and prevents overload.

ここで例えばドリルの摩耗状態の監視機構は切削速度計
を有し、ドリルの欠損検出機構は超音波出力の異常低下
を検出し加工停止スイッチを作動させる機構を有するも
のである。また加工時のドリル刃先の最適押し当て荷重
の保持・調整と過負荷を防止する機構は、超音波振動子
加工部のベツド部上に設けた上下のスライド盤と、両ス
ライド盤間に設けた過負荷防止スプリングと、該過負荷
防止スプリングのスパン調整ネジと、過負荷防止スプリ
ングに規定以上の加工部反力がかかった時に作動し加工
動作を停止させるリミットスイッチとから構成する。
Here, for example, the drill wear state monitoring mechanism has a cutting speed meter, and the drill chipping detection mechanism has a mechanism that detects an abnormal decrease in ultrasonic output and activates a machining stop switch. In addition, the mechanism for maintaining and adjusting the optimal pressing load of the drill cutting edge during machining and for preventing overload is provided by upper and lower slide plates installed on the bed of the ultrasonic transducer processing section, and a mechanism installed between the two slide plates. It consists of an overload prevention spring, a span adjustment screw for the overload prevention spring, and a limit switch that is activated to stop the machining operation when a reaction force of a machining part exceeding a specified value is applied to the overload prevention spring.

[作用] 本発明では超音波振動ドリル加工装置本体や振動子冷却
装置、加工試料集塵装置はセル内に設置され、マニピュ
レータによる遠隔操作が可能になっているため、高放射
性高硬度物質でも安全に加工できる0本発明は乾式加工
装置であるから、不純物の混入がなく、湿式法に伴う種
々の問題を全て解決できる。
[Function] In the present invention, the main body of the ultrasonic vibration drilling machine, the vibrator cooling device, and the processed sample dust collection device are installed in the cell and can be remotely controlled by a manipulator, so they can be safely used even with highly radioactive and hard materials. Since the present invention is a dry processing device, there is no contamination of impurities and all the various problems associated with wet methods can be solved.

ドリルの摩耗状態の監視は切削速度計によって検出する
。ドリル先端が大きく摩耗し試料が異常な発熱状態に近
くなると切削速度が極端に低下するため、切削速度を監
視することによって異常発熱の開始を予知しドリル交換
時期を検知する。またドリル欠損が発生すると超音波出
力が急激に低下するため、超音波出力表示計に出力異常
低下検出スイッチを取り付けることによって欠損発生時
に加工動作を停止させる。
The wear condition of the drill is monitored using a cutting speed meter. If the tip of the drill is heavily worn and the sample approaches abnormal heat generation, the cutting speed will drop dramatically, so by monitoring the cutting speed, it is possible to predict the onset of abnormal heat generation and detect when it is time to replace the drill. Furthermore, when a drill chipping occurs, the ultrasonic output drops rapidly, so by attaching an output abnormality drop detection switch to the ultrasonic output indicator, the machining operation is stopped when a chipping occurs.

更にドリル刃先に過大な負荷が発生すると刃先の損傷や
摩耗の進み、試料の異常発熱、試料損傷等が発生する。
Furthermore, if an excessive load is applied to the drill cutting edge, damage to the cutting edge, accelerated wear, abnormal heating of the sample, damage to the sample, etc. will occur.

本発明ではドリル刃先の最適押し当て荷重の保持・調整
と、過負荷を防止する機構は、それらの問題を解決し効
率よい切削加工を可能にする。
In the present invention, the mechanism that maintains and adjusts the optimal pressing load of the drill cutting edge and prevents overload solves these problems and enables efficient cutting.

[実施例] 第1図は本発明に係る超音波加工装置の一実施例を示す
概略構成図である。同図に示すように本発明は、超音波
振動ドリル加工装置本体11と、振動子冷却装置12と
、加工試料M1塵装置13とを具備し、それらを遮蔽壁
14と遮蔽窓15で囲まれたセル16内に設置した構成
である。超音波振動ドリル加工装置本体11と振動子冷
却装置12及び加工試料集m装置13とはそれぞれ冷却
材パイプ17及び集塵パイプ18で機械的に結合されて
いる。また各装置は何れもセル外から電力が供給されて
動作する。
[Embodiment] FIG. 1 is a schematic diagram showing an embodiment of an ultrasonic processing apparatus according to the present invention. As shown in the figure, the present invention includes an ultrasonic vibration drilling device main body 11, a vibrator cooling device 12, and a processing sample M1 dust device 13, which are surrounded by a shielding wall 14 and a shielding window 15. This configuration is installed inside a cell 16. The ultrasonic vibration drilling device main body 11, the vibrator cooling device 12, and the processed sample collection device 13 are mechanically coupled through a coolant pipe 17 and a dust collection pipe 18, respectively. Further, each device operates by being supplied with power from outside the cell.

更に図示するを省略するが、それらの各装置の動作を制
御し計測を行う制御装置がセルの外部に設置される。
Furthermore, although not shown in the drawings, a control device that controls the operation of each of these devices and performs measurements is installed outside the cell.

