JPH0217617B2 - - Google Patents

Info

Publication number
JPH0217617B2
JPH0217617B2 JP55106154A JP10615480A JPH0217617B2 JP H0217617 B2 JPH0217617 B2 JP H0217617B2 JP 55106154 A JP55106154 A JP 55106154A JP 10615480 A JP10615480 A JP 10615480A JP H0217617 B2 JPH0217617 B2 JP H0217617B2
Authority
JP
Japan
Prior art keywords
matrix
metal
fiber
alloy
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55106154A
Other languages
Japanese (ja)
Other versions
JPS5732344A (en
Inventor
Koji Yamatsuta
Kenichi Nishio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP10615480A priority Critical patent/JPS5732344A/en
Priority to US06/285,974 priority patent/US4465741A/en
Priority to US06/285,975 priority patent/US4489138A/en
Priority to GB8123284A priority patent/GB2080865B/en
Priority to GB8123285A priority patent/GB2081353B/en
Priority to FR8114743A priority patent/FR2487856B1/en
Priority to IT68063/81A priority patent/IT1144748B/en
Priority to IT68062/81A priority patent/IT1144747B/en
Priority to FR8114742A priority patent/FR2487855B1/en
Priority to DE19813130139 priority patent/DE3130139A1/en
Priority to NL8103617A priority patent/NL8103617A/en
Priority to NL8103616A priority patent/NL8103616A/en
Priority to CA000382856A priority patent/CA1177285A/en
Priority to DE3130140A priority patent/DE3130140C2/en
Priority to CA000382833A priority patent/CA1177284A/en
Publication of JPS5732344A publication Critical patent/JPS5732344A/en
Priority to US06/601,244 priority patent/US4526841A/en
Priority to US06/601,282 priority patent/US4547435A/en
Publication of JPH0217617B2 publication Critical patent/JPH0217617B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無機質繊維を強化材とし、金属または
合金(以下金属類と略称する)をマトリツクスと
する機械強度のすぐれた繊維強化金属複合材料
(以下複合材料と略称する)に関する。 近年、無機質繊維にアルミナ繊維、炭素繊維、
シリカ繊維、シリコンカーバイト繊維、ボロン繊
維などを用い、マトリツクスにアルミニウム、マ
グネシウム、銅、ニツケル、チタンなどを用いた
複合材料が開発され、多くの産業分野に使用され
始めている。 無機質繊維と金属類を複合化する際溶融または
高温の金属類と無機質繊維界面で反応が生じ、脆
化層が生ずる。このため複合材料の強度は低下
し、理論強度と比較して低い強度を与える場合が
多い。かかる繊維劣化を防止するために種々の方
法、例えば繊維の表面をコーテイング剤等で処理
する方法などがとられているが、取扱い上の面倒
さ、コスト高などの問題が生じ、実用的でない。 本発明者らは、容易に実施し得る方法で複合材
料の強度を向上させるべく鋭意検討した結果金属
類に、添加した時に金属類の表面張力を低下さ
せ、かつアルミナ質繊維との反応性がマトリツ
クス金属類のアルミナ質繊維との反応性より低い
金属元素の1種または2種以上を添加する事によ
り、この金属類をマトリツクスとした複合材料の
機械強度が飛躍的に向上することを見出し、本発
明に至つた。 本発明はアルミニウム、マグネシウムおよび銅
から選ばれた金属または合金(ただし、合金中に
ビスマス、スズ、カドミウム、アンチモンおよび
インジウムを含まない。)をマトリツクスとし、
強化材としてアルミナ質繊維を15〜70容積%含む
繊維強化金属複合材料において、該マトリツクス
にビスマス、カドミウム、アンチモンおよびイン
ジウムよりなる群から選ばれる少なくとも一種の
金属元素を0.05〜10重量%含有せしめてなること
を特徴とする繊維強化金属複合材料を提供するも
のである。 以下に本発明を詳細に説明する。 本発明複合材料中に含まれるアルミナ質繊維の
割合は特に限定されるものではないが、好ましく
は15〜70容積%の範囲である。15容積%未満では
強化効果が小さく、70容積%を超えると繊維同志
の接触により、かえつて強度が低下する。繊維形
状は長繊維、短繊維いずれをも使用する事がで
き、目的、用途に応じていずれかまたは両者を同
時に使用できる。目的とする機械強度または弾性
率を得るために一方向、クロスプライ、ランダム
配向などの配向方法を選択する事が出来る。アル
ミナ質繊維として本発明の金属強化効果を最も顕
著に示しうる繊維は特公昭51−13768号に記載さ
れているアルミナ質繊維である。即ち、アルミナ
(Al2O3)含有量が72重量%以上、100重量%以
下、好ましくは75重量%以上、98重量%以下であ
り、シリカ(SiO2)含有量が0重量%以上、28
重量%以下、好ましくは2重量%以上、25重量%
以下の組成のものであり、X線的構造においてα
−Al2O3の反射を実質的に示さないアルミナ繊維
である。このアルミナ質繊維は本発明の効果をそ
こなわない範囲でリチウム、ベリリウム、ホウ
素、ナトリウム、マグネシウム、ケイ素、リン、
カリウム、カルシウム、チタン、クロム、マンガ
ン、イツトリウム、ジルコニウム、ランタン、タ
ングステン、バリウムなどの一種または二種以上
の酸化物などのような耐火性化合物を含有するこ
とができる。 本発明に用いられるマトリツクス金属類とし
て、好適なものはアルミニウム、マグネシウム、
銅または合金(ただし、合金中にビスマス、ス
ズ、カドミウム、アンチモンおよびインジウムを
含まない。)である。軽量かつ高強度が要求され
る場合には、アルミニウムやマグネシウム金属ま
たは合金をマトリツクスとする系が好適であり、
耐熱性かつ高強度を要求される場合には銅または
合金をマトリツクスとする系が好適である。本発
明でいうこれらの金属類は通常の使用にさしつか
えない範囲で少量の不純物元素を含有していても
さしつかえない。 本発明おいて上述の金属類に添加される金属元
素として特に好適なものはビスマス、カドミウ
ム、アンチモン、インジウム等である。これ等の
添加金属元素に要求される第1の条件はマトリツ
クス金属類に添加した際、金属類の表面張力を低
下させるものでなくてはならない。これは金属類
の表面の添加元素濃度が合金中の添加元素の平均
濃度より高いことが必要だからであり、この事は
