JPH0122337B2 - - Google Patents

Info

Publication number
JPH0122337B2
JPH0122337B2 JP56052617A JP5261781A JPH0122337B2 JP H0122337 B2 JPH0122337 B2 JP H0122337B2 JP 56052617 A JP56052617 A JP 56052617A JP 5261781 A JP5261781 A JP 5261781A JP H0122337 B2 JPH0122337 B2 JP H0122337B2
Authority
JP
Japan
Prior art keywords
matrix
fiber
metal
fibers
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56052617A
Other languages
Japanese (ja)
Other versions
JPS57169034A (en
Inventor
Koji Yamatsuta
Kenichi Nishio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5261781A priority Critical patent/JPS57169034A/en
Priority to US06/285,974 priority patent/US4465741A/en
Priority to US06/285,975 priority patent/US4489138A/en
Priority to GB8123285A priority patent/GB2081353B/en
Priority to GB8123284A priority patent/GB2080865B/en
Priority to IT68063/81A priority patent/IT1144748B/en
Priority to FR8114742A priority patent/FR2487855B1/en
Priority to IT68062/81A priority patent/IT1144747B/en
Priority to FR8114743A priority patent/FR2487856B1/en
Priority to NL8103617A priority patent/NL8103617A/en
Priority to DE19813130139 priority patent/DE3130139A1/en
Priority to CA000382833A priority patent/CA1177284A/en
Priority to CA000382856A priority patent/CA1177285A/en
Priority to DE3130140A priority patent/DE3130140C2/en
Publication of JPS57169034A publication Critical patent/JPS57169034A/en
Priority to US06/601,282 priority patent/US4547435A/en
Priority to US06/601,244 priority patent/US4526841A/en
Publication of JPH0122337B2 publication Critical patent/JPH0122337B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は無機質繊維を強化材とし、金属または
合金(以下金属類と略称する)をマトリツクスと
する機械強度のすぐれた繊維強化金属複合材料
(以下複合材料と略称する)の製造方法に関する。 近年、無機質繊維にアルミナ繊維、炭素繊維、
シリカ繊維、シリコンカーバイド繊維、ボロン繊
維などを用い、マトリツクスにアルミニウム、マ
グネシウム、銅、ニツケル、チタンなどを用いた
複合材料が開発され、多くの産業分野に使用され
始めている。 無機質繊維と金属類を複合化する際溶融または
高温の金属類と無機質繊維界面で反応が生じ、脆
化層が生ずる。このため複合材料の強度は低下
し、理論強度と比較して低い強度を与える場合が
多い。例えば市販の炭素繊維などは大略300Kg/mm2
程度の強度を有しており、繊維含有率を50体積%
としてマトリツクス材料の強度を無視しても炭素
繊維強化複合材料の理論強度は複合則から150Kg/
mm2程度と推定される。事実エポキシ樹脂をマトリ
ツクスとした炭素繊維強化複合材料は150Kg/mm2
至それ以上の強度を示すが、アルミニウムをマト
リツクスとし、溶融金属含浸法を用いて作られた
炭素繊維強化金属複合材料では、たかだか30〜40
Kg/mm2程度の強度しか与えない。これは前述した
様に繊維が溶融金属と接触することで界面反応が
起こり、繊維劣化が起こるためである。かかる繊
維劣化を防止するために種々の方法、例えば繊維
の表面をコーテイング剤等で処理する方法などが
とられている。 例えば、特開昭53−30407号公報に示されるよ
うにシリコンカーバイド繊維表面を炭素に対して
不活性または安定な化合物を形成する金属類、ま
たはセラミツクスで保護した後にマトリツクス金
属類と複合化する方法などが知られているが、こ
の方法はシリコンカーバイド繊維には有効である
が、他無機繊維には余り効果が認められないこと