超音波振動ドリル加工装置本体11の詳細を第2図A、
Bに示す、この超音波振動ドリル加工装置本体11は、
基盤をなすベツド部20の一方の側に設けた超音波振動
子加工部21と、それと反対側に設けた試料保持部及び
試料駆動部を備えており、遠隔操作が可能な乾式加工装
置である。
The details of the ultrasonic vibration drilling device main body 11 are shown in Fig. 2A,
This ultrasonic vibration drilling device main body 11 shown in B is as follows:
This dry processing device is equipped with an ultrasonic transducer processing section 21 provided on one side of a bed section 20 forming a base, and a sample holding section and a sample driving section provided on the opposite side, and can be remotely controlled. .

超音波振動子加工部21は縦振動ホーンツール24、該
ホーンツールの先端に遠隔操作用マニピュレータで着脱
自在の超硬チップ付きドリル25、前記振動子冷却装置
との間で冷却材パイプを接続するための接続部26を備
えている。
The ultrasonic transducer processing section 21 has a longitudinally vibrating horn tool 24, a drill 25 with a carbide tip that can be attached and detached by a remote control manipulator at the tip of the horn tool, and a coolant pipe connected to the transducer cooling device. It is provided with a connection part 26 for the purpose.

試料保持部は、加工用の試料28を固定するコレットチ
ャック29、コレットチャック締付はレバー30.コレ
ットチャック取替え用ハンドル31等からなり、また試
料駆動部は試料回転用モータ33、加工試料を送るステ
ップモータ34、各種リミットスイッチ及びストライカ
−35等を備えている。
The sample holding section includes a collet chuck 29 for fixing the sample 28 for processing, and a lever 30 for tightening the collet chuck. It consists of a collet chuck replacement handle 31, etc., and the sample drive section includes a sample rotation motor 33, a step motor 34 for feeding the processed sample, various limit switches, a striker 35, etc.

またベツド部20のほぼ中央には加工中に落下する試料
籾や破片等を回収するための加工試料受M36と加工試
料飛散防止用のアクリル樹脂製の集塵ボックス37が設
けられ、該集塵ボックス37の上部には前記加工試料集
塵装置との間に接続される集塵バイブ18が取り付けら
れる。
In addition, approximately in the center of the bed section 20, there is provided a processed sample receiver M36 for collecting sample grains, fragments, etc. that fall during processing, and a dust collection box 37 made of acrylic resin for preventing processed samples from scattering. A dust collection vibrator 18 is attached to the upper part of the box 37, which is connected to the processing sample dust collection device.

上記の超音波振動ドリル加工装置本体11では、長尺試
料の加工を容易にするため、80〜100m5に及ぶ燃
料試料に対しては片側からの加工が試料中央部付近まで
到達したならば、−旦、加工を自動停止させ、コレット
チャック部での試料の反転を行い再加工可能な構造にな
っている。
In the above-mentioned ultrasonic vibration drilling apparatus main body 11, in order to facilitate the processing of long samples, when processing from one side of a fuel sample of 80 to 100 m5 reaches near the center of the sample, - The structure allows reprocessing by automatically stopping processing and inverting the sample at the collet chuck section.

振動子冷却vt置12は第3図に示すように、冷却油を
貯蔵する冷却油槽41、油面計42、冷却油を循環する
冷却用ポンプ43、冷却油温度を測定する温度計44等
からなり、第1図に示すように冷却材パイプ17によっ
て超音波振動ドリル加工装置本体11の超音波振動子加
工部21と結合する。
As shown in FIG. 3, the vibrator cooling VT unit 12 includes a cooling oil tank 41 for storing cooling oil, an oil level gauge 42, a cooling pump 43 for circulating the cooling oil, a thermometer 44 for measuring the temperature of the cooling oil, etc. As shown in FIG. 1, it is connected to the ultrasonic vibrator processing section 21 of the ultrasonic vibration drilling apparatus main body 11 via a coolant pipe 17.

加工試料集塵装置13は、第4図に示すように、やや大
きめの(粒径0.3μm程度かそれ以上の)微粒子をト
ラップするプレフィルタ51と、それ以下の微粒子を収
集する高性能エアフィルタ52とを2段直列に組み合わ
せて配置し、その他ブロア53及びフィルタの集塵状況
を監視し目詰まりに対するフィルタ交換時期を指示する
差圧計54を備えている。プレフィルタ51としては例
えば0.3μmメツシュ程度のペーパーフィルタを用い
る。
As shown in FIG. 4, the processed sample dust collector 13 includes a pre-filter 51 that traps slightly larger particles (approximately 0.3 μm in diameter or larger) and a high-performance air filter that collects smaller particles. The filter 52 is arranged in two stages in series, and also includes a blower 53 and a differential pressure gauge 54 that monitors the dust collection status of the filter and indicates when to replace the filter in case of clogging. As the pre-filter 51, for example, a paper filter with a mesh size of about 0.3 μm is used.

上記のような各装置をセルの外部から計測・制御する制
御装置は、振動子冷却装置駆動系、試料回転送り制御系
、及び超音波発振制御系等から構成される。
A control device that measures and controls each of the above devices from outside the cell is composed of a transducer cooling device drive system, a sample rotation feed control system, an ultrasonic oscillation control system, and the like.