Gibbsの吸着等温式により示される。 Γ2=−1/RTd〓/dlnC2 但し、 Γ2:界面に吸着されている成分(2)の表面濃度
(mole/cm2) d〓:表面張力の変化分(dyn/cm) C2:成分(2)の濃度 R:気体定数 T:絶体温度 つまり添加元素濃度C2の変化に対して表面張
力の減少が顕著であればあるほど添加元素の表面
濃度は高くなる事を示している。 本発明においては、マトリツクス金属類に0.1
モル%加えた時にマトリツクス金属類の表面張力
を5dyn/cm以上好ましくは10dyn/cm以上低下さ
せる金属元素が好ましい。5dyn/cm以下の表面
張力減少しか示さない添加元素では添加元素の表
面濃度が余り高くならず好ましくない。たとえば
アルミニウムにビスマス、カドミウム、アンチモ
ン、インジウムなどを0.1モル%添加すると、ア
ルミニウムの表面張力をそれぞれ400、15、105、
20dyn/cm2低下させており、これら添加元素がア
ルミニウムの表面に高濃度に存在する事を示して
いる。即ちアルミナ質繊維とマトリツクス金属類
との接触界面にこれら添加元素が多量に存在する
状況がおこつていることが考えられる。実際に、
本発明者らはオージエ(Auger)走査顕微鏡およ
びEPMA(Electron Probe Micro Analyser)分
析を行なつた結果、これらの事実を確認した。 次に、これら添加元素に要求される第2の条件
はアルミナ質繊維と反応を示さないか、あるいは
示してもマトリツクス金属類のアルミナ質繊維と
の反応性よりも低い反応性を有する事である。こ
の指標として化合物生成の自由エネルギー変化が
考えられる。アルミナ質繊維を強化材として用い
た場合の事を考えると、マトリツクス金属類と添
加金属元素の酸化物生成の自由エネルギー変化
(酸素1原子当量当り)で系統的に考えられる。
(以下変化分を△Goと記す)。例えばアルミニウ
ム、マグネシウムの△Goはそれぞれ室温で−
122、−136Kcal/moleであり、この値は温度の上
昇と共に若干増加する傾向を有する。しかし温度
に対してどの金属元素についてもほぼ同一の傾き
を示しており△Goの室温下での大きさの順位は
高温下での大きさの順位と相対的に同一序列を示
している。△Go値が小さいほど酸化物を形成し
やすい傾向を有す。ビスマス、カドミウム、アン
チモン、インジウム、の△Goの値はそれぞれ−
39、−55、−50、−67Kcal/moleであり、マトリツ
クスにアルミニウム、マグネシウムを使つた場合
アルミナ質繊維とマトリツクス間の反応が抑制さ
れ適度な界面結合強度を有するため、強度の向上
した複合材料を与えるのである。以上述べた機構
によりこれら2つの条件を満足する金属元素をマ
トリツクス金属類に添加することにより複合材料
の強度が飛躍的に向上する。 これら添加金属元素の好適な添加量はマトリツ
クス金属類に対し0.05重量%から10重量%であ
り、更に好ましくは0.1重量%から5重量%であ
る。添加量が0.05重量%より少ない場合、本発明
の効果が顕著に認められない。また添加量が10重
量%より多い場合、マトリツクス金属類の特質を
損い、耐食性の低下、伸びの減少などと共に繊維
とマトリツクス金属類間の反応を完全に抑制して
しまうために複合材料の強度向上効果も小さくな
る。 これら添加金属元素のマトリツクス金属への添
加方法は種々の方法が取り得、一般の合金の製造
方法に従つて添加して何ら問題は生じない。例え
ばマトリツクスとなる金属をるつぼ中で空気中あ
るいは不活性雰囲気下で溶融し、希望の添加金属
元素の一種または二種以上を添加し、十分に撹拌
し冷却して作製する方法がある。 本発明複合材料は種々の方法によつて製造し得
る。 すなわちその主なものとして、(1)液体金属含浸
法のような液相法、(2)拡散接合のような固相法、
(3)粉末冶金(焼結、溶結)法、(4)溶射、電析、蒸
着などの沈積法、(5)押出、圧延などの塑性加工
法、(6)高圧凝固鋳造法などが例示される。本発明
の効果が特に顕著に認められる方法は(1)の液体金
属含浸法や(6)の高圧凝固鋳造法などのように溶融
金属と繊維が直接接触する場合であるが、(2)〜(5)
に示される製造方法においても明らかに効果が認
められる。 この様にして製造された複合材料は本発明に用
いられる添加金属類元素の存在しない場合と比較
して大幅な機械強度の向上が認められる。また加
工法上も既存の設備、方法を何ら変更することな
く本発明を実行できることは実生産上からも非常
に大きなメリツトである。以下本発明を実施例に
よりさらに詳しく説明するが、本発明はこれによ
つて限定されるものではない。 実施例 1 黒鉛製るつぼをアルゴン雰囲気下約700℃に熱
し、この中に純アルミニウム塊(純度99.9%)
500grを加え、溶融した後2.5grのビスマスを
加え、炭素鋼棒で十分撹拌することによりアルミ
ニウム−ビスマス合金を調整した。この合金は組
成分析により0.501重量%のビスマスを含有して
いることを確認した。平均繊維径14μ、引張り強
度150Kg/mm2、引張り弾性率23500Kg/mm2のアルミ
ナ質繊維(Al2O3含有率85重量%、SiO2含有率15
重量%)を用い、110mmの長さに切りそろえ束ね
て内径4mmの鋳型管に平行に引き入れた。次いで
アルゴンガス雰囲気中で700℃に保つた上記アル
ミニウム−ビスマス合金溶融体の中に鋳型管の一
端を浸し、他方を真空脱気しつつ、溶湯表面に50
Kg/cm2の圧力をかけて繊維間へアルミニウム−ビ
スマス合金を浸透させ、これを冷却することによ
つて繊維強化金属複合材料を得た。繊維体積含有
率は50±1%になるように調整した。また比較の
ため、純アルミニウム(純度99.9%)をマトリツ
クスとして、全く同じ方法で繊維強化金属複合材
料を得た。このようにして作製した繊維強化金属
複合材料の常温での曲げ強度、曲げの弾性率を測
定した。結果を第1表に示すが比較例と較べて著
しく強度が向上していた。
The present invention relates to a fiber-reinforced metal composite material (hereinafter referred to as a composite material) having excellent mechanical strength, which uses inorganic fibers as a reinforcing material and a metal or alloy (hereinafter referred to as a metal alloy) as a matrix. In recent years, inorganic fibers such as alumina fiber, carbon fiber,
Composite materials have been developed that use silica fibers, silicon carbide fibers, boron fibers, etc., and matrices of aluminum, magnesium, copper, nickel, titanium, etc., and are beginning to be used in many industrial fields. When inorganic fibers and metals are composited, a reaction occurs at the interface between the molten or high-temperature metals and the inorganic fibers, resulting in the formation of a brittle layer. For this reason, the strength of the composite material decreases, often giving a strength lower than the theoretical strength. Various methods have been used to prevent such