や取扱い上の面倒さ、コスト高などの問題が生じ
実用的でない。一方特開昭51−70116号公報には
アルミニウムマトリツクス中にリチウムを数%添
加する事により繊維強化金属複合材料の機械強度
が向上する事を述べている。しかしこの方法は無
機繊維がマトリツクス金属類と全く濡れないか、
反応しない場合には有効であるが、無機繊維がマ
トリツクス金属類と反応して劣化する時には無効
である以上に逆に強度低下をもたらす傾向にあ
る。 以上に示すごとく容易かつ安価な方法で繊維強
化金属複合材料の機械強度を向上させるに到つて
いないのが現状である。 本発明者らはこれらの現状から繊維強化金属複
合材料の強度を向上させるには、無機繊維とマト
リツクス金属類の界面での反応による無機繊維の
劣化を防止すればよいのであり、それを容易且つ
安価に実施し得る方法を鋭意検討した。 その結果、アルミニウムおよびマグネシウムか
ら選ばれた金属または合金(ただし、合金中にビ
スマス、スズ、カドミウム、アンチモン、インジ
ウム、バリウム、ストロンチウムおよびラジウム
を含まない。)をマトリツクスとし、該マトリツ
クスにビスマス、スズ、カドミウム、アンチモ
ン、インジウム、バリウム、ストロンチウムおよ
びラジウムからなる群から選ばれる金属元素の無
機化合物または有機化合物の少なくとも一種を該
金属元素の重量に換算して0.0005重量%以上10重
量%以下添加することにより、無機繊維とマトリ
ツクス金属類との反応による無機繊維の劣化を防
止する事ができ、この金属類をマトリツクスとし
た複合材料の機械強度が飛躍的に向上することを
見い出し本発明に至つた。 これら金属元素類をマトリツクス金属に添加す
ることで後述する推定により繊維強化金属複合材
料の強度を向上させる働きを有すると考えられる
が、本発明はこれら金属類の無機化合物または有
機化合物の形態でマトリツクス金属に添加する事
によつても金属単体を添加したのと同等の効果を
有することに特徴を有する。 一般に金属単体では酸化されやすい、毒性を有
する等取扱い困難なものが多い。しかしこれを化
合物の形態にする事により安定になり非常に取扱
いやすくなり、マトリツクス金属へ添加する際の
雰囲気制御などの問題もなくなり、工業的生産を
行なう上で大きなメリツトが存在する。 以下に本発明を詳細に説明する。 本発明に用いられる無機質繊維は、炭素繊維、
シリカ繊維、遊離炭素を含むシリコンカーバイド
繊維、ボロン繊維及びアルミナ質繊維などであ
る。 本発明複合材料中に含まれる無機質繊維の割合
は特に限定されるものではないが、好ましくは15
〜70容積%の範囲である。15容積%未満では強化
効果が小さく、70容積%を超えるとは、繊維同志
の接触により、かえつて強度が低下する。繊維形
状は長繊維、短繊維いずれをも使用する事がで
き、目的、用途に応じていずれか、または両者を
同時に使用できる。目的とする機械強度または弾
性率を得るために一方向クロスプライ、ランダム
配向などの配向方法を選択する事が出来る。 これらの無機質強化繊維のうち本発明の金属強
化効果を最も顕著に示しうる繊維は、特公昭51−
13768号に記載されているアルミナ質繊維である。 即ち、一般式 (式中、Yは有機残基、ハロゲン、水酸基の一種
または二種以上を示す。) で表わされる構造単位を有するポリアルミノキサ
ンを原料とし、これに得られるシリカアルミナ繊
維中のシリカ含有量が28%以下であるような量の
ケイ素を含む化合物を一種または二種以上混合
し、該混合物を紡糸して得られる前駆体繊維を焼
成してなるアルミナ質繊維であり、好ましくはシ
リカ含有量が2重量%以上25重量%以下の組成の
ものであり、X線的構造においてα―Al2O3の反
射を実質的に示さないアルミナ質繊維である。 このアルミナ質繊維は、本発明の効果をそこな
わない範囲でリチウム、ベリリウム、ホウ素、ナ
トリウム、マグネシウム、ケイ素、リン、カリウ
ム、カルシウム、チタン、クロム、マンガン、イ
ツトリウム、ジルコニウム、ランタン、タングス
テン、バリウムなどの一種または二種以上の酸化
物などのような耐火性化合物を含有することがで
きる。 本発明に用いられるマトリツクス金属類として
好適なものはアルミニウム、マグネシウムまたは
その合金である。軽量かつ高温度が要求される場
合には、これらの金属または合金をマトリツクス
とする系が好適である。本発明でいうこれらの金
属類は通常の使用にさしつかえない範囲で少量の
不純物元素を含有していてもさしつかえない。 この添加金属による強度向上の機構について
は、明らかではないが以下の通りと考えられる。 こゝにあげられている添加元素は金属類に添加
されるとその金属類の表面におけるこれら添加元
素の濃度は平均濃度より高くなる。例えば金属が
アルミニウムの場合、ビスマス、スズ、カドミウ
ム、アンチモン、インジウム、ストロンチウム、
バリウムを0.1モル%添加することによりアルミ
ニウムの表面張力は、それぞれ純アルミニウムの
表面張力より400、40、15、105、20、60、
300dyn/cm低下する。これはGibbsの吸着等温式
によつて示されるように表面部分のこれら添加元
素の濃度がマトリツクス中における平均濃度より
高くなつているためである。実際に、本発明者ら
はオージエ(Auger)走査顕微鏡およびEPMA
(Electron Probe Micro Analyser)分析を行な
つた結果、これらの事実を確認した。 次にこれら添加元素を含有した金属類をマトリ
ツクスとした無機質繊維強化金属複合材料の破断
面を走査型電子顕微鏡で観察するとビスマス、ス