本発明に係る装置では、高放射線量率下で使用するため
、超音波振動ドリル加工装置本体11、振動子冷却装置
12、加工試料集塵装置13のうち使用頻度や交換頻度
が高いコレットチャック操作部、ホーンツール部分等に
ついては、何れも単純なレバー式やトルクレンチを用い
た回転式とし、また集塵用フィルタ類につぃてもマニピ
ュレータによる分解・交換が可能な分割組立て方式が採
用されている。
In the apparatus according to the present invention, since it is used under a high radiation dose rate, the collet chuck operation, which is frequently used or replaced among the ultrasonic vibration drilling apparatus main body 11, the vibrator cooling device 12, and the processed sample dust collector 13, is used. The part, horn tool, etc. are all either simple lever type or rotary type using a torque wrench, and the dust collection filters are also divided and assembled so that they can be disassembled and replaced using a manipulator. ing.

次に超音波振動部の一例を第5図A−Cに示す、この超
音波振動部は、4I振動ホーンツール24の先端にドリ
ル25を装着した構造であり、先端のドリル25を用途
に応じて取り替えることによって任意径、任意の硬さの
試料の加工を行なえるようになっている。このような工
具によって硬度HV−1000程度の原子炉燃料までの
加工が可能である。しかし超硬度になるほどドリル先端
の摩耗速度は大きくなり加工に時間を要する。精密加工
が要求されるような場合には粗加工と仕上げ加工の2段
階に分け、また試料のサンプリングを行うような場合に
は中空円形のドリルを使用する。ドリルとホーンツール
とを分割構造にすると低コスト化を図ることができるが
、遠隔操作性をより向上するためにはドリルとホーンツ
ールとを一体化してもよい。
Next, an example of an ultrasonic vibrating part is shown in FIGS. 5A-C. This ultrasonic vibrating part has a structure in which a drill 25 is attached to the tip of a 4I vibrating horn tool 24. By replacing it with a new one, it is possible to process samples of any diameter and any hardness. With such a tool, it is possible to process up to nuclear reactor fuel with a hardness of about HV-1000. However, the harder the material is, the faster the tip of the drill wears out and the longer it takes to process it. When precision machining is required, it is divided into two stages: rough machining and finishing machining, and when sampling samples, a hollow circular drill is used. If the drill and the horn tool are separated, costs can be reduced, but in order to further improve remote operability, the drill and the horn tool may be integrated.

さて本発明では乾式加工を行うために更に以下に述べる
ような機構が付設されている。それらはドリルの摩耗状
態の監視81横、ドリルの欠tJI検出機構、加工時の
ドリル刃先の最適押し当て荷重の保持・調整と過負荷を
防止する機構である。
Now, in the present invention, the following mechanism is further added to perform dry processing. These are a drill wear state monitoring 81 side, a drill missing tJI detection mechanism, a mechanism for maintaining and adjusting the optimum pressing load of the drill cutting edge during machining, and a mechanism for preventing overload.

高硬度の原子炉燃料を乾式で切削加工すると加工中に発
熱量が増大することがあり、昇温によるドリル刃の軟化
によって切削不能の状態になる。また昇温に伴い試料に
悪影響を及ぼす。
Dry cutting of highly hard nuclear reactor fuel may generate an increased amount of heat during processing, and the increased temperature will soften the drill bit, making it impossible to cut. Moreover, as the temperature rises, it has a negative effect on the sample.

これらを防止するため種々の検討を試みた結果、ドリル
先端での発熱量の増大とドリル摩耗が密接に関係してい
ることが明らかとなり、それを利用してドリルの状態を
適切に把握することで乾式加工が可能となることが判明
した。
As a result of trying various studies to prevent these problems, it became clear that the increase in heat generation at the tip of the drill and drill wear are closely related, and it is important to use this to properly understand the condition of the drill. It was found that dry processing was possible.

先ずドリル先端が40〜50%以上摩耗すると急激に切
削速度が低下し、60%以上では試料及びドリル先端で
の発熱が著しく増大することが判った。この関係を第6
図に示す、同図ではHV−830のアルミナ焼結体を試
料としてドリル先端摩耗度c%)に対する切削速度(s
m/分)の関係を示している。ドリル先端摩耗度が60
%を超えた領域が試料発熱域となる。そこで本発明では
問題解決のためにドリルの摩耗程度を切削速度計及び切
削速度記録計で検出し、ドリル先端が大きく摩耗して試
料が発熱状態に近くなると切削速度が極端に低下するこ
とを利用して、異常発熱の開始を予知しドリル交換時期
を検知する機構を採用している。
First, it was found that when the tip of the drill wears out by 40 to 50% or more, the cutting speed decreases rapidly, and if the tip wears out by 60% or more, the heat generation at the sample and the tip of the drill increases significantly. This relationship is the sixth
As shown in the figure, the cutting speed (s
m/min). Drill tip wear rate is 60
The region exceeding % is the sample heat generation region. Therefore, in order to solve this problem, the present invention uses a cutting speed meter and a cutting speed recorder to detect the degree of wear on the drill, and takes advantage of the fact that when the tip of the drill is heavily worn and the sample approaches a heat-generating state, the cutting speed drops dramatically. The system uses a mechanism that predicts the start of abnormal heat generation and detects when it is time to replace the drill.

