JP2761321B2 - Abrasive - Google Patents

Abrasive

Info

Publication number
JP2761321B2
JP2761321B2 JP4056422A JP5642292A JP2761321B2 JP 2761321 B2 JP2761321 B2 JP 2761321B2 JP 4056422 A JP4056422 A JP 4056422A JP 5642292 A JP5642292 A JP 5642292A JP 2761321 B2 JP2761321 B2 JP 2761321B2
Authority
JP
Japan
Prior art keywords
abrasive grains
grinding
particle
abrasive
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4056422A
Other languages
Japanese (ja)
Other versions
JPH05214320A (en
Inventor
正治 鈴木
知巳 二階堂
宏彰 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP4056422A priority Critical patent/JP2761321B2/en
Publication of JPH05214320A publication Critical patent/JPH05214320A/en
Application granted granted Critical
Publication of JP2761321B2 publication Critical patent/JP2761321B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、多結晶型の立方晶窒化
ほう素(cBN)からなる研削砥石用砥粒に関するもの
である。本発明の砥粒が応用される研削砥石としては、
特に高品位かつ高能率研削用のレジンボンド砥石、ビト
リファイド砥石等があげられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abrasive for grinding wheels made of polycrystalline cubic boron nitride (cBN). As the grinding wheel to which the abrasive grains of the present invention are applied,
Particularly, a resin bond grindstone, a vitrified grindstone and the like for high quality and high efficiency grinding are exemplified.

【0002】[0002]

【従来の技術】cBNはダイヤモンドに次ぐ硬さと熱伝
導率を有し、鉄系金属と反応しないとうダイヤモンドに
はない特徴を持つことから、鉄系金属の研削加工用砥粒
としての利用が進められている。
2. Description of the Related Art Since cBN has hardness and thermal conductivity next to diamond and has characteristics that diamond does not react with iron-based metals, it has been increasingly used as abrasive grains for grinding of iron-based metals. Have been.

【0003】近年の研削加工は、高品位化、高能率化の
方向にある。高品位加工とは、加工物の表面性状を高品
位にする加工であり、その具体例としては、加工物表面
の表面粗さを小さくすることや意図的に加工物表面に圧
縮応力を残留させて加工物の機械的強度をあげることで
ある。一方、高能率化とは、たとえば単位時間当たりの
加工量を増やす目的で砥石の周速度を大きくすることで
あり、最近では周速度60m/sec 以上の高速研削も検討さ
れている。
[0003] In recent years, the grinding process is in the direction of higher quality and higher efficiency. High-quality processing is processing to improve the surface properties of the workpiece, and specific examples include reducing the surface roughness of the workpiece surface or intentionally leaving compressive stress on the workpiece surface. To increase the mechanical strength of the workpiece. On the other hand, to improve the efficiency means to increase the peripheral speed of the grindstone, for example, in order to increase the amount of processing per unit time. Recently, high-speed grinding at a peripheral speed of 60 m / sec or more has been studied.

【0004】しかしながら、従来のcBN砥粒では、高
品位化と高能率化を同時に満足するような砥石にはでき
なかった。それは、以下に示す要求を同時に満たすよう
な砥粒が存在しなかったことに起因している。 (1)加工物の表面粗さを小さく一定に保つという目的
のためには、砥石に含まれる砥粒の中で一部の粒子が目
つぶれを起こすことなく、粒子一つ一つの強度にバラツ
キのない均一な砥粒が必要となる。 (2)加工物表面に圧縮応力を残留させるという目的の
ためには、「cBNホイール研削加工技術」(工業調査
会 1988 年発行)に紹介されているように、砥石の切れ
味をよくする、すなわち、研削抵抗を小さくして研削中
に加工物との間で発生する摩擦熱を充分小さくする必要
がある。そのためには、切れ味を一定に維持するために
研削時に砥粒が適当に破壊し脱落し、新たな砥粒切れ刃
が砥石表面に露出させる必要があり、均一で適当な破砕
性を持つ砥粒が要求される。 (3)砥石の周速度を大きくし高速研削を行う目的のた
めには、研削時に砥粒部分に大きな負荷がかかるので、
高い強度を持つ砥粒が要求される。
[0004] However, conventional cBN abrasive grains cannot be made into a grindstone satisfying both high quality and high efficiency at the same time. This is because no abrasive grains satisfying the following requirements at the same time existed. (1) For the purpose of keeping the surface roughness of the workpiece small and constant, among the abrasive grains contained in the grindstone, some of the grains do not cause blindness and the strength of each grain varies. The need for uniform abrasive grains without blemishes. (2) For the purpose of leaving compressive stress on the workpiece surface, as described in “cBN wheel grinding technology” (issued by the Industrial Research Council in 1988), the sharpness of the grinding wheel is improved. In addition, it is necessary to reduce the frictional heat generated between the workpiece and the workpiece during grinding by reducing the grinding resistance. Therefore, in order to maintain the sharpness, the abrasive grains must be properly broken and fall off during grinding, and new abrasive grains must be exposed on the grinding wheel surface. Is required. (3) For the purpose of increasing the peripheral speed of the grinding wheel and performing high-speed grinding, a large load is applied to the abrasive grains during grinding.
Abrasives with high strength are required.