ズ、カドミウム、アンチモン、インジウムの1種
または2種以上を含有したアルミニウムをマトリ
ツクスとした繊維強化金属複合材料では、添加元
素のない系と比較して繊維―マトリツクス界面の
結合が弱くなつている。繊維の外周面に見られた
マトリツクス金属との反応相が消失するなどの現
象が見られ、繊維―マトリツクス界面での反応が
低下していることが観察される。即ち本発明のこ
れら添加元素は繊維―マトリツクス界面に高濃度
に存在し、界面での反応を制御する働きを有し、
従つて複合材料の強度が飛躍的に向上するものと
考えられる。 一方、バリウム、ストロンチウム、ラジウム、
の1種または2種以上を含有した金属をマトリツ
クスとした繊維強化金属複合材料は添加元素のな
い系と比較して繊維―マトリツクス界面の結合は
弱くなつていないにも拘らず、繊維の外周面に見
られたマトリツクス金属との反応相は消失してい
るなどの現象が見られる。この複合材料から塩酸
水溶液を用いてマトリツクス金属を溶解除去して
取り出した繊維の強度を測定したところ、複合化
前の繊維強度と比較して添加元素のない系ではか
なりの強度低下が観察されるのに対し、これらの
添加元素の存在する系では強度の低下は殆んど認
められなかつた。 以上の事からこれら添加元素は繊維―マトリツ
クス界面に高濃度に存在し、繊維と単層で反応す
ることによつて繊維とマトリツクス金属類との反
応を抑制する働きを有し、従つて、複合材料の強
度が飛躍的に向上するものと考えられる。 これら添加金属元素の無機化合物または有機化
合物の好適な添加量は、該金属元素の重量に換算
して、マトリツクス金属類に対し0.0005重量%以
上、10重量%以下である。添加量が0.0005重量%
より少ない場合、本発明の効果が顕著に認められ
ない。また添加量が10重量%より多い場合、マト
リツクス金属類の特質を損い、耐食性の低下、伸
びの減少などの問題を生ずる。 これらの金属元素の無機化合物または有機化合
物のマトリツクス金属類への添加方法は種々の方
法が取り得る。例えばマトリツクスとなる金属を
るつぼ中で溶融し、希望の金属元素の無機化合物
または有機化合物の1種または2種以上を添加
し、十分に撹拌して冷却して作製する方法などが
ある。 また複合材料のある種の製法に対してはマトリ
ツクス金属粉体とこれら金属元素の無機化合物ま
たは有機化合物粉体とを混合して用いる事も出来
る。 この他いかなる方法でも最終的にマトリツクス
となる金属中に該金属元素の無機化合物または有
機化合物を含ませる事が出来れば本発明の効果を
発現させる事が可能である。 これらの金属元素の無機化合物または有機化合
物としては種々のものが取り得るが一例を挙げれ
ば下記のようなものが有効である。ハロゲン化
物、水素化物、酸化物、水酸化物、硫酸化物、硝
酸化物、炭酸化物、塩素酸化物、炭化物、窒化
物、燐酸化物、硫化物、燐化物、アルキル化物、
有機酸化物、アルコラートなどである。 本発明複合材料は、種々の方法によつて製造し
得る。 すなわちその主なものとして、(1)液体金属含浸
法のような液相法、(2)拡散接合のような固相法、
(3)粉末冶金(焼結、溶結)法、(4)溶射、電析、蒸
着などの沈積法、(5)押出、圧延などの塑性加工
法、(6)高圧凝固鋳造法などが例示される本発明の
効果が特に顕著に認められる方法は(1)の液体金属
含浸法や(6)の高圧凝固鋳造法などのように溶融金
属と繊維が直接接触する場合であるが、(2)〜(5)に
示される製造方法においても明らかに効果が認め
られる。 この様にして製造された複合材料は本発明に用
いられる添加金属元素の存在しない場合と比較し
て大幅な機械強度の向上が認められる。また加工
法上も既存の設備、方法を何ら変更することなく
本発明を実行できることは実生産上からも非常に
大きなメリツトである。以下本発明を実施例によ
りさらに詳しく説明するが本発明はこれによつて
限定されるものではない。 実施例 1 アルミニウムを炭素製ルツボ中で溶解し、第1
表に示される各金属の塩化物を添加し、マトリツ
クス金属を調整した。無機繊維として、(1)平均繊
維径14μm、引張り強度150Kg/mm2、弾性率23500
Kg/mm2のアルミナ繊維(Al2O3含有率85重量%、
SiO2含有率15重量%)、(2)平均繊維径7.5μm引張
り強度300Kg/mm2、弾性率23000Kg/mm2の炭素繊維(3)
平均繊維径15μm、引張り強度220Kg/mm2、弾性率
20000Kg/mm2の遊離炭素を含むシリコンカーバイド
繊維を用い、内径4mmφの鋳型管に繊維含有率が
50体積%になるように平行に引き入れた。次いで
上記合金をアルゴンガス雰囲気中700℃で溶解し、
この中に鋳型管の一端を浸漬し、他方を真空脱気
しつつ、溶融表面に50Kg/mm2の圧力をかけて繊維
間へマトリツクス金属を浸透させ、これを冷却し
て複合化を完了した。また比較のため、純Al(純
度99.9%)をマトリツクスとして全く同じ方法で
繊維強化金属複合材料を得た。このようにして作
製した繊維強化金属複合材料の常温での曲げ強
度、曲げ弾性率を測定した。結果を第1表に示
す。いずれの場合も、純Alをマトリツクスとし
た複合体よりも大巾な強度の向上が認められた。