次に第7図に示すように、乾式加工時にドリル欠損が発
生すると超音波出力が約1/2に減少することが判った
。そこでこのことを利用して超音波出力表示計に出力異
常低下検出スイッチを取り付け、ドリル欠損発生時に加
工動作を停止する機構を設けることによって試料の燃料
被覆管や燃料の損傷を防止している。
Next, as shown in FIG. 7, it was found that when a drill breakage occurs during dry machining, the ultrasonic output decreases to about 1/2. Taking advantage of this fact, we installed an abnormal output drop detection switch on the ultrasonic output indicator and provided a mechanism to stop the machining operation when a drill breakage occurs, thereby preventing damage to the fuel cladding tube and fuel of the sample.

超音波振動が伝達されるドリル刃先に過大な荷重が加わ
ると、刃先損傷や摩耗の進行、試料の異常発熱、試料損
傷等が生じる。これらを防止するためには試料加工時の
ドリル刃先の押し当て荷重を常時最適値に保つ必要があ
る。第8図は模擬燃料としてHv−800のアルミナ焼
結体を使用して求めたドリル刃先押し当て荷重(kg)
と切削速度との関係を示している。同図から明らかなよ
うに、ドリル刃先押し当て荷重が0.8〜1.2kgの
範囲において最も良好な切削効率を示し、0.7kg以
下では切削速度が低く、逆に1.4kg以上ではドリル
の摩耗速度が増加し切削速度も急速に低下する0本発明
ではこのような関係をふまえ、ドリル刃先の加工試料へ
の押し当て荷重が最適となるようなa横を組み込んでい
る。その例を第9図に示す。
If an excessive load is applied to the drill cutting edge through which ultrasonic vibrations are transmitted, damage to the cutting edge, progression of wear, abnormal heating of the sample, damage to the sample, etc. will occur. In order to prevent these problems, it is necessary to keep the pressing load of the drill cutting edge at an optimum value at all times during sample processing. Figure 8 shows the drill tip pressing load (kg) determined using Hv-800 alumina sintered body as a simulated fuel.
It shows the relationship between and cutting speed. As is clear from the figure, the best cutting efficiency is shown when the drill tip pressing load is in the range of 0.8 to 1.2 kg, cutting speed is low when the load is 0.7 kg or less, and conversely, when the load is 1.4 kg or more, the cutting efficiency is low. The wear rate increases and the cutting speed also rapidly decreases.In the present invention, in consideration of this relationship, the a side is incorporated so that the pressing load of the drill cutting edge against the processed sample is optimized. An example is shown in FIG.

この機構は、試料保持装置61を搭載する上部スライド
盤63と、これらを搭載し定速駆動する下部スライド盤
62との間に設けられるものである。即ち両スライド′
g!62.63の間に過負荷防止スプリング64と、そ
のスパン調整ネジ65と、過負荷防止スプリング64に
規定以上の加工部反力がかかった時に作動して加工動作
を停止させるリミットスイッチ66を設けたものである
。過負荷防止スプリング64については第2図Bにも図
示しである。
This mechanism is provided between an upper slide board 63 on which the sample holding device 61 is mounted and a lower slide board 62 on which these are mounted and driven at a constant speed. That is, both slides′
g! Between 62 and 63, there are provided an overload prevention spring 64, its span adjustment screw 65, and a limit switch 66 that is activated to stop the machining operation when the overload prevention spring 64 is subjected to a reaction force on the machining part that exceeds a specified value. It is something that The overload prevention spring 64 is also illustrated in FIG. 2B.

切削加工時にはステップモータ34 (第2図A参照)
により下部スライド盤62を白抜き矢印a方向に定速駆
動する。上部スライド盤63には過負荷防止スプリング
64を介して駆動力が加わり、それと反対方向(白抜き
矢印b)に加工部反力が加わる。過負荷防止スプリング
64のスパンを調節ネジ65により最適切削押し当て荷
重に設定し切削加工を行わせる。このように過9L荷防
止スプリング64はドリル先端への最適押し当て荷重素
子としての役割をも果たす、ドリル刃先の押し当て荷重
が規定以上になった場合は、過負荷防止スプリング64
が反力に応じて収縮し、リミットスイッチ66が作動す
る。これによって加工試料の送り用ステップモータ34
及び試料回転用モータ33が停止し、加工動作が停止す
るように動作する。
During cutting, the step motor 34 (see Figure 2 A)
The lower slide plate 62 is driven at a constant speed in the direction of the white arrow a. A driving force is applied to the upper slide plate 63 via the overload prevention spring 64, and a reaction force of the processed portion is applied in the opposite direction (white arrow b). The span of the overload prevention spring 64 is set to the optimum cutting pressing load using the adjustment screw 65, and cutting is performed. In this way, the excessive 9L load prevention spring 64 also plays a role as an optimal pressing load element to the drill tip.If the pressing load of the drill tip exceeds the specified value, the overload prevention spring
contracts in response to the reaction force, and the limit switch 66 is activated. As a result, the step motor 34 for feeding the processing sample
Then, the sample rotation motor 33 is stopped, and the processing operation is stopped.