【0005】従来から用いられてきた単結晶型のcBN
砥粒は、粒子一つ一つが自形した単結晶の形状を持つた
め強度が比較的均一であり、また、単結晶であるので容
易にへき開しやすく破砕性も大きいが、強度が小さくて
周速度60m/sec のような高速研削に耐えるようなもので
はなかった。
[0005] Single-crystal type cBN conventionally used
Abrasive grains have a relatively uniform strength because each grain has a self-shaped single crystal shape.Since it is a single crystal, it is easily cleaved and has high friability. It was not something that could withstand high-speed grinding at a speed of 60 m / sec.

【0006】一方、高い強度を持つcBN砥粒としては
多結晶型のものがある。多結晶型の砥粒は、微細な結晶
粒子が互いに強固に結合した多結晶体構造を有するた
め、粒子一つが単結晶により構成される単結晶型cBN
砥粒のようにへき開などの大破壊を起こさず、高い強度
を示す。しかし、従来の多結晶型のcBN砥粒は、逆に
強度が大きすぎて適当に破砕しないので、研削中に切れ
刃先端が摩耗し丸くなるため切れ味に劣る。さらには、
均一な砥粒強度を持たないので砥石表面の一部の砥粒が
破壊してしまい、加工物の表面が粗れてくるので頻繁に
ドレッシング、ツルーイングを行わなければならない等
の問題点があった。
On the other hand, there is a polycrystalline type cBN abrasive having high strength. Since the polycrystalline type abrasive has a polycrystalline structure in which fine crystal grains are strongly bonded to each other, a single crystal type cBN in which one particle is composed of a single crystal is used.
Shows high strength without causing large destruction such as cleavage like abrasive grains. However, conventional polycrystalline cBN abrasive grains, on the other hand, are too strong to be appropriately crushed, so that the tip of the cutting edge is worn and rounded during grinding, resulting in poor sharpness. Furthermore,
Since there is no uniform abrasive grain strength, some abrasive grains on the grindstone surface are destroyed, and the surface of the workpiece becomes rough, so there is a problem that frequent dressing and truing must be performed. .

【0007】一般に砥粒の形状と強度の間には相関があ
り、かさの大きい粒子ほど強度が大きいと言われてき
た。そのため、砥粒の形状の基準として、JIS R6
126「人造研削材のかさ比重試験法」に規定されてい
るように、粒子を一定容積に充填したときに得られるか
さ比重が採用されてきた。しかし、この方法では粒子の
形状を間接的にしか捉えることができず、特に砥石とし
て用いた場合の研削特性との間にはよい相関は得られて
いなかった。
Generally, there is a correlation between the shape and the strength of the abrasive grains, and it has been said that the larger the bulk, the higher the strength. Therefore, JIS R6
As specified in 126 "Test Method for Bulk Specific Gravity of Artificial Abrasive", bulk specific gravity obtained when particles are filled to a certain volume has been adopted. However, this method can only indirectly grasp the shape of the particles, and a good correlation has not been obtained particularly with the grinding characteristics when used as a grindstone.

【0008】[0008]

【発明が解決しようとする課題】本発明者らは、以上の
問題点を解決し、高品位かつ高能率加工に適した研削砥
石用砥粒を提供することを目的とし、多結晶型cBN砥
粒の強度について、種々検討した結果、以下のように、
粒子先端の形状が砥粒の強度に大きく影響する事実を見
いだし、本発明を完成させたものである。
DISCLOSURE OF THE INVENTION The present inventors have solved the above-mentioned problems, and an object of the present invention is to provide abrasive grains for a grinding wheel suitable for high-quality and high-efficiency machining. As a result of various studies on the strength of the grains, as follows:
The inventors have found that the shape of the particle tip greatly affects the strength of the abrasive grains, and have completed the present invention.