The present invention relates to a method for manufacturing a fiber-reinforced metal composite material (hereinafter referred to as composite material) with excellent mechanical strength, which uses inorganic fibers as a reinforcing material and metal or alloy (hereinafter referred to as metals) as a matrix. In recent years, inorganic fibers such as alumina fiber, carbon fiber,
Composite materials have been developed that use silica fibers, silicon carbide fibers, boron fibers, etc. and matrices of aluminum, magnesium, copper, nickel, titanium, etc., and are beginning to be used in many industrial fields. When inorganic fibers and metals are composited, a reaction occurs at the interface between the molten or high-temperature metals and the inorganic fibers, resulting in the formation of a brittle layer. For this reason, the strength of the composite material decreases, often giving a strength lower than the theoretical strength. For example, commercially available carbon fiber has a weight of approximately 300Kg/mm 2
It has a certain strength and the fiber content is 50% by volume.
Even if the strength of the matrix material is ignored, the theoretical strength of carbon fiber reinforced composite material is 150 kg/
Estimated to be about mm 2 . In fact, carbon fiber-reinforced composite materials with an epoxy resin matrix exhibit a strength of 150 Kg/mm 2 or more, but carbon fiber-reinforced metal composite materials with an aluminum matrix made using the molten metal impregnation method have a strength of at most 150 Kg/mm 2 or more. 30-40
Provides only a strength of about Kg/mm 2 . This is because, as mentioned above, when the fibers come into contact with the molten metal, an interfacial reaction occurs, causing fiber deterioration. Various methods have been used to prevent such fiber deterioration, such as treating the surface of the fiber with a coating agent or the like. For example, as disclosed in JP-A-53-30407, the surface of silicon carbide fibers is protected with metals or ceramics that form compounds that are inert or stable with respect to carbon, and then composited with matrix metals. Although this method is effective for silicon carbide fibers, it is not practical for other inorganic fibers due to problems such as troublesome handling and high cost. . On the other hand, JP-A-51-70116 states that the mechanical strength of fiber-reinforced metal composite materials is improved by adding several percent of lithium to the aluminum matrix. However, this method does not allow the inorganic fibers to get wet with the matrix metals at all.