fiber deterioration, such as treating the surface of the fibers with a coating agent, etc., but these pose problems such as troublesome handling and high cost, and are not practical. The present inventors have conducted intensive studies to improve the strength of composite materials using an easily implementable method. As a result, when added to metals, the surface tension of the metals is lowered, and the reactivity with alumina fibers is increased. We have discovered that by adding one or more metal elements whose reactivity with alumina fibers is lower than that of matrix metals, the mechanical strength of composite materials using these metals as a matrix can be dramatically improved. This led to the present invention. The present invention uses a metal or alloy selected from aluminum, magnesium, and copper (however, the alloy does not contain bismuth, tin, cadmium, antimony, and indium) as a matrix,
A fiber-reinforced metal composite material containing 15 to 70% by volume of alumina fibers as a reinforcing material, in which the matrix contains 0.05 to 10% by weight of at least one metal element selected from the group consisting of bismuth, cadmium, antimony, and indium. The present invention provides a fiber-reinforced metal composite material characterized by: The present invention will be explained in detail below. The proportion of alumina fibers contained in the composite material of the present invention is not particularly limited, but is preferably in the range of 15 to 70% by volume. If it is less than 15% by volume, the reinforcing effect will be small, and if it exceeds 70% by volume, the strength will decrease due to contact between the fibers. As for the fiber shape, either long fibers or short fibers can be used, and either or both can be used at the same time depending on the purpose and use. Orientation methods such as unidirectional, cross-ply, and random orientation can be selected to obtain the desired mechanical strength or elastic modulus. The alumina fiber that can most significantly exhibit the metal reinforcing effect of the present invention is the alumina fiber described in Japanese Patent Publication No. 51-13768. That is, the alumina (Al 2 O 3 ) content is 72% by weight or more and 100% by weight or less, preferably 75% by weight or more and 98% by weight or less, and the silica (SiO 2 ) content is 0% by weight or more and 28% by weight or more.
Less than 2% by weight, preferably 2% by weight or more, 25% by weight
It has the following composition, and in the X-ray structure α
-Alumina fibers that do not substantially exhibit Al 2 O 3 reflection. This alumina fiber contains lithium, beryllium, boron, sodium, magnesium, silicon, phosphorus, etc. within a range that does not impair the effects of the present invention.
It may contain refractory compounds such as oxides of one or more of potassium, calcium, titanium, chromium, manganese, yttrium, zirconium, lanthanum, tungsten, barium, and the like. Preferred matrix metals used in the present invention are aluminum, magnesium,
Copper or alloy (however, the alloy does not contain bismuth, tin, cadmium, antimony, or indium). When light weight and high strength are required, a matrix of aluminum or magnesium metal or alloy is suitable.
