JPH02175691A - Growth of single crystal and device therefor - Google Patents

Growth of single crystal and device therefor

Info

Publication number
JPH02175691A
JPH02175691A JP33159088A JP33159088A JPH02175691A JP H02175691 A JPH02175691 A JP H02175691A JP 33159088 A JP33159088 A JP 33159088A JP 33159088 A JP33159088 A JP 33159088A JP H02175691 A JPH02175691 A JP H02175691A
Authority
JP
Japan
Prior art keywords
single crystal
reflectance
liquid sealant
reflecting plate
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33159088A
Other languages
Japanese (ja)
Other versions
JP2517091B2 (en
Inventor
Yusaku Higuchi
樋口 祐作
Fumio Orito
文夫 折戸
Shinichiro Kawabata
紳一郎 川端
Chiku Katano
片野 築
Fumikazu Yajima
矢島 文和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Kasei Corp
Priority to JP63331590A priority Critical patent/JP2517091B2/en
Publication of JPH02175691A publication Critical patent/JPH02175691A/en
Application granted granted Critical
Publication of JP2517091B2 publication Critical patent/JP2517091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To raise reflectance against heat rays, to reduce temperature gradient of crystal growth and to lower transition density in growing single crystal by liquid-encapsulated Czochralski method by arranging a radiation reflecting plate subjected to high reflectance processing on the surface of a liquid encapsulating agent or in the liquid encapsulating agent. CONSTITUTION:A raw material melt 105 and a liquid encapsulating agent 103 are stored in a heated crucible 101 which is put in a pressure container charged with an inert gas and a reflecting plate 109 to prevent heat radiation from the liquid encapsulating agent is set to grow single crystal. In the method, the reflecting plate 109 is subjected to high-reflectance processing and reflectance of heat rays is raised to grow single crystal. In order to subject the reflecting plate 109 to high-reflectance processing, for example, a method wherein one or both of the bottoms 113a and 113b of the reflecting plate 109 are subjected to rough surface treatment by sand blast or a method wherein the reflecting plate 109 is equipped with a metallic layer 115 (e.g. Ga or In) can be used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は均一性に優れた単結晶を収率良く製造する単結
晶成長方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a single crystal growth method and apparatus for producing single crystals with excellent uniformity in good yield.

〔従来の技術〕[Conventional technology]

周期率表第mb族、及び第vb族元素からなる無機化合
物(以下rm−v族化合物」と言う。)の単結晶、特に
ひ化ガリウム、りん化ガリウムの単結晶は、電界効果ト
ランジスタ、ショットキ・バリア・ダイオード、集積回
路(IC)等の各種半導体素子類の製造に広く用いられ
ている。
Single crystals of inorganic compounds (hereinafter referred to as rm-v group compounds) consisting of elements of groups MB and VB of the periodic table, especially single crystals of gallium arsenide and gallium phosphide, are used in field effect transistors and Schottky - Widely used in the manufacture of various semiconductor devices such as barrier diodes and integrated circuits (ICs).

これらの半導体素子の製造に用いられる単結晶は結晶中
の原子配列の乱れである転位が少ないことが必要とされ
ている。
Single crystals used for manufacturing these semiconductor devices are required to have few dislocations, which are disordered atomic arrangements in the crystal.

従来、集積回路の基板に用いる■−V族化合物、特にひ
化ガリウムの単結晶は三酸化二はう素を封止剤として用
い、−第vb族成分の蒸発を防止する液体封止引き上げ
法、所謂LEC法により成長させるものが使用されてい
た。これは、LEC法によれば不純物の混入が少ないの
で、高純度の結晶が得られるからである。しかしながら
、LEC法では引き上げ装置の器壁の冷却、容器内部へ
の高圧の不活性ガスの充填により装置内部に大きい温度
勾配が発生し、液体封止剤中、及び液体封止剤と雰囲気
不活性ガスの界面において単結晶内部に熱応力が生じ、
得られた単結晶の転位密度が高くなるという問題があっ
た。特に、結晶外周部の転位密度が高い領域は基板界面
内に専有する面積が大きいため、外周部における転位密
度の低減化は重要である。
Conventionally, for the single crystal of -V group compounds, especially gallium arsenide, used for integrated circuit substrates, diboron trioxide is used as a sealant to prevent evaporation of the -VB group components. , which was grown by the so-called LEC method. This is because according to the LEC method, there is less contamination of impurities, so that highly pure crystals can be obtained. However, in the LEC method, a large temperature gradient occurs inside the device due to cooling of the vessel wall of the lifting device and filling of the container with high-pressure inert gas, which causes a large temperature gradient to occur in the liquid sealant and between the liquid sealant and the inert atmosphere. Thermal stress occurs inside the single crystal at the gas interface,
There was a problem in that the resulting single crystal had a high dislocation density. In particular, since the region with high dislocation density at the outer periphery of the crystal occupies a large area within the substrate interface, it is important to reduce the dislocation density at the outer periphery.