さて一般に超音波による加工速度を増大させるためには
先端加工工具の超音波振動の振幅を大きくすればよく、
このためには振動子への電気入力を大きくするか振動子
の共振周波数をできる限り低くするのがよい、しかし振
動子周波数が低くなると可聴音となる虞れがあるため、
実用的には16〜30kHzの範囲の周波数が選ばれて
いる0本装夏は気密型セル内に設置されることを考慮し
、共振周波数として16kHz近傍を選定し、この条件
で電気人力を最大にする超音波振動制御系を採用してい
る。実際には制御装置に超音波振動調整切り換えスイッ
チを設け、それによって最大出力を調整・保持できるよ
うになっている。
Now, generally speaking, in order to increase the machining speed using ultrasonic waves, it is sufficient to increase the amplitude of the ultrasonic vibrations of the tip machining tool.
For this purpose, it is best to increase the electrical input to the vibrator or to lower the resonant frequency of the vibrator as much as possible.However, if the vibrator frequency is low, there is a risk that the sound will become audible.
Practically speaking, a frequency in the range of 16 to 30 kHz is selected. Considering that this unit will be installed in an airtight cell, a resonance frequency of around 16 kHz was selected, and under this condition electric power can be maximized. Adopts an ultrasonic vibration control system. In reality, the control device is equipped with an ultrasonic vibration adjustment switch, which allows the maximum output to be adjusted and maintained.

原子炉燃料の切削加工においては、燃料以外の物質を混
入させることなく、且つ加工により生じた燃料破片、燃
料物等の燃料物質を高回収率で回収することが強く要請
される0例えばウランとプルトニウムの混合酸化物燃料
の燃料除去加工においては、0.1gのオーダーの回収
が望まれている。また原子炉燃料加工中における燃料物
の飛散による汚染の低レベル化、汚染除去時の放射性廃
棄物の低減化も重要な課題をなしている0本発明におい
ては、超音波振動ドリル加工装置本体の中央部に設けた
加工試料受槽内で試料を移動・加工し、加工中に落下す
る燃料相や破片を先ず回収し、また微粉化した燃料相に
ついては第4図に示すような加工試料集塵装置によって
回収率を高めるようになっている。本体の集塵ボックス
37から吸引した空気中の燃料微粉はプレフィルタ51
でトラップされる。プレフィルタ51に捕獲された微粉
末は集11装置からプレフィルタ51そのものを分解し
取り出すことによって収集可能である。高性能エアフィ
ルタ52’t’はプレフィルタ51を通過した燃料相を
トラップし、セル内での燃料微粉の飛散による汚染防止
、ひいては汚染除去時の放射性廃棄物の低減化を図って
いる。
In the cutting process of nuclear reactor fuel, it is strongly required to recover fuel materials such as fuel fragments and fuel products with a high recovery rate without mixing substances other than fuel and with a high recovery rate. In fuel removal processing of plutonium mixed oxide fuel, recovery on the order of 0.1 g is desired. In addition, it is important to reduce the level of contamination caused by scattering fuel particles during reactor fuel processing and to reduce radioactive waste during decontamination. The sample is moved and processed in a processed sample receiving tank provided in the center, and the fuel phase and debris that fall during processing are first collected, and the pulverized fuel phase is collected in a processed sample collection as shown in Figure 4. Dust equipment is designed to increase recovery rates. Fine fuel powder in the air sucked from the dust collection box 37 of the main body is passed through the pre-filter 51.
be trapped in The fine powder trapped in the prefilter 51 can be collected by disassembling and taking out the prefilter 51 itself from the collector 11 device. The high-performance air filter 52't' traps the fuel phase that has passed through the pre-filter 51, and prevents contamination due to scattering of fuel particles within the cell, thereby reducing radioactive waste during decontamination.

次に本実施例に示す装置によって模擬燃料であるアルミ
ナ焼結ペレットを加工した場合の回収例を第1表に示す
。同表に示すように、回収率は非常に良好で、平均99
%以上の値になっている。
Next, Table 1 shows examples of recovery when sintered alumina pellets, which are simulated fuel, are processed using the apparatus shown in this example. As shown in the table, the recovery rate was very good, with an average of 99%.
% or more.

第  1 表 試験に使用した模擬燃料ペレットはステンレスa被覆管
に焼き嵌めた均質の超硬アルミナ焼結体であり、微細ク
ランクは全くない稠密のものである。ところが実際の加
工対象物の代表的なものは、被覆管に酸化物燃料ペレッ
トを収めたものであり、このような使用済原子炉燃料ペ
レットでは微細な空孔やクランクが多数発生している。
Table 1 The simulated fuel pellets used in the tests were homogeneous cemented carbide alumina sintered bodies shrink-fitted into a stainless steel a cladding tube, and were dense with no fine cranks. However, a typical workpiece in reality is a cladding tube containing oxide fuel pellets, and such spent nuclear reactor fuel pellets have many minute holes and cranks.