【0009】(1)市販の多結晶型cBN砥粒を用いた
砥石で実際に周速度60m/sec の高能率の条件で研削を行
い、その前後で砥石表面の状態を観察した結果、研削前
に粒子先端の凹凸が大きい形状を持っていた砥粒が選択
的に破砕を起こし新たな鋭利な刃先となっている。 (2)研削前に粒子先端の凹凸が少ない形状を持つ砥粒
は、研削中にも破砕せず、粒子先端が摩耗して丸まる。 (3)粒子先端の凹凸が大きい砥粒のみを用いた砥石で
周速度60m/secの高能率研削を行ったところ、長時間に
渡って研削抵抗の上昇がなく、砥石の摩耗量も小さかっ
た。しかも加工物の表面には圧縮応力が残存していた。 (4)さらに、破壊を起こしやすい粒子の形状を表現す
る方法を種々検討した結果、粒子の2次元投影像とそれ
に外接する円との比率の逆数で表される形状係数と多結
晶cBN砥粒の強度との間に強い相関があり、その値が
1.7 〜1.8 を境に砥粒の破壊強度が大きく変わる。
(1) Grinding was actually performed with a grindstone using commercially available polycrystalline cBN abrasive grains at a high efficiency of a peripheral speed of 60 m / sec, and the state of the grindstone surface was observed before and after the grinding. Abrasive grains having a shape with large irregularities at the tip of the particles are selectively crushed to form a new sharp edge. (2) Abrasive grains having a shape with few irregularities at the tip of the particle before grinding do not break during grinding, but the tip of the particle is worn and rounded. (3) When high-efficiency grinding at a peripheral speed of 60 m / sec was performed with a grindstone using only abrasive grains having large irregularities at the particle tip, there was no increase in grinding resistance over a long period of time, and the wear amount of the grindstone was small. . Moreover, compressive stress remained on the surface of the workpiece. (4) Furthermore, as a result of various studies on methods for expressing the shape of a particle which is liable to break, a shape factor represented by a reciprocal of a ratio between a two-dimensional projected image of the particle and a circle circumscribed therewith, and a polycrystalline cBN abrasive grain There is a strong correlation with the intensity of
The breaking strength of abrasive grains changes greatly between 1.7 and 1.8.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明は、粒
子の2次元投影像とそれに外接する円との比率の逆数で
表される形状係数の平均が1.7 を越え、その標準偏差が
0.4 以下である多結晶型立方晶窒化ほう素からなること
を特徴とする砥粒である。
That is, according to the present invention, the average of the shape coefficient represented by the reciprocal of the ratio of the two-dimensional projected image of the particle to the circumscribed circle exceeds 1.7, and the standard deviation thereof is
An abrasive grain comprising a polycrystalline cubic boron nitride of 0.4 or less.

【0011】以下、さらに詳しく本発明について説明す
る。
Hereinafter, the present invention will be described in more detail.

【0012】本発明において、砥粒の形状を規定する
際、形状係数の平均や標準偏差等の統計量を用いて行う
理由は、多結晶型cBN砥粒は一つ一つを見れば形状が
個々に異なる粒子の集まったものであり、また、砥石は
形状の異なる数多くの粒子を含んでいるので、実際の砥
粒の形状を表現し、品質を規定するには様々な粒子から
なる集団を表現できる統計量を用いる必要があるからで
ある。
In the present invention, the reason for defining the shape of the abrasive grains by using statistics such as the average and the standard deviation of the shape factors is that the polycrystalline cBN abrasive grains have different shapes when viewed one by one. It is a collection of different particles, and the grindstone contains many particles with different shapes, so to express the actual shape of the abrasive grains and define the quality, a group consisting of various particles is This is because it is necessary to use a statistic that can be expressed.

【0013】砥粒の形状係数の平均や標準偏差を正確に
得るためには縮分操作によるサンプリング方法が重要と
なるが、これについては、JIS R6003に「研磨
材のサンプリング方法」に規定された方法を用いるのが
よい。
In order to accurately obtain the average and the standard deviation of the shape factors of the abrasive grains, a sampling method by a reduction operation is important, and this is specified in JIS R6003 in "Abrasive Sampling Method". It is better to use the method.