Although it is effective when there is no reaction, it is ineffective when the inorganic fiber reacts with matrix metals and deteriorates, and on the contrary tends to cause a decrease in strength. As shown above, at present, it has not been possible to improve the mechanical strength of fiber-reinforced metal composite materials by an easy and inexpensive method. The present inventors believe that in order to improve the strength of fiber-reinforced metal composite materials, it is necessary to prevent the deterioration of the inorganic fibers due to the reaction at the interface between the inorganic fibers and the matrix metals. We worked hard to find a method that could be implemented at low cost. As a result, a metal or alloy selected from aluminum and magnesium (however, the alloy does not contain bismuth, tin, cadmium, antimony, indium, barium, strontium, and radium) is used as a matrix, and bismuth, tin, By adding at least one inorganic compound or organic compound of a metal element selected from the group consisting of cadmium, antimony, indium, barium, strontium, and radium from 0.0005% by weight to 10% by weight, calculated in terms of the weight of the metal element. The present inventors have discovered that it is possible to prevent the deterioration of inorganic fibers due to the reaction between inorganic fibers and matrix metals, and that the mechanical strength of composite materials using these metals as a matrix is dramatically improved, leading to the present invention. It is believed that adding these metal elements to the matrix metal has the effect of improving the strength of the fiber-reinforced metal composite material, as estimated below. It is characterized in that even when added to metals, it has the same effect as adding the metal alone. In general, metals alone are difficult to handle because they are easily oxidized and have toxicity. However, by making it into a compound form, it becomes stable and extremely easy to handle, and there are no problems such as controlling the atmosphere when adding it to matrix metals, which has great advantages in industrial production. The present invention will be explained in detail below. The inorganic fibers used in the present invention include carbon fibers,
These include silica fibers, silicon carbide fibers containing free carbon, boron fibers, and alumina fibers. The proportion of inorganic fibers contained in the composite material of the present invention is not particularly limited, but is preferably 15
~70% by volume. If it is less than 15% by volume, the reinforcing effect will be small, and if it exceeds 70% by volume, the strength will decrease due to contact between the fibers. As for the fiber shape, either long fibers or short fibers can be used, and either one or both can be used at the same time depending on the purpose and use. Orientation methods such as unidirectional cross ply and random orientation can be selected to obtain the desired mechanical strength or elastic modulus. Among these inorganic reinforcing fibers, the fiber that can most significantly exhibit the metal reinforcing effect of the present invention is
This is an alumina fiber described in No. 13768. That is, the general formula (In the formula, Y represents one or more of organic residues, halogens, and hydroxyl groups.) Polyaluminoxane having a structural unit represented by is used as a raw material, and the silica content in the silica alumina fiber obtained from this is 28 It is an alumina fiber obtained by mixing one or more compounds containing silicon in an amount of 2% or less, and firing a precursor fiber obtained by spinning the mixture, and preferably having a silica content of 2% or less. It has a composition of at least 25% by weight and is an alumina fiber that does not substantially show α-Al 2 O 3 reflection in its X-ray structure. The alumina fibers may include lithium, beryllium, boron, sodium, magnesium, silicon, phosphorus, potassium, calcium, titanium, chromium, manganese, yttrium, zirconium, lanthanum, tungsten, barium, etc. within a range that does not impair the effects of the present invention. It may contain a refractory compound such as one or more oxides of. Preferred matrix metals for use in the present invention are aluminum, magnesium, or alloys thereof. When light weight and high temperature are required, systems using these metals or alloys as a matrix are suitable. These metals referred to in the present invention may contain small amounts of impurity elements as long as they do not interfere with normal use. Although the mechanism of strength improvement due to the added metal is not clear, it is thought to be as follows. When the additive elements mentioned above are added to metals, the concentration of these additive elements on the surface of the metal becomes higher than the average concentration. For example, if the metal is aluminum, bismuth, tin, cadmium, antimony, indium, strontium,
By adding 0.1 mol% of barium, the surface tension of aluminum becomes 400, 40, 15, 105, 20, 60, respectively, higher than that of pure aluminum.
Decreased by 300dyn/cm. This is because the concentration of these added elements at the surface is higher than the average concentration in the matrix, as shown by the Gibbs adsorption isotherm. In fact, we used the Auger scanning microscope and the EPMA
(Electron Probe Micro Analyser) analysis confirmed these facts. Next, when the fractured surface of an inorganic fiber-reinforced metal composite material with a matrix of metals containing these additive elements was observed with a scanning electron microscope, it was found that it contained one or more of bismuth, tin, cadmium, antimony, and indium. In fiber-reinforced metal composite materials with aluminum as a matrix, the bond at the fiber-matrix interface is weaker than in systems without additive elements. Phenomena such as the disappearance of the reactive phase with the matrix metal observed on the outer peripheral surface of the fibers are observed, and it is observed that the reaction at the fiber-matrix interface is reduced. In other words, these additive elements of the present invention exist in high concentration at the fiber-matrix interface and have the function of controlling reactions at the interface.