このため極めて破片化・細粉化し易く、緻密な充填状態
の模擬燃料ペレ7)の場合よりも容易に加工し得るもの
と判断できる。従って本発明の装置によってピンカース
硬さ800以上の超硬度の原子炉燃料の深穴加工や切削
加工を、乾式で研磨材を使用することなく、遠隔操作用
マニピュレータにより行うことができ、しかも燃料加工
粉を99.9り6以上の高効率で回収することができる
Therefore, it can be judged that it is extremely easy to fragment and become fine powder, and can be processed more easily than the case of the densely packed simulated fuel pellet 7). Therefore, with the device of the present invention, it is possible to perform deep hole machining and cutting of ultrahard nuclear reactor fuel with a Pinkers hardness of 800 or more using a remote control manipulator in a dry manner without using an abrasive material, and furthermore, it is possible to perform fuel processing using a remote control manipulator. Powder can be recovered with high efficiency of 99.9% or more.

以上本発明の好ましい一実施例について詳述したが、本
発明はこのような構成のみに限定されるものではない。
Although a preferred embodiment of the present invention has been described above in detail, the present invention is not limited to only such a configuration.

上記の実施例では超音波振動ドリル加工装置本体を横置
型構造にしているが、超音波振動子加工部を垂直に設置
し、加工試料部を垂直に駆動させるような縦型構造にし
てもよい、また上記の実施例では試料保持部を駆動する
方式であるが、試料保持部を固定し超音波振動子加工部
を動かすような構造にしてもよい。
In the above embodiment, the main body of the ultrasonic vibration drilling apparatus has a horizontal structure, but it may also have a vertical structure in which the ultrasonic vibrator processing section is installed vertically and the processed sample section is driven vertically. Furthermore, although the above embodiment uses a method in which the sample holding section is driven, a structure may be adopted in which the sample holding section is fixed and the ultrasonic transducer processing section is moved.

本発明に係る装置は次のような用途に利用できる。The device according to the present invention can be used for the following purposes.

■使用済原子炉燃料付き被覆管から、被覆管が健全なま
まの状態で燃料のみを効率よく回収し、材料の照射特性
を調べるための被覆管試料を採取すること、 ■燃料温度測定のための熱電対埋込み用穴加工や中性子
照射量測定のためのワイヤ・モニタ埋込み用穴を設ける
ための原子炉燃料加工、中空燃料ペレット作成のための
穴加工、その他の目的のための燃料深穴加工に利用する
こと、■原子炉内で使用した高放射性の制御棒からB、
Cペレット片を採取すること、 等に使用できる。
■ Efficient recovery of only the fuel from spent reactor fuel-containing cladding while the cladding remains healthy, and collection of cladding samples to examine the irradiation characteristics of the material; ■ To measure fuel temperature. Reactor fuel processing to create holes for embedding thermocouples and wire monitors for neutron irradiation measurement, hole drilling for making hollow fuel pellets, and deep hole drilling for fuel for other purposes. B from the highly radioactive control rods used in the nuclear reactor.
It can be used for collecting C pellet pieces, etc.

[発明の効果] 本発明では上記のように超音波振動ドリル加工装置本体
や振動子冷却装置、加工試料集塵装置をセル内に設置し
、それらを遠隔操作用マニピュレータにより操作可能に
すると共に、ドリルの各種状態の監視検出機構やドリル
刃先の最適押し当て荷重の保持・調整等ができる機構を
設けたから、ピンカース硬さ800以上の超硬度の原子
炉燃料の深穴加工や切削加工等を乾式で研磨材を使用す
ることな〈実施でき、しかも放射性加工粉や燃料加工粉
を99%以上の高回収率で回収することが可能となった
[Effects of the Invention] In the present invention, as described above, the main body of the ultrasonic vibration drilling processing device, the vibrator cooling device, and the processing sample dust collection device are installed in the cell, and they are made operable by a remote control manipulator, We have installed a mechanism that monitors and detects various conditions of the drill and maintains and adjusts the optimum pressing load of the drill cutting edge, making it possible to perform dry-type deep hole drilling and cutting of ultra-hard nuclear reactor fuel with a Pinkers hardness of 800 or higher. This method can be carried out without using abrasive materials, and radioactive processed powder and fuel processed powder can be recovered with a high recovery rate of over 99%.

このような本発明装置を活用することによって、原子炉
技術の中でもキーテクノロジーである原子炉燃料集合体
の長寿命化、信頼性の高い高性能原子炉燃料の開発等を
促進することができる。
By utilizing such a device of the present invention, it is possible to extend the life of a reactor fuel assembly, which is a key technology in nuclear reactor technology, and to promote the development of highly reliable and high-performance reactor fuel.