【0014】本発明における形状係数は、粒子の2次元
投影像とそれに外接する円との比率の逆数として定義さ
れるものであり、次式で表される。形状係数=(粒子の
2次元投影像の面積/外接円の面積)-1この形状係数の
値は、上式から明らかなように、粒子の投影図が完全な
円である場合に1.0 となり、形状がランダムになるに従
い大きくなるものである。
The shape factor in the present invention is defined as the reciprocal of the ratio between a two-dimensional projected image of a particle and a circumscribed circle, and is expressed by the following equation. Shape factor = (area of two-dimensional projected image of particle / area of circumscribed circle) -1 As is clear from the above equation, the value of this shape factor is 1.0 when the projected view of the particle is a perfect circle, It becomes larger as the shape becomes random.

【0015】粒子の2次元投影像の面積は、粒子に一方
向から光をあてることによって得ることができ、たとえ
ば市販の投影顕微鏡で粒子の投影写真を撮影し、画像解
析装置で解析することによって求めることができる。市
販の画像解析装置の中には、本発明で用いる形状係数を
複数の粒子の投影図について自動的に測定し、それらの
平均と標準偏差等の統計量を自動的に算出するものもあ
るので、それを用いると便利である。
The area of a two-dimensional projected image of a particle can be obtained by irradiating the particle with light from one direction, for example, by taking a projection photograph of the particle with a commercially available projection microscope and analyzing it with an image analyzer. You can ask. Some commercially available image analyzers automatically measure the shape factor used in the present invention for a plurality of projections of particles and automatically calculate statistics such as the average and standard deviation thereof. It is convenient to use it.

【0016】2次元投影像に外接する円の面積は、2次
元投影像図を内部に接しながら含むような円の中で、最
小の径を持つ円の面積として表される。
The area of a circle circumscribing the two-dimensional projected image is expressed as the area of the circle having the smallest diameter among the circles that include the two-dimensional projected image while touching the inside.

【0017】本発明においては、形状係数の平均は1.7
を越えることが必要である。形状係数が1.7 以下の砥粒
では破壊を起こしにくいためか、砥石による実際の研削
加工を行った際に研削抵抗が大きくなり、また、被削物
の表面には圧縮応力が残留しなくなり、高品位かつ高能
率の研削加工を行うことができなくなる。
In the present invention, the average shape factor is 1.7
It is necessary to exceed Perhaps because abrasive grains with a shape factor of 1.7 or less are unlikely to break, grinding resistance increases when actual grinding is performed with a grinding stone, and compressive stress does not remain on the surface of the work piece. High-quality and high-efficiency grinding cannot be performed.

【0018】標準偏差は確率関数の分散の平方根として
表されるものである。本発明においては、形状係数の標
準偏差は0.4 以下好ましくは0.3 以下であることが必要
である。形状係数の標準偏差が大きいと、砥粒の形状が
不揃いとなり、一部が目つぶれを起こして研削抵抗があ
がり、砥石表面の凹凸が不均一となって加工物の表面が
粗くなってしまう。したがって、標準偏差は砥粒の性能
面から見れば小さければ小さいほど砥粒全体の機械的強
度が均一になるので好ましいが、砥粒の製造工程での収
量を大きくすることができない。この点について、標準
偏差を種々変えて検討した結果、標準偏差が0.4 以下で
あれば加工物の表面粗さが格段に小さくでき、特に0.3
以下ではさらに表面粗さを小さくかつ安定させることが
できるので、本発明では、形状係数の標準偏差を0.4 以
下に限定した。
The standard deviation is expressed as the square root of the variance of the probability function. In the present invention, the standard deviation of the shape factor needs to be 0.4 or less, preferably 0.3 or less. If the standard deviation of the shape factor is large, the shapes of the abrasive grains become irregular, some of them are blinded, the grinding resistance is increased, and the unevenness of the grindstone surface becomes uneven, so that the surface of the workpiece becomes rough. Therefore, the smaller the standard deviation is from the viewpoint of the performance of the abrasive grains, the better the mechanical strength of the entire abrasive grains becomes uniform, which is preferable. However, the yield in the production process of the abrasive grains cannot be increased. As a result of examining this point by changing the standard deviation in various ways, if the standard deviation is 0.4 or less, the surface roughness of the workpiece can be significantly reduced, especially 0.3
Since the surface roughness can be further reduced and stabilized below, the standard deviation of the shape factor is limited to 0.4 or less in the present invention.