When heat resistance and high strength are required, a system using copper or an alloy as a matrix is suitable. These metals referred to in the present invention may contain small amounts of impurity elements as long as they do not interfere with normal use. Particularly suitable metal elements to be added to the above-mentioned metals in the present invention include bismuth, cadmium, antimony, and indium. The first condition required of these additive metal elements is that when added to matrix metals, they must lower the surface tension of the metals. This is because the concentration of the added element on the surface of the metal needs to be higher than the average concentration of the added element in the alloy;
It is shown by the Gibbs adsorption isotherm. Γ 2 = -1/RTd〓/dlnC 2 However, Γ 2 : Surface concentration of component (2) adsorbed at the interface (mole/cm 2 ) d〓 : Change in surface tension (dyn/cm) C 2 : Concentration of component (2) R: Gas constant T: Absolute temperature In other words, the more remarkable the decrease in surface tension with respect to changes in the added element concentration C2 , the higher the surface concentration of the added element. There is. In the present invention, 0.1
Preferred are metal elements that, when added in mol %, lower the surface tension of the matrix metal by 5 dyn/cm or more, preferably 10 dyn/cm or more. Additive elements that exhibit only a decrease in surface tension of 5 dyn/cm or less are not preferable because the surface concentration of the additive elements does not become too high. For example, adding 0.1 mol% of bismuth, cadmium, antimony, indium, etc. to aluminum increases the surface tension of aluminum to 400, 15, 105, respectively.
20 dyn/cm 2 , indicating that these additive elements exist in high concentration on the aluminum surface. That is, it is considered that a situation occurs in which large amounts of these additive elements are present at the contact interface between the alumina fiber and the matrix metal. actually,
The present inventors confirmed these facts through Auger scanning microscope and EPMA (Electron Probe Micro Analyser) analysis. The second condition required for these additive elements is that they either do not react with the alumina fibers, or even if they do, they must have a reactivity lower than the reactivity of the matrix metals with the alumina fibers. . The free energy change of compound formation can be considered as an indicator of this. When considering the case where alumina fiber is used as a reinforcing material, it can be systematically considered based on the free energy change (per 1 atomic equivalent of oxygen) of matrix metals and additive metal elements to form oxides.
(Hereinafter, the change will be written as △Go). For example, △Go of aluminum and magnesium are −
122, -136 Kcal/mole, and this value tends to increase slightly with increasing temperature. However, all metal elements show almost the same slope with respect to temperature, and the size order of △Go at room temperature is relatively the same as the size order at high temperature. The smaller the ΔGo value, the easier it is to form oxides. The values of △Go for bismuth, cadmium, antimony, and indium are −
39, -55, -50, -67 Kcal/mole, and when aluminum or magnesium is used in the matrix, the reaction between the alumina fibers and the matrix is suppressed and it has an appropriate interfacial bond strength, making it a composite material with improved strength. It gives. By the mechanism described above, the strength of the composite material can be dramatically improved by adding a metal element that satisfies these two conditions to the matrix metal. The preferred amount of these additional metal elements is 0.05% to 10% by weight, more preferably 0.1% to 5% by weight, based on the matrix metal. If the amount added is less