Therefore, it is thought that the strength of the composite material will be dramatically improved. On the other hand, barium, strontium, radium,
Fiber-reinforced metal composite materials with a matrix of metals containing one or more of Phenomena such as the reaction phase with the matrix metal that was observed in 2011 has disappeared. When we measured the strength of the fibers extracted from this composite material by dissolving and removing the matrix metal using an aqueous hydrochloric acid solution, we observed a considerable decrease in strength in the system without additive elements compared to the fiber strength before composite formation. On the other hand, in the systems in which these additive elements were present, almost no decrease in strength was observed. From the above, these additive elements exist in high concentration at the fiber-matrix interface and have the function of suppressing the reaction between the fibers and matrix metals by reacting with the fibers in a single layer. It is thought that the strength of the material will be dramatically improved. The preferred amount of the inorganic compound or organic compound of these additional metal elements is 0.0005% by weight or more and 10% by weight or less based on the matrix metal, calculated in terms of the weight of the metal element. Added amount is 0.0005% by weight
If the amount is less, the effect of the present invention will not be noticeable. If the amount added is more than 10% by weight, the properties of the matrix metals will be impaired, leading to problems such as a decrease in corrosion resistance and a decrease in elongation. Various methods can be used to add these metal elements to the matrix metals. For example, there is a method in which a metal serving as a matrix is melted in a crucible, one or more inorganic compounds or organic compounds of a desired metal element are added, and the matrix is sufficiently stirred and cooled. Further, for certain methods of manufacturing composite materials, it is also possible to use a mixture of matrix metal powder and inorganic compound or organic compound powder of these metal elements. Any other method can be used to bring out the effects of the present invention as long as the inorganic or organic compound of the metal element can be included in the metal that will eventually form the matrix. Various inorganic or organic compounds of these metal elements can be used, but the following are effective examples. Halides, hydrides, oxides, hydroxides, sulfides, nitrates, carbonates, chlorine oxides, carbides, nitrides, phosphorus oxides, sulfides, phosphides, alkylates,
These include organic oxides and alcoholates. The composite material of the present invention can be manufactured by various methods. The main methods are (1) liquid phase methods such as liquid metal impregnation, (2) solid phase methods such as diffusion bonding,
Examples include (3) powder metallurgy (sintering, welding), (4) deposition methods such as thermal spraying, electrodeposition, and vapor deposition, (5) plastic processing methods such as extrusion and rolling, and (6) high-pressure solidification casting methods. The effects of the present invention are particularly noticeable when molten metal and fibers come into direct contact, such as (1) liquid metal impregnation method and (6) high-pressure solidification casting method, but (2) The manufacturing methods shown in (5) to (5) are also clearly effective. The composite material produced in this way has significantly improved mechanical strength compared to the case where the additive metal element used in the present invention is not present. In addition, the fact that the present invention can be carried out without making any changes to existing equipment or methods is a great advantage in terms of actual production. EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited thereto. Example 1 Aluminum was melted in a carbon crucible, and the first
The matrix metal was prepared by adding chloride of each metal shown in the table. As an inorganic fiber, (1) average fiber diameter 14μm, tensile strength 150Kg/mm 2 , elastic modulus 23500
Kg/mm 2 alumina fiber (Al 2 O 3 content 85% by weight,
(SiO 2 content 15% by weight), (2) Carbon fiber with average fiber diameter 7.5 μm tensile strength 300 Kg/mm 2 and elastic modulus 23000 Kg/mm 2 (3)
Average fiber diameter 15μm, tensile strength 220Kg/mm 2 , elastic modulus
Using silicon carbide fiber containing 20000Kg/ mm2 of free carbon, the fiber content was made into a molded tube with an inner diameter of 4mmφ.
It was drawn in parallel so that it was 50% by volume. Next, the above alloy was melted at 700°C in an argon gas atmosphere,
One end of the mold tube was immersed in this, and while the other end was vacuum degassed, a pressure of 50 kg/mm 2 was applied to the molten surface to allow the matrix metal to penetrate between the fibers, which was then cooled to complete the composite. . For comparison, a fiber-reinforced metal composite material was also obtained using pure Al (purity 99.9%) as a matrix using the same method. The bending strength and bending elastic modulus at room temperature of the fiber-reinforced metal composite material thus produced were measured. The results are shown in Table 1. In both cases, a significant improvement in strength was observed compared to composites using pure Al as a matrix.