【0019】本発明の砥粒は、たとえば以下の方法で製
造することができる。すなわち、市販の多結晶型cBN
砥粒を入手し、形状係数の平均が1.7 を越え、しかもそ
の標準偏差が0.4 以下であるようなものを選別する。具
体的には、あらかじめ所望の粒度よりも大きい粒度の多
結晶型cBN砥粒を入手し、ハンマーミルなどの衝撃粉
砕機で粒子先端の凹凸形状が大きい粒子に調整した後、
所望の形状係数を持つものを振動フィーダー式等の形状
分離機を用いてより分ける方法が採用される。
The abrasive grains of the present invention can be produced, for example, by the following method. That is, a commercially available polycrystalline cBN
Obtain abrasive grains and select those with an average shape factor of more than 1.7 and a standard deviation of 0.4 or less. Specifically, a polycrystalline cBN abrasive grain having a particle size larger than a desired particle size is obtained in advance, and after adjusting to a particle having a large irregularity at the tip of the particle with an impact crusher such as a hammer mill,
A method of further dividing a material having a desired shape coefficient using a shape separator such as a vibration feeder type is adopted.

【0020】さらには、市販の多結晶型cBN砥粒のか
わりに、直接転換法により多結晶型cBN焼結体を合成
し、それを粉砕し粒度を選別することによっても得るこ
とができる。直接転換法は、広く一般に知られており、
例えば特公昭63-394号公報に述べられているように、熱
分解窒化ほう素(PBN)を高温・高圧下で処理するこ
とによって得ることができる。
Furthermore, instead of commercially available polycrystalline cBN abrasive grains, a polycrystalline cBN sintered body can be synthesized by a direct conversion method, and then pulverized to select a particle size. The direct conversion method is widely known,
For example, as described in JP-B-63-394, it can be obtained by treating pyrolytic boron nitride (PBN) at high temperature and high pressure.

【0021】[0021]

【作用】本発明のように、形状係数の平均が1.7 を越
え、その標準偏差が0.4 以下である砥粒を用いた砥石
が、高能率研削のような苛酷な研削条件下でも非常に切
れ味が鋭く被削物の表面粗さも格段に小さくなり、しか
も表面には圧縮応力が残留する理由としては、以下のこ
とが考えられる。
[Function] As in the present invention, a grindstone using an abrasive having an average shape factor of more than 1.7 and a standard deviation of 0.4 or less is extremely sharp even under severe grinding conditions such as high efficiency grinding. The following are conceivable reasons why the surface roughness of the work is sharply reduced and compressive stress remains on the surface.

【0022】すなわち、前述のように、砥粒一つ一つの
破壊挙動は形状係数1.7 〜1.8 を境にして大きく変わ
り、1.8 以上では粒子先端の微小破壊と同時に粒子全体
の破壊が起こる。このような破壊現象は、実際の砥石と
した場合にも被削物との衝突により同様に起こっている
可能性がある。すなわち、形状係数が1.0 〜1.7 では、
粒子全体が破壊する前に先端部分が選択的に破壊・摩滅
して被削物との作用で起こる衝撃エネルギーを吸収する
が、1.7 を越える特に1.8 以上の形状係数の砥粒では、
先端の凹凸が激しく砥粒のかなり内側にまで凹部が入り
込んでいるので、破壊エネルギーが砥粒内部にまで伝わ
り砥粒全体が適度な破砕を起こし、新たな切れ刃になる
ものと考えられる。
That is, as described above, the breaking behavior of each abrasive grain greatly changes at the boundary of the shape factor of 1.7 to 1.8, and when it is 1.8 or more, the breaking of the entire grain occurs simultaneously with the minute breaking of the tip of the grain. Such a destruction phenomenon may also occur due to collision with a workpiece even when an actual grindstone is used. That is, when the shape factor is 1.0 to 1.7,
Before the entire particle is broken, the tip part selectively breaks and wears out and absorbs the impact energy generated by the action with the workpiece.However, in the case of abrasive grains with a shape factor exceeding 1.7, especially 1.8 or more,
Since the concaves and convexes at the tip are so severe that the recesses penetrate considerably inside the abrasive grains, it is considered that the breaking energy is transmitted to the inside of the abrasive grains, and the entire abrasive grains are appropriately crushed to form a new cutting edge.

【0023】従来より市販されている多結晶型cBN砥
粒は形状係数の平均値とその標準偏差がそれぞれ1.80、
0.6 であって、本発明のものとは標準偏差が異なってい
る。そのような従来の砥粒をそのまま用いた砥石では摩
耗が激しく被削物の表面が粗くなり、また表面には引っ
張り応力が残留してしまうのに対し、本発明の砥粒を用
いた砥石では高能率研削においても、非常に切れ味が鋭
く被削物の表面粗さも格段に小さくなり、しかも表面に
は圧縮応力が残留するものである。
Conventionally, commercially available polycrystalline cBN abrasives have an average shape factor and a standard deviation of 1.80, respectively.
0.6, which is different from the standard deviation of the present invention. In a whetstone using the abrasive grains of the present invention, while a conventional whetstone using the abrasive grains as it is wears severely and the surface of the work becomes rough, and a tensile stress remains on the surface. Even in high-efficiency grinding, the sharpness is extremely sharp, and the surface roughness of the work is significantly reduced, and compressive stress remains on the surface.