転位密度は、一般に単結晶から切り出したウェハ面を溶
融水酸化カリウム等でエツチングして得られるエッチピ
ットの密度で評価されるが、−船釣な用途には5X10
’cm−2以下であることが要求されている。
Dislocation density is generally evaluated by the density of etch pits obtained by etching a wafer surface cut from a single crystal with molten potassium hydroxide, etc.;
'cm-2 or less.

第5図は従来の単結晶成長方法を説明するための図で、
不活性ガスを充填した耐圧容器201内において、融液
207を液体封止剤205で封止してルツボ203に入
れ、液体封止剤205と融液207を熱遮蔽板217で
覆ったヒータ215により加熱し、結晶原料融液と封止
剤との界面を低温度勾配領域にして結晶成長を行ってい
る。
Figure 5 is a diagram for explaining the conventional single crystal growth method.
In a pressure-resistant container 201 filled with an inert gas, the melt 207 is sealed with a liquid sealant 205 and put into the crucible 203, and the liquid sealant 205 and the melt 207 are covered with a heater 215 with a heat shielding plate 217. The interface between the crystal raw material melt and the sealant is made into a low temperature gradient region for crystal growth.

また、転位密度の少ないI−V族化合物単結晶を得るた
めの方法として、ルツボ内の液体封止剤が存在している
位置に相当する位置にヒータを設けて封止剤の加熱温度
を高め、結晶原料融液と封止剤との界面を低温度勾配領
域にして結晶成長を行う方法(特開昭59−11619
4号公報)も提案されている。
In addition, as a method to obtain a single crystal of a group I-V compound with a low dislocation density, a heater is installed at a position corresponding to the position of the liquid sealant in the crucible to increase the heating temperature of the sealant. , a method for crystal growth in which the interface between the crystal raw material melt and the sealant is in a low temperature gradient region (Japanese Patent Application Laid-Open No. 59-11619
Publication No. 4) has also been proposed.

さらに、長尺のルツボを使用し、種結晶直下にルツボの
内壁面に内接する下方に熱線を反射する反射面を有する
リフレクタを水平に取りつけることにより、成長単結晶
の温度勾配を低くする方法(特開昭60−81089号
公報)も提案されている。
Furthermore, a method of lowering the temperature gradient of the growing single crystal by using a long crucible and horizontally installing a reflector that is inscribed in the inner wall of the crucible and has a reflective surface that reflects heat rays downward ( JP-A-60-81089) has also been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、かかる従来の方法では得られた単結晶か
ら切り出したウェハ面内において、平均的な転位密度は
減少するものの、結晶外周部において転位密度の高い領
域が存在し、無添加のひ化ガリウムの結晶において、5
X10’cm−2以上の値を示す領域がしばしば認約ら
れた。この領域はウェハ表面に形成した電気的な活性層
の特性変動の原因となり、ウェハ上に作成した半導体素
子の歩留まりの低下をもたらしていた。
However, although the average dislocation density decreases in the plane of the wafer cut from the single crystal obtained by such conventional methods, there is a region with high dislocation density at the outer periphery of the crystal. In crystals, 5
Regions exhibiting values of X10'cm-2 or more were often observed. This region causes variations in the characteristics of the electrically active layer formed on the wafer surface, resulting in a decrease in the yield of semiconductor devices fabricated on the wafer.