【表】 実施例 2 添化金属化合物を水酸化バリウムまたは酢酸カ
ドミウムに変えた場合について示す。アルミニウ
ムを黒鉛製ルツボ中にとり、700℃まで加熱する
事により溶解し、この中に第2表に示す一定量の
水酸化バリウムまたは酢酸カドミウムを投入し、
混合した。ついで実施例1に用いたのと同じアル
ミナ繊維を用いて実施例1に示した方法にて繊維
強化金属複合材料を得た。複合材料の繊維含有率
は50%に調整した。この複合材料の曲げ強度、曲
げ弾性率を測定した結果を第2表に示す。いずれ
の場合も純Alをマトリツクスとした複合体より
も大巾な強度の向上が認められた。
[Table] Example 2 The case where the added metal compound was changed to barium hydroxide or cadmium acetate is shown. Aluminum is placed in a graphite crucible, heated to 700°C to melt it, and a certain amount of barium hydroxide or cadmium acetate shown in Table 2 is poured into it.
Mixed. Next, a fiber-reinforced metal composite material was obtained by the method shown in Example 1 using the same alumina fibers as used in Example 1. The fiber content of the composite material was adjusted to 50%. Table 2 shows the results of measuring the bending strength and bending modulus of this composite material. In all cases, a significant improvement in strength was observed compared to composites using pure Al as a matrix.

【表】 実施例 3 マトリツクス金属をマグネシウムに変えた場合
について示す。マグネシウムの場合は、市販の純
マグネシウム(純度99.9%)1000gと臭化バリウ
ム15gを黒鉛製るつぼ中にとり、アルゴンガス雰
囲気化、このるつぼを約700℃まで加熱し、十分
に撹拌した後室温まで冷却した。この合金をマト
リツクスとし、実施例1で用いたアルミナ繊維及
び複合化方法により700℃にて複合化し、繊維強
化金属複合材料を得た。比較のため、純マグネシ
ウムをマトリツクスとした繊維強化金属複合材料
を同じ条件下にて作製した。この複合材料の曲げ
強度と曲げ弾性率を測定した結果を第3表に示
す。比較例よりも曲げ強度がかなり向上している
ことが判る。
[Table] Example 3 The case where the matrix metal was changed to magnesium is shown. In the case of magnesium, place 1000 g of commercially available pure magnesium (99.9% purity) and 15 g of barium bromide in a graphite crucible, create an argon gas atmosphere, heat the crucible to approximately 700°C, stir thoroughly, and then cool to room temperature. did. This alloy was used as a matrix and composited at 700°C using the alumina fibers and composite method used in Example 1 to obtain a fiber-reinforced metal composite material. For comparison, a fiber-reinforced metal composite material using pure magnesium as a matrix was produced under the same conditions. Table 3 shows the results of measuring the bending strength and bending modulus of this composite material. It can be seen that the bending strength is considerably improved compared to the comparative example.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウムおよびマグネシウムから選ばれ
た金属または合金(ただし、合金中にビスマス、
スズ、カドミウム、アンチモン、インジウム、バ
リウム、ストロンチウムおよびラジウムを含まな
い。)をマトリツクスとし、強化材として無機質
繊維を15〜70容積%含む繊維強化金属複合材料の
製造方法において、該マトリツクスにビスマス、
スズ、カドミウム、アンチモン、インジウム、バ
リウム、ストロンチウムおよびラジウムからなる
群から選ばれる金属元素の無機化合物または有機
化合物の少なくとも一種を該金属元素の重量に換
算して0.0005重量%以上10重量%以下添加するこ
とを特徴とする繊維強化金属複合材料の製造方
法。
1 Metal or alloy selected from aluminum and magnesium (however, bismuth,
Free of tin, cadmium, antimony, indium, barium, strontium and radium. ) as a matrix and 15 to 70% by volume of inorganic fibers as a reinforcing material.
At least one inorganic compound or organic compound of a metal element selected from the group consisting of tin, cadmium, antimony, indium, barium, strontium, and radium is added in an amount of 0.0005% by weight or more and 10% by weight or less in terms of the weight of the metal element. A method for producing a fiber-reinforced metal composite material.