than 0.05% by weight, the effects of the present invention will not be noticeable. Furthermore, if the amount added is more than 10% by weight, the properties of the matrix metals will be impaired, corrosion resistance will be reduced, elongation will be reduced, and the reaction between the fibers and the matrix metals will be completely suppressed, resulting in the strength of the composite material. The improvement effect will also be smaller. Various methods can be used to add these additional metal elements to the matrix metal, and no problem will occur if they are added according to a general alloy manufacturing method. For example, there is a method in which a metal serving as a matrix is melted in a crucible in air or under an inert atmosphere, one or more desired additional metal elements are added, and the matrix is sufficiently stirred and cooled. The composite material of the present invention can be manufactured by various methods. The main methods are (1) liquid phase methods such as liquid metal impregnation, (2) solid phase methods such as diffusion bonding,
Examples include (3) powder metallurgy (sintering, welding), (4) deposition methods such as thermal spraying, electrodeposition, and vapor deposition, (5) plastic processing methods such as extrusion and rolling, and (6) high-pressure solidification casting methods. Ru. The effects of the present invention are particularly noticeable when molten metal and fibers come into direct contact, such as in (1) the liquid metal impregnation method and (6) in the high-pressure solidification casting method. (Five)
The manufacturing method shown in Figure 1 is also clearly effective. The composite material produced in this way has a significant improvement in mechanical strength compared to the case where the additive metal element used in the present invention is not present. In addition, the fact that the present invention can be carried out without making any changes to existing equipment or methods is a great advantage in terms of actual production. EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto. Example 1 A graphite crucible is heated to approximately 700°C under an argon atmosphere, and a pure aluminum ingot (purity 99.9%) is placed inside it.
After adding 500 gr and melting, 2.5 gr of bismuth was added and thoroughly stirred with a carbon steel rod to prepare an aluminum-bismuth alloy. Compositional analysis confirmed that this alloy contained 0.501% by weight of bismuth. Alumina fiber with average fiber diameter 14μ, tensile strength 150Kg/mm 2 , tensile modulus 23500Kg/mm 2 (Al 2 O 3 content 85% by weight, SiO 2 content 15
% by weight), were cut into lengths of 110 mm, bundled, and drawn in parallel into a mold tube with an inner diameter of 4 mm. Next, one end of the mold tube was immersed in the molten aluminum-bismuth alloy kept at 700°C in an argon gas atmosphere, and while the other end was being degassed under vacuum, a
A fiber-reinforced metal composite material was obtained by applying a pressure of Kg/cm 2 to infiltrate the aluminum-bismuth alloy between the fibers and cooling it. The fiber volume content was adjusted to 50±1%. For comparison, a fiber-reinforced metal composite material was obtained using the same method using pure aluminum (99.9% purity) as a matrix. The bending strength and bending elastic modulus at room temperature of the fiber-reinforced metal composite material thus produced were measured. The results are shown in Table 1, and the strength was significantly improved compared to the comparative example.