更に極めて高回収率で燃料加工が可能であり、且つ乾式
のため不純物の混入が無い状態で原子炉燃料を回収でき
る結果、原子炉燃料の有効な再利用を図ることができる
。また、作業環境における原子炉燃料粉の飛散による放
射能汚染を防止し、原子炉燃料物質を含む放射性廃棄物
量を低減化でき、照射後試験施設周辺の環境に放出され
る放射性物質を掻く低レベルに維持すること等が可能と
なる等、数々の優れた効果を有するものである。
Furthermore, it is possible to process fuel with an extremely high recovery rate, and since it is a dry process, reactor fuel can be recovered without contamination with impurities, making it possible to effectively reuse the reactor fuel. In addition, it can prevent radioactive contamination due to scattering of reactor fuel powder in the working environment, reduce the amount of radioactive waste including reactor fuel materials, and reduce the level of radioactive materials released into the environment around the test facility after irradiation. It has many excellent effects, such as being able to maintain the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る超音波加工装置の一実施例を示す
概略横威図、第2図A、Bは超音波振動ドリル加工装置
本体の正面図と平面図、第3図は振動子冷却装置の正面
図、第4図は加工試料集塵装置の正面図、第5図A、B
、Cはそれぞれ超音波振動子部の正面図とドリル刃先の
拡大図及びその側面図である。また第6図はドリル先端
摩耗度と切削速度との関係を示す説明図、第7図はドリ
ル欠損発生時における出力変化を示す説明図、第8図は
ドリル刃先押し当て荷重に対する切削速度の関係を示す
説明図、第9図は加工時におけるドリル刃先の最適押し
当て荷重の保持・調整と過負荷を防止する機構を示す説
明図である。
Fig. 1 is a schematic horizontal view showing one embodiment of the ultrasonic machining device according to the present invention, Fig. 2 A and B are a front view and a plan view of the main body of the ultrasonic vibration drilling device, and Fig. 3 is a vibrator. A front view of the cooling device, Figure 4 is a front view of the processed sample dust collector, and Figures 5 A and B.
, C are a front view of an ultrasonic transducer part, an enlarged view of a drill cutting edge, and a side view thereof, respectively. Furthermore, Fig. 6 is an explanatory diagram showing the relationship between drill tip wear degree and cutting speed, Fig. 7 is an explanatory diagram showing the output change when drill chipping occurs, and Fig. 8 is an explanatory diagram showing the relationship between cutting speed and drill tip pressing load. FIG. 9 is an explanatory diagram showing a mechanism for maintaining and adjusting the optimum pressing load of the drill cutting edge during machining and for preventing overload.

Claims (1)

【特許請求の範囲】 1、(a)超音波縦振動ホーンツールの先端に遠隔操作
用マニピュレータで着脱自在の超硬チップ付きドリルを
装着した超音波振動子加工部、同様に遠隔操作可能なコ
レットチャック式試料保持部、加工試料受槽を有する乾
式の超音波振動ドリル加工装置本体と、 (b)冷却材を循環して前記超音波振動子加工部を冷却
する振動子冷却装置と、 (c)プレフィルタと高性能エアフィルタを備えた加工
試料集塵装置と、 をセル内に設置すると共に、ドリルの摩耗状態の監視機
構、ドリルの欠損検出機構、加工時のドリル刃先の最適
押し当て荷重の保持・調整と過負荷を防止する機構を設
けたことを特徴とする超音波加工装置。 2、ドリルの摩耗状態の監視機構は切削速度計を含んで
いる請求項1記載の超音波加工装置。 3、ドリルの欠損検出機構は、超音波出力の異常低下検
出スイッチを含んでいる請求項1記載の超音波加工装置
。 4、加工時のドリル刃先の最適押し当て荷重の保持・調
整と過負荷を防止する機構は、超音波振動子加工部のベ
ッド部上に設けた上下のスライド盤と、両スライド盤間
に設けた過負荷防止スプリングと、該過負荷防止スプリ
ングのスパン調整ネジと、過負荷防止スプリングに規定
以上の加工部反力がかかった時に作動し加工動作を停止
させるリミットスイッチとからなる請求項1記載の超音
波加工装置。
[Claims] 1. (a) An ultrasonic vibrator processing section in which a drill with a carbide tip that can be freely attached and detached by a remote control manipulator is attached to the tip of an ultrasonic longitudinal vibration horn tool, and a collet that can also be remotely controlled. (b) a vibrator cooling device that cools the ultrasonic vibrator processing section by circulating a coolant; (c) A processing sample dust collector equipped with a pre-filter and a high-performance air filter is installed in the cell, as well as a drill wear condition monitoring mechanism, a drill chipping detection mechanism, and an optimal pressing load of the drill cutting edge during machining. An ultrasonic processing device characterized by having a mechanism for holding/adjusting and preventing overload. 2. The ultrasonic machining apparatus according to claim 1, wherein the mechanism for monitoring the wear state of the drill includes a cutting speed meter. 3. The ultrasonic machining apparatus according to claim 1, wherein the drill defect detection mechanism includes an abnormal decrease detection switch of ultrasonic output. 4. The mechanism that maintains and adjusts the optimal pressing load of the drill cutting edge during machining and prevents overload is provided by upper and lower slide plates installed on the bed of the ultrasonic transducer processing section, and between both slide plates. 2. The overload prevention spring comprising: an overload prevention spring; a span adjustment screw for the overload prevention spring; and a limit switch that is activated to stop the machining operation when a reaction force of a machining part exceeding a specified value is applied to the overload prevention spring. ultrasonic processing equipment.
JP63320193A 1988-12-19 1988-12-19 Ultrasonic processing equipment Expired - Lifetime JPH0712568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63320193A JPH0712568B2 (en) 1988-12-19 1988-12-19 Ultrasonic processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63320193A JPH0712568B2 (en) 1988-12-19 1988-12-19 Ultrasonic processing equipment