本発明は上記課題を解決するためのもので、ルツボ内の
液体封止剤からの熱放射をさらに低減化することにより
成長結晶における温度勾配を低減化し、転位密度を減少
させることが可能な単結晶成長方法及び装置を提供する
ことを目的とするものである。
The present invention is intended to solve the above problems, and is a single unit capable of reducing the temperature gradient in a growing crystal and reducing the dislocation density by further reducing heat radiation from the liquid sealant in the crucible. The object of the present invention is to provide a crystal growth method and apparatus.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明は、不活性ガスを充填した耐圧容器内
に収容され、加熱されたルツボ内に原料融液、液体封止
剤を収納し、さらに液体封止剤からの熱放射を防止する
反射板を設けて単結晶を成長させる方法において、反射
板に高反射率加工を施し、熱線に対する反射率を高めて
結晶成長させることを特徴とし、また単結晶を成長させ
る装置において、反射板の少なくとも一部を粗面化、ま
たは反射板に金属層を設けることにより反射率を高めて
結晶成長させることを特徴とする。
To this end, the present invention is designed to accommodate a raw material melt and a liquid sealant in a heated crucible that is housed in a pressure-resistant container filled with an inert gas, and to prevent heat radiation from the liquid sealant. A method for growing a single crystal by providing a plate is characterized in that the reflective plate is treated with high reflectance to increase the reflectance to heat rays and the crystal is grown, and in an apparatus for growing a single crystal, at least It is characterized by increasing the reflectance and growing crystals by partially roughening the surface or by providing a metal layer on the reflective plate.

〔作用〕[Effect]

本発明は液体封止引き上げ法により単結晶を成長させる
に際し、表面の少なくとも一部を粗面化するか、或いは
熱線に対する反射率の高い金属層を有する輻射反射板を
液体封止剤表面、または液体封止剤中に配置することに
より熱線に対する反射率を高め、成長結晶における温度
勾配を低減化し、転位密度を減少させることが可能とな
る。
In the present invention, when growing a single crystal by the liquid sealing pulling method, at least a part of the surface is roughened, or a radiation reflecting plate having a metal layer with high reflectance to heat rays is placed on the surface of the liquid sealant, or By disposing it in a liquid sealant, it is possible to increase the reflectance to heat rays, reduce the temperature gradient in the growing crystal, and reduce the dislocation density.

〔実施例〕〔Example〕

以下、実施例を図面に基づき説明する。 Examples will be described below based on the drawings.

第1図は本発明による単結晶成長を説明するための図、
第2図は反射板の形状を示す図、第3図、第4図は反射
板の実施例を示す図である。図中、101はルツボ、1
03は液体封止剤、105は原料融液、107は成長結
晶、109は反射板、111は反射体側部、113は反
射体底部、113aは反射体底部下面、113bは反射
体底部上面、115はGa層である。なお、図では第5
図で説明した耐圧容器、ヒータ、熱遮蔽板等は同じであ
るので省略している。
FIG. 1 is a diagram for explaining single crystal growth according to the present invention,
FIG. 2 is a diagram showing the shape of the reflecting plate, and FIGS. 3 and 4 are diagrams showing examples of the reflecting plate. In the figure, 101 is a crucible, 1
03 is a liquid sealant, 105 is a raw material melt, 107 is a grown crystal, 109 is a reflector, 111 is a side part of the reflector, 113 is a bottom part of the reflector, 113a is a lower surface of the bottom of the reflector, 113b is an upper surface of the bottom of the reflector, 115 is a Ga layer. In addition, in the figure, the fifth
The pressure-resistant container, heater, heat shielding plate, etc. explained in the figure are the same and are therefore omitted.