【表】 実施例 2 カドミウム、アンチモン、インジウム、をそれ
ぞれアルミニウムに対し1重量%の割合で実施例
1に示したと全く同じ方法で加え、合金を製造し
た。組成分析により出された組成を第2表に示
す。実施例1で用いられたのと同じアルミナ繊維
を用いてやはり実施例1と同じ方法で繊維強化金
属複合材料を作製した。この複合材料の常温での
曲げ強度、曲げ弾性率を測定した結果を第2表に
示す。いずれも第1表比較例2と較べて高い曲げ
強度を示した。
[Table] Example 2 An alloy was produced by adding cadmium, antimony, and indium in a proportion of 1% by weight to aluminum in exactly the same manner as shown in Example 1. The composition determined by the composition analysis is shown in Table 2. A fiber-reinforced metal composite material was produced using the same alumina fibers as used in Example 1 and in the same manner as in Example 1. Table 2 shows the results of measuring the bending strength and bending elastic modulus of this composite material at room temperature. All exhibited higher bending strength than Comparative Example 2 in Table 1.

【表】 実施例 3 マトリツクス金属をマグネシウムまたは銅に変
えた場合について示す。マグネシウムの場合は市
販の純マグネシウム(純度99.9%)250グラムと
6.0グラムのビスマスを黒鉛製るつぼ中にとりア
ルゴンガス雰囲気下、このるつぼを約700℃まで
加熱し、十分に撹拌した後室温まで冷却し、Mg
−Bi合金を得た。この合金は組成分析の結果2.36
重量%のビスマスを含有していた(以下Mg−
2.36Biと記す)。この合金をマトリツクスとし、
実施例1で用いたアルミナ繊維及び複合化方法に
より700℃にて複合化し、繊維強化金属複合材料
を得た。比較のため純マグネシウムをマトリツク
スとした繊維強化金属複合材料を同じ条件下にて
作製した。 次に98.0グラムの銅粉(300メツシユパス)と
2.0グラムのビスマス粉(300メツシユパス)を、
ポリメチルメタクリレートのクロロホルム溶液中
に懸濁したものに実施例1で用いたのと同じアル
ミナ質繊維を浸漬し、表面をCuとBi粉でコート
されたアルミナ繊維シートを作製した。このシー
トは厚み約250μを有し、繊維の含有量は56.7体積
%であつた。このシートを10枚積重ね合わせ炭素
製鋳型に入れ真空ホツトプレス中、真空度
10-2Torr、600℃で2時間結合剤のポリメチルメ
タクリレートを分解除去したのち、徐々に加圧、
加熱最終的に10-3Torr 1010℃ 250Kg/mm2の圧
力で2時間保持し、繊維強化金属複合材料を得
た。比較のためマトリツクスとして銅のみの繊維
強化金属複合材料を同じ方法、条件下にて作製し
た。これらの複合材料の室温における曲げ強度を
測定した結果を第3表に示す。いずれの場合もビ
スマスを添加することによつて大巾に曲げ強度が
向上している。
[Table] Example 3 A case where the matrix metal is changed to magnesium or copper is shown. In the case of magnesium, use 250 grams of commercially available pure magnesium (99.9% purity).
6.0 grams of bismuth was placed in a graphite crucible, heated to approximately 700°C under an argon gas atmosphere, thoroughly stirred, and cooled to room temperature.
-Bi alloy was obtained. This alloy has a compositional analysis of 2.36
It contained % by weight of bismuth (hereinafter referred to as Mg-
2.36Bi). This alloy is used as a matrix,
Composite was performed at 700° C. using the alumina fibers and composite method used in Example 1 to obtain a fiber-reinforced metal composite material. For comparison, a fiber-reinforced metal composite material using pure magnesium as a matrix was fabricated under the same conditions. Next, with 98.0 grams of copper powder (300 mesh passes)
2.0 grams of bismuth powder (300 meshyupas),
The same alumina fibers used in Example 1 were immersed in a suspension of polymethyl methacrylate in a chloroform solution to produce an alumina fiber sheet whose surface was coated with Cu and Bi powder. This sheet had a thickness of approximately 250μ and a fiber content of 56.7% by volume. 10 of these sheets were stacked together and placed in a carbon mold and vacuum hot pressed.
After decomposing and removing the binder polymethyl methacrylate at 10 -2 Torr and 600℃ for 2 hours, the pressure was gradually increased.
Heating was finally maintained at a pressure of 10 -3 Torr 1010°C and 250 Kg/mm 2 for 2 hours to obtain a fiber-reinforced metal composite material. For comparison, a fiber-reinforced metal composite material containing only copper as a matrix was prepared using the same method and conditions. Table 3 shows the results of measuring the bending strength of these composite materials at room temperature. In either case, the addition of bismuth significantly improved the bending strength.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム、マグネシウムおよび銅から選
ばれた金属または合金(ただし、合金中にビスマ
ス、スズ、カドミウム、アンチモンおよびインジ
ウムを含まない。)をマトリツクスとし、強化材
としてアルミナ質繊維を15〜70容積%含む繊維強
化金属複合材料において、該マトリツクスにビス
マス、カドミウム、アンチモンおよびインジウム
よりなる群から選ばれる少なくとも一種の金属元
素を0.05〜10重量%含有せしめてなることを特徴
とする繊維強化金属複合材料。
1 The matrix is a metal or alloy selected from aluminum, magnesium, and copper (however, the alloy does not contain bismuth, tin, cadmium, antimony, and indium), and contains 15 to 70% by volume of alumina fiber as a reinforcing material. 1. A fiber-reinforced metal composite material, characterized in that the matrix contains 0.05 to 10% by weight of at least one metal element selected from the group consisting of bismuth, cadmium, antimony, and indium.
JP10615480A 1980-07-30 1980-07-31 Fiber reinforced metallic composite material Granted JPS5732344A (en)