Publications (2)

Publication Number Publication Date
JPH02167609A true JPH02167609A (en) 1990-06-28
JPH0712568B2 JPH0712568B2 (en) 1995-02-15

Family

ID=18118746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63320193A Expired - Lifetime JPH0712568B2 (en) 1988-12-19 1988-12-19 Ultrasonic processing equipment

Country Status (1)

Country Link
JP (1) JPH0712568B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001256A1 (en) * 1992-07-13 1994-01-20 Sohzohkagaku Co., Ltd. Ultrasonic drilling machine
JP2002066878A (en) * 2000-09-04 2002-03-05 Honda Motor Co Ltd Method and device for detecting deficiency of machining tool
JP2005103735A (en) * 2003-10-01 2005-04-21 Mori Seiki Co Ltd Tool attachment confirmation device
JP2013136814A (en) * 2011-12-28 2013-07-11 Fujimi Inc Ceramic spray deposit and method for manufacturing the same
JP2017154199A (en) * 2016-02-29 2017-09-07 国立大学法人名古屋大学 Vibration processing device and vibration processing method
CN114160818A (en) * 2021-12-06 2022-03-11 西北工业大学 CfAuxiliary force measuring device for turning of/SiC ceramic matrix composite and machining method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120504U (en) * 1983-02-02 1984-08-14 日本電気株式会社 ultrasonic processing machine
JPS61205748U (en) * 1986-05-14 1986-12-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120504U (en) * 1983-02-02 1984-08-14 日本電気株式会社 ultrasonic processing machine
JPS61205748U (en) * 1986-05-14 1986-12-25

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001256A1 (en) * 1992-07-13 1994-01-20 Sohzohkagaku Co., Ltd. Ultrasonic drilling machine
JP2002066878A (en) * 2000-09-04 2002-03-05 Honda Motor Co Ltd Method and device for detecting deficiency of machining tool
JP4605875B2 (en) * 2000-09-04 2011-01-05 本田技研工業株式会社 Processing tool defect detection device
JP2005103735A (en) * 2003-10-01 2005-04-21 Mori Seiki Co Ltd Tool attachment confirmation device
JP2013136814A (en) * 2011-12-28 2013-07-11 Fujimi Inc Ceramic spray deposit and method for manufacturing the same
JP2017154199A (en) * 2016-02-29 2017-09-07 国立大学法人名古屋大学 Vibration processing device and vibration processing method
CN114160818A (en) * 2021-12-06 2022-03-11 西北工业大学 CfAuxiliary force measuring device for turning of/SiC ceramic matrix composite and machining method

Also Published As

Publication number Publication date
JPH0712568B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
US20220148746A1 (en) Insitu Process and System for the Dry Sampling & Characterization of Irradiated Zircaloy Pressure Tubes, Activated Alloy Metals and Graphite from Nuclear Reactor Components
JPH02167609A (en) Ultrasonic machining device
CN213914238U (en) Vibration grinding and conveying device for soil remediation
JPH02176599A (en) Ultrasonic working method for nuclear reactor fuel
JPS6322553B2 (en)
KR101945455B1 (en) System for cutting drum
JP2000075095A (en) Decontamination device of radioactivity contaminated matter and recovery method for abrasive
JPH0885047A (en) Cutter tip abrasion detecting method for cutting tool
EP1391259A1 (en) Noble metal in-situ sampling method and apparatus
US8502179B1 (en) Amalgam of crushed hazardous radioactive waste, such as spent nuclear fuel rods, mixed with copious amounts of lead pellets, also granulated, to form a mixture in which lead granules overwhelm
JP2004505285A (en) Integrated decontamination and characterization system and method
CN217393265U (en) Dust collecting equipment is used in processing of new forms of energy living beings granule
JP2005040910A (en) Chip compressor and compression method for chip by use of it
CN213794807U (en) Pneumatic chip removal mechanism of cnc engraving and milling machine
CN214489030U (en) Pipeline engineering groove machining device
CN216815042U (en) Slag recovery device of high-carbon ferrochrome smelting furnace
CN212076841U (en) Slag removal device for mineral wool production
CN220677981U (en) Silicon carbide micro powder grinding equipment
Boyd et al. DISASSEMBLY AND SAMPLING OF IRRADIATED MATERIALS IN THE UNITED STATES. Paper Communication No. 23
CN218107999U (en) Industrial automatic control instrument system controller module waste treatment device
CN212859089U (en) Motorcycle starting rod spline seat grinding device
JPH0727062B2 (en) High burnup fuel defueling method and apparatus
Krause STUDSVIK's methods for treatment/free release of components and buildings structures from decommissioning of nuclear installations
Semin et al. Experimental Cutting of Snf Samples by Mechanical and Thermal Methods to Examine the Efficiency of Different Air Filtration Techniques of Generated Dust
JP6482230B2 (en) Apparatus and method for analyzing radioactive material