JP5261781A 1980-07-30 1981-04-07 Fiber reinforced metallic composite material Granted JPS57169034A (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP5261781A JPS57169034A (en) 1981-04-07 1981-04-07 Fiber reinforced metallic composite material
US06/285,974 US4465741A (en) 1980-07-31 1981-07-23 Fiber-reinforced metal composite material
US06/285,975 US4489138A (en) 1980-07-30 1981-07-23 Fiber-reinforced metal composite material
GB8123285A GB2081353B (en) 1980-07-30 1981-07-28 Fibre-reinforced metal composite material
GB8123284A GB2080865B (en) 1980-07-31 1981-07-28 Metal composite material with fiber-reinforcement
IT68063/81A IT1144748B (en) 1980-07-31 1981-07-29 METALLIC MATERIAL REINFORCED WITH FIBERS OF INORGANIC SUBSTANCES
FR8114742A FR2487855B1 (en) 1980-07-30 1981-07-29 METAL COMPOSITE MATERIALS REINFORCED WITH FIBERS CONTAINING PARTICULARS OF GROUP IA OR GROUP IIA OF THE PERIODIC CLASSIFICATION TABLE
IT68062/81A IT1144747B (en) 1980-07-30 1981-07-29 METALLIC MATERIAL REINFORCED WITH FIBERS OF INORGANIC SUBSTANCES
FR8114743A FR2487856B1 (en) 1980-07-31 1981-07-29 COMPOSITE METAL MATERIALS, CONTAINING TIN, CADMIUM OR ANTIMONY, REINFORCED BY FIBERS
NL8103617A NL8103617A (en) 1980-07-31 1981-07-30 COMPOSITE MATERIAL.
DE19813130139 DE3130139A1 (en) 1980-07-31 1981-07-30 COMPOSITES BASED ON A METAL OR ALLOY AS A BASE AND INORGANIC FIBERS AS A REINFORCING AGENT
CA000382833A CA1177284A (en) 1980-07-31 1981-07-30 Fiber-reinforced metal composite material
CA000382856A CA1177285A (en) 1980-07-30 1981-07-30 Fiber reinforced-metal composite material
DE3130140A DE3130140C2 (en) 1980-07-30 1981-07-30 Fiber reinforced composite
US06/601,282 US4547435A (en) 1980-07-30 1984-04-17 Method for preparing fiber-reinforced metal composite material
US06/601,244 US4526841A (en) 1980-07-31 1984-04-17 Fiber-reinforced metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5261781A JPS57169034A (en) 1981-04-07 1981-04-07 Fiber reinforced metallic composite material

Publications (2)

Publication Number Publication Date
JPS57169034A JPS57169034A (en) 1982-10-18
JPH0122337B2 true JPH0122337B2 (en) 1989-04-26

Family

ID=12919752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5261781A Granted JPS57169034A (en) 1980-07-30 1981-04-07 Fiber reinforced metallic composite material

Country Status (1)

Country Link
JP (1) JPS57169034A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252741A (en) * 1988-04-01 1989-10-09 Ube Ind Ltd Fiber-reinforced composite material
US4963439A (en) * 1988-04-19 1990-10-16 Ube Industries, Ltd. Continuous fiber-reinforced Al-Co alloy matrix composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729545A (en) * 1980-07-30 1982-02-17 Sumitomo Chem Co Ltd Fiber reinforced metallic composite material
JPS5732344A (en) * 1980-07-31 1982-02-22 Sumitomo Chem Co Ltd Fiber reinforced metallic composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5729545A (en) * 1980-07-30 1982-02-17 Sumitomo Chem Co Ltd Fiber reinforced metallic composite material
JPS5732344A (en) * 1980-07-31 1982-02-22 Sumitomo Chem Co Ltd Fiber reinforced metallic composite material

Also Published As

Publication number Publication date
JPS57169034A (en) 1982-10-18

Similar Documents

Publication Publication Date Title
US4547435A (en) Method for preparing fiber-reinforced metal composite material
US4526841A (en) Fiber-reinforced metal composite material
EP0074067B1 (en) Method for the preparation of fiber-reinforced metal composite material
EP0062496B1 (en) Fiber-reinforced metallic composite material
CA1073247A (en) Silicon carbide fiber reinforced composite materials
US6723282B1 (en) Metal product containing ceramic dispersoids form in-situ
EP0081204B1 (en) Process for producing fiber-reinforced metal composite material
US4152149A (en) Composite material comprising reinforced aluminum or aluminum-base alloy
US4839238A (en) Fiber-reinforced metallic composite material
US5024902A (en) Fiber-reinforced metal
JPH0122337B2 (en)
US4847167A (en) Fiber-reinforced metallic composite material
JPH0217618B2 (en)
JPH0122338B2 (en)
JPH0122335B2 (en)
JPH0122336B2 (en)
JPS6225737B2 (en)
JPH0122333B2 (en)
JPH0217617B2 (en)
JPS6140740B2 (en)
JPH0122332B2 (en)
JPH09175877A (en) Copper-impregnated graphite material
JPH0680179B2 (en) Alumina short fiber reinforced metal composite material containing mullite crystals
JPH0122334B2 (en)
JPS6367535B2 (en)