Priority Applications (17)

Application Number Priority Date Filing Date Title
JP10615480A JPS5732344A (en) 1980-07-31 1980-07-31 Fiber reinforced metallic composite material
US06/285,974 US4465741A (en) 1980-07-31 1981-07-23 Fiber-reinforced metal composite material
US06/285,975 US4489138A (en) 1980-07-30 1981-07-23 Fiber-reinforced metal composite material
GB8123284A GB2080865B (en) 1980-07-31 1981-07-28 Metal composite material with fiber-reinforcement
GB8123285A GB2081353B (en) 1980-07-30 1981-07-28 Fibre-reinforced metal composite material
FR8114743A FR2487856B1 (en) 1980-07-31 1981-07-29 COMPOSITE METAL MATERIALS, CONTAINING TIN, CADMIUM OR ANTIMONY, REINFORCED BY FIBERS
IT68063/81A IT1144748B (en) 1980-07-31 1981-07-29 METALLIC MATERIAL REINFORCED WITH FIBERS OF INORGANIC SUBSTANCES
IT68062/81A IT1144747B (en) 1980-07-30 1981-07-29 METALLIC MATERIAL REINFORCED WITH FIBERS OF INORGANIC SUBSTANCES
FR8114742A FR2487855B1 (en) 1980-07-30 1981-07-29 METAL COMPOSITE MATERIALS REINFORCED WITH FIBERS CONTAINING PARTICULARS OF GROUP IA OR GROUP IIA OF THE PERIODIC CLASSIFICATION TABLE
DE19813130139 DE3130139A1 (en) 1980-07-31 1981-07-30 COMPOSITES BASED ON A METAL OR ALLOY AS A BASE AND INORGANIC FIBERS AS A REINFORCING AGENT
NL8103617A NL8103617A (en) 1980-07-31 1981-07-30 COMPOSITE MATERIAL.
NL8103616A NL8103616A (en) 1980-07-30 1981-07-30 Fibre-reinforced metal-composite material - with addn. of specified element(s) to prevent reaction at fibre-matrix interface
CA000382856A CA1177285A (en) 1980-07-30 1981-07-30 Fiber reinforced-metal composite material
DE3130140A DE3130140C2 (en) 1980-07-30 1981-07-30 Fiber reinforced composite
CA000382833A CA1177284A (en) 1980-07-31 1981-07-30 Fiber-reinforced metal composite material
US06/601,244 US4526841A (en) 1980-07-31 1984-04-17 Fiber-reinforced metal composite material
US06/601,282 US4547435A (en) 1980-07-30 1984-04-17 Method for preparing fiber-reinforced metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10615480A JPS5732344A (en) 1980-07-31 1980-07-31 Fiber reinforced metallic composite material