【0024】[0024]

【実施例】以下、実施例と比較例をあげてさらに具体的
に本発明を説明る。 比較例1 多結晶型cBN砥粒としての唯一の市販品(ゼネラルエ
レクトリック社製商品名「ボラゾンBZ550 」:粒度60/8
0 )を入手し、JIS R6003の方法でサンプリン
グし、投影顕微鏡で50倍の倍率で粒子の投影写真を撮
影し、画像解析装置(ピアス社製「LA555」)を用
いて砥粒の形状係数の平均と標準偏差を測定した。
The present invention will be described below more specifically with reference to examples and comparative examples. Comparative Example 1 The only commercially available polycrystalline cBN abrasive (trade name “BOrazon BZ550” manufactured by General Electric): particle size 60/8
0) was obtained, sampled by the method of JIS R6003, a projection photograph of the particles was taken with a projection microscope at a magnification of 50 times, and the shape factor of the abrasive grains was determined using an image analyzer (“LA555” manufactured by Pierce). The average and standard deviation were measured.

【0025】次いで、その内の100 カラットを抜き出
し、直径200mm 、厚さ10mm、集中度100 のビトリファイ
ドボンド砥石を作製した。その砥石を用いて平面プラン
ジカット法による試験を行い、研削抵抗、被削物の表面
粗さ及び加工物表面の残留応力を測定した。その結果を
表1に示す。
Next, 100 carats of the carat were extracted and a vitrified bond grindstone having a diameter of 200 mm, a thickness of 10 mm and a concentration of 100 was prepared. Using the grindstone, a test was performed by a plane plunge cut method, and the grinding resistance, the surface roughness of the work, and the residual stress on the work surface were measured. Table 1 shows the results.

【0026】試験に用いた被削材は軸受鋼SUJ2であり、
研削条件は砥石周速度3600m/min 、被削材送り速度9m/m
in、砥石切込み量10μmである。研削抵抗は日本キスラ
ー社製の動力計を、加工物表面の残留応力は理学電機社
製のエックス線残留応力測定機を用いて測定した。
The work material used in the test was bearing steel SUJ2,
Grinding conditions are: grinding wheel peripheral speed 3600m / min, work material feed speed 9m / m
in, the cutting depth of the grindstone is 10 μm. Grinding resistance was measured using a dynamometer manufactured by Nippon Kistler Co., Ltd., and residual stress on the surface of the workpiece was measured using an X-ray residual stress measuring machine manufactured by Rigaku Denki.

【0027】実施例1〜5 比較例2〜3 市販の多結晶型cBN砥粒(ゼネラルエレクトリック社
製商品名「ボラゾンBZ550 」:粒度18/20 )をハンマー
ミルで粉砕後、ステンレス製網ふるいで粒度60/80 のも
のをより分けた。これを、振動盤式フィーダー(日本エ
リーズマグネチックス社製「HS−10」)で振動盤の
傾斜角度と振動数を変えて処理し、異なる形状係数の平
均と標準偏差を持つ7種類の砥粒を製造し、比較例1と
同一の方法で砥石を作製して研削性能試験を実施した。
その結果を表1に示す。
Examples 1 to 5 Comparative Examples 2 and 3 Commercially available polycrystalline cBN abrasive grains (trade name “Borazon BZ550” manufactured by General Electric Co., Ltd .: particle size 18/20) were crushed by a hammer mill and then sieved with a stainless steel mesh sieve. The one with a particle size of 60/80 was further divided. This is processed by changing the inclination angle and frequency of the vibrating plate using a vibrating plate type feeder (“HS-10” manufactured by Japan Elise Magnetics Co., Ltd.), and seven types of abrasive grains having different shape factor averages and standard deviations Was manufactured, and a grindstone was prepared in the same manner as in Comparative Example 1 to perform a grinding performance test.
Table 1 shows the results.