Publications (2)

Publication Number Publication Date
JPS5732344A JPS5732344A (en) 1982-02-22
JPH0217617B2 true JPH0217617B2 (en) 1990-04-23

Family

ID=14426393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10615480A Granted JPS5732344A (en) 1980-07-30 1980-07-31 Fiber reinforced metallic composite material

Country Status (1)

Country Link
JP (1) JPS5732344A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169033A (en) * 1981-04-07 1982-10-18 Sumitomo Chem Co Ltd Fiber reinforced metallic composite material
JPS57169034A (en) * 1981-04-07 1982-10-18 Sumitomo Chem Co Ltd Fiber reinforced metallic composite material
DE3522166C1 (en) * 1985-06-21 1986-08-07 Daimler-Benz Ag, 7000 Stuttgart Use of aluminum and an aluminum alloy for the production of fiber-reinforced aluminum castings

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102513A (en) * 1973-02-03 1974-09-27
JPS50109903A (en) * 1974-02-08 1975-08-29
JPS527811A (en) * 1975-07-10 1977-01-21 Res Inst Iron Steel Tohoku Univ Fibrous silicon carbide reinforced aluminum composite material and its production
JPS5226305A (en) * 1975-08-25 1977-02-26 Res Inst Iron Steel Tohoku Univ Silicon carbide fiber reinforced titanium composite material and produ ctionprocess for the same
JPS5729545A (en) * 1980-07-30 1982-02-17 Sumitomo Chem Co Ltd Fiber reinforced metallic composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102513A (en) * 1973-02-03 1974-09-27
JPS50109903A (en) * 1974-02-08 1975-08-29
JPS527811A (en) * 1975-07-10 1977-01-21 Res Inst Iron Steel Tohoku Univ Fibrous silicon carbide reinforced aluminum composite material and its production
JPS5226305A (en) * 1975-08-25 1977-02-26 Res Inst Iron Steel Tohoku Univ Silicon carbide fiber reinforced titanium composite material and produ ctionprocess for the same
JPS5729545A (en) * 1980-07-30 1982-02-17 Sumitomo Chem Co Ltd Fiber reinforced metallic composite material

Also Published As

Publication number Publication date
JPS5732344A (en) 1982-02-22

Similar Documents

Publication Publication Date Title
US4547435A (en) Method for preparing fiber-reinforced metal composite material
US4526841A (en) Fiber-reinforced metal composite material
EP0074067B1 (en) Method for the preparation of fiber-reinforced metal composite material
EP0693567B1 (en) High-strength, high-ductility cast aluminum alloy and process for producing the same
CN1168928A (en) Quinary metallic glass alloys
IE58607B1 (en) Method of making self-supporting ceramic materials
US4839238A (en) Fiber-reinforced metallic composite material
US4121750A (en) Processes for soldering aluminum-containing workpieces
US5236032A (en) Method of manufacture of metal composite material including intermetallic compounds with no micropores
IE60082B1 (en) Method for producing self-supporting ceramic bodies with graded properties
JP2020147780A (en) Incombustible magnesium alloy, and method for producing the same
JPH0217617B2 (en)
US5024902A (en) Fiber-reinforced metal
JPS6140740B2 (en)
US4847167A (en) Fiber-reinforced metallic composite material
JPH1161294A (en) Copper alloy reinforced by dispersion of alumina and its production
JPH0217618B2 (en)
EP0408257B1 (en) Method of manufacture of metal matrix composite material including intermetallic compounds with no micropores
JPS616242A (en) Fiber reinforced metallic composite material
JPH0122338B2 (en)
JPH0122337B2 (en)
JPS6225737B2 (en)
JPH0122335B2 (en)
US5697421A (en) Infrared pressureless infiltration of composites
JPH0122336B2 (en)