【0028】実施例6 原料に市販の熱分解窒化ほう素を用い、フラットベルト
型超高圧高温発生装置で2200℃,7.7GPaの条件で1時間
処理して直接転換法による多結晶型cBN焼結体を合成
した。それをロールクラッシャーで粉砕した後、分級し
て粒度60/80 の砥粒をより分けた。この砥粒の中から10
0 個の粒子を抜き出し、実体顕微鏡で投影写真を撮影し
た。この写真から得られた粒子の2次元投影像とそれに
外接する円との比率の逆数で表わされる形状係数を、画
像解析装置(ピアス社製「LA555」)を用いて測定
したところ、100 個の砥粒は形状係数1.0 〜2.5 迄の様
々な形状を持つことがわかった。
Example 6 Polycrystalline cBN sintering by a direct conversion method using a commercially available pyrolytic boron nitride as a raw material at a temperature of 2200 ° C. and 7.7 GPa for 1 hour using a flat belt type ultra-high pressure and high temperature generator. The body was synthesized. After grinding it with a roll crusher, it was classified to separate abrasive grains having a particle size of 60/80. 10 of these abrasive grains
0 particles were extracted and a projection photograph was taken with a stereomicroscope. The shape factor expressed by the reciprocal of the ratio of the two-dimensional projected image of the particles obtained from the photograph and the circle circumscribing the same was measured using an image analyzer ("LA555" manufactured by Pierce Co., Ltd.). The abrasive grains were found to have various shapes with a shape factor of 1.0 to 2.5.

【0029】次に、粒子一粒を超硬合金の板の間に挟み
込んで材料試験機で荷重を加え、粒子先端で微小な破壊
を示す荷重(微小破壊荷重)と粒子全体が破壊を起こす
荷重(全体破壊荷重)を測定した。その結果を図1に示
す。図1から、形状係数1.7〜1.8 を境に破壊形態が大
きく変わり、形状係数が1.7 以下では、砥粒に負荷がか
かっても砥粒自身は破砕することなく粒子の先端部分の
みが微小な破壊を起こし、微小破壊荷重と全体破壊荷重
が異なるのに対し、1.7 を越える特に1.8 以上になる
と、粒子の先端部分の微小破壊と同時に粒子全体が大き
く破壊しやすいことがわかる。
Next, one particle is sandwiched between a plate of cemented carbide and a load is applied by a material testing machine, and a load showing minute destruction at the tip of the particle (a micro-destruction load) and a load causing the entire particle to be destructed (the whole Breaking load) was measured. The result is shown in FIG. From Fig. 1, the fracture mode changes greatly at the boundary between the shape factors of 1.7 and 1.8. When the shape factor is 1.7 or less, the abrasive particles themselves are not crushed even when a load is applied to them, and only the tip of the particles is minutely broken. It can be seen that the micro-fracture load is different from the total fracture load, whereas if it exceeds 1.7, especially 1.8 or more, the whole particle is easily broken at the same time as the micro-fracture at the tip of the particle.

【0030】実施例7〜13 比較例4〜7 実施例6で得られた粒子を振動盤式フィーダー(日本エ
リーズマグネチックス社製「HS−10」)で振動盤の
傾斜角度と振動数を変えて処理し、異なる形状係数の平
均と標準偏差を持つ11種類の砥粒を製造し、比較例1
と同一の方法で砥石を作製して研削性能試験を実施し
た。その結果を表1に示す。
Examples 7 to 13 Comparative Examples 4 to 7 The particles obtained in Example 6 were subjected to a vibration plate type feeder ("HS-10" manufactured by Elise Magnetics Japan) to change the inclination angle and frequency of the vibration plate. To produce 11 types of abrasive grains having different averages and standard deviations of shape factors.
A grindstone was prepared in the same manner as in Example 1 and a grinding performance test was performed. Table 1 shows the results.

【0031】[0031]

【表1】 [Table 1]

【0032】以上の実施例、比較例から明らかなよう
に、粒子の2次元投影像とそれに外接する円との比率の
逆数で表される形状係数の平均が1.7 を越える特に1.8
以上で、その標準偏差が0.4 以下の多結晶型cBN砥粒
を用いた砥石は、高能率研削条件においても、切れ味が
鋭く、加工物の表面粗さも小さく、また、加工物表面に
は材料の機械的強度を上げる圧縮応力が残留しているこ
とがわかる。
As is clear from the above Examples and Comparative Examples, the average of the shape factor represented by the reciprocal of the ratio of the two-dimensional projected image of the particle to the circumscribed circle exceeds 1.7, especially 1.8.
As described above, the grindstone using the polycrystalline cBN abrasive grains having a standard deviation of 0.4 or less has a sharp cutting edge, a small surface roughness of the workpiece, and a low surface roughness of the workpiece even under high-efficiency grinding conditions. It turns out that the compressive stress which raises mechanical strength remains.

【0033】[0033]

【発明の効果】本発明の砥粒を用いることによって、従
来では得られなかった高能率かつ高品位加工に適する研
削砥石を得ることができる。
By using the abrasive grains of the present invention, it is possible to obtain a grinding wheel suitable for high-efficiency and high-quality processing, which has not been obtained conventionally.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 砥粒の形状と微小破壊荷重及び全体破壊荷重
との関係図。
FIG. 1 is a diagram showing the relationship between the shape of abrasive grains and a micro-breaking load and a total breaking load.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C09K 3/14 550 B24D 3/00 C04B 35/583──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) C09K 3/14 550 B24D 3/00 C04B 35/583

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒子の2次元投影像とそれに外接する円
との比率の逆数で表される形状係数の平均が1.7 を越
え、その標準偏差が0.4 以下である多結晶型立方晶窒化
ほう素からなることを特徴とする砥粒。
1. A polycrystalline cubic boron nitride having an average shape factor represented by the reciprocal of the ratio of a two-dimensional projected image of a particle to a circle circumscribing the particle exceeding 1.7 and having a standard deviation of 0.4 or less. Abrasive grains characterized by comprising:
JP4056422A 1992-02-06 1992-02-06 Abrasive Expired - Lifetime JP2761321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4056422A JP2761321B2 (en) 1992-02-06 1992-02-06 Abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4056422A JP2761321B2 (en) 1992-02-06 1992-02-06 Abrasive

Publications (2)

Publication Number Publication Date
JPH05214320A JPH05214320A (en) 1993-08-24
JP2761321B2 true JP2761321B2 (en) 1998-06-04

Family

ID=13026666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4056422A Expired - Lifetime JP2761321B2 (en) 1992-02-06 1992-02-06 Abrasive

Country Status (1)

Country Link
JP (1) JP2761321B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160146802A (en) * 2014-04-14 2016-12-21 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Abrasive article including shaped abrasive particles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1392618B1 (en) 2001-05-21 2011-07-20 Showa Denko K.K. Method for producing cubic boron nitride abrasive grains
WO2015194278A1 (en) * 2014-06-17 2015-12-23 バンドー化学株式会社 Polishing pad and method for producing polishing pad

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160146802A (en) * 2014-04-14 2016-12-21 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Abrasive article including shaped abrasive particles
KR101884178B1 (en) * 2014-04-14 2018-08-02 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Abrasive article including shaped abrasive particles

Also Published As

Publication number Publication date
JPH05214320A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
KR101984365B1 (en) Abrasive grains having unique features
US5601477A (en) Polycrystalline abrasive compact with honed edge
Luo et al. Analysis of the wear of a resin-bonded diamond wheel in the grinding of tungsten carbide
RU2198780C2 (en) Composite cutting body including diamond particles and method for making it
KR101677732B1 (en) Scribing wheel and method for manufacturing the same
JP2761321B2 (en) Abrasive
JP2761322B2 (en) Abrasive
JPH05311154A (en) Abrasive grain
Li et al. Wear Mechanism of pcd tools of different grain sizes manufactured by conventionally abrasive grinding and electrical discharge grinding
WO2020158631A1 (en) Metal bond grinding wheel for very hard and brittle material
Busch et al. A basic study of the diamond grinding of alumina
JP3209437B2 (en) Manufacturing method of resin bonded super abrasive wheel
EP0257899B1 (en) Cubic boron nitride abrasive body
JPH0931442A (en) Grinding grain
JPS61257772A (en) Grinding wheel truing method
JP3406163B2 (en) Superabrasive stone and its manufacturing method
JPH07291732A (en) Polycrystalline cubic boron nitride sintered compact and use thereof
JP2003260664A (en) Diamond dresser
JPH06184526A (en) High-strength superabrasive grain and its production
JP2761318B2 (en) Abrasive
RU2185951C1 (en) Method for restoring cutting capability of grinding disc
JPH07291735A (en) Polycrystalline cubic boron nitride sintered compact and use thereof
JP3200051B2 (en) Vitrified whetstone
FUJIMOTO et al. E12 Microscopic Wear Behavior of Grain Cutting Edges in cBN Grinding (Grinding technology)
GB2526176A (en) Diamond grains, tools comprising same and methods of using same