図において、ルツボ101内の■−■族化合物からなる
原料融液105、B2O3等からなる液体封止剤103
は図示を省略したヒータにより加熱されている。■−V
族化合物としては、ひ化ガリウム、リン化ガリウム、り
ん化インジウム、ひ化インジウム、アンチモン化ガリウ
ム、アンチモン化インジウム等が挙げられる。液体封止
剤の表面には石英製の箱船状の反射板109が浮かべら
れている。もちろん、石英以外にもBN、Aj2N、5
13N4等不活性な物質であればよい。また、液体封止
剤中に没した状態で浮かべるようにしてもよい。反射板
109は液体封止剤からの熱線を高反射率で反射するよ
うに、粗面化したり、GaやIn等の金属層、白金、タ
ンタル、ニッケル等高温で安定な金属メツキ層を設ける
などの加工が施されている。そして、成長結晶107に
触れないようにしてその周囲を囲んでおり、第2図(a
)に示すように一体のリング状にしてもよく、また第2
図(b)に示すように分割して成長結晶を囲むようにし
てもよい。
In the figure, a raw material melt 105 made of a ■-■ group compound in a crucible 101, a liquid sealant 103 made of B2O3, etc.
is heated by a heater (not shown). ■-V
Examples of the group compounds include gallium arsenide, gallium phosphide, indium phosphide, indium arsenide, gallium antimonide, and indium antimonide. A quartz ark-shaped reflecting plate 109 is floated on the surface of the liquid sealant. Of course, in addition to quartz, BN, Aj2N, 5
Any inert substance such as 13N4 may be used. Alternatively, it may be floated while submerged in the liquid sealant. The reflective plate 109 may be roughened or provided with a metal layer such as Ga or In, or a metal plating layer that is stable at high temperatures such as platinum, tantalum, or nickel so as to reflect the heat rays from the liquid sealant with high reflectance. has been processed. The growing crystal 107 is surrounded so as not to touch it, as shown in FIG. 2(a).
), it may be formed into an integral ring shape, or the second
It may be divided to surround the growing crystal as shown in Figure (b).

このように高反射率加工を施した反射板で成長結晶の周
囲を囲むようにしたので、液体封止剤103からの熱放
射が極力防止でき、その結果、成長結晶の温度勾配、特
にその外周部での温度勾配を低減化することが可能とな
り、転位密度の大幅な低減化を図ることができる。
Since the growing crystal is surrounded by a reflective plate treated with high reflectivity, heat radiation from the liquid sealant 103 can be prevented as much as possible, and as a result, the temperature gradient of the growing crystal, especially around its outer periphery, can be prevented as much as possible. It becomes possible to reduce the temperature gradient in the region, and it is possible to significantly reduce the dislocation density.

第3図は本発明の反射体の一実施例を示す図である。FIG. 3 is a diagram showing an embodiment of the reflector of the present invention.

本実施例では、図に示すように側部111、底部113
を有し、表面に浮かべられる石英製の箱船構造になって
おり、その底面113a、113bの一方または両方が
サンドブラスト等により粗面化加工を施しである。この
粗面化加工により反射体の熱線反射率を高くすることが
でき、液体封止剤からの熱線を反射して液体封止剤中、
液体封止剤と融液界面、融液中において温度勾配を低減
化することができる。
In this embodiment, as shown in the figure, the side part 111, the bottom part 113
It has a quartz ark structure that floats on the surface, and one or both of its bottom surfaces 113a and 113b are roughened by sandblasting or the like. This surface roughening process can increase the heat ray reflectance of the reflector, reflecting the heat rays from the liquid sealant.
Temperature gradients can be reduced at the interface between the liquid sealant and the melt and in the melt.

第4図は本発明の反射板の他の実施例を示す図である。FIG. 4 is a diagram showing another embodiment of the reflective plate of the present invention.

本実施例においては反射板109にGa層115を設け
たものであり、Gaは熱線に対する反射率が高いので有
効に熱線を反射することができる。
In this embodiment, a Ga layer 115 is provided on the reflection plate 109, and since Ga has a high reflectance to heat rays, it can effectively reflect heat rays.

なお、Ga層11が液体封止剤に接触すると融液中のG
aとAsの比率を変化させてしまうので、反射体を液体
封止在中に没して使用する場合にはGa層は石英で密閉
する必要がある。また、本実施例においても第3図と同
様に反射体底部の面に粗面化加工を施すようにしてもよ
い。
Note that when the Ga layer 11 comes into contact with the liquid sealant, G in the melt
Since this changes the ratio of a and As, when the reflector is used immersed in a liquid seal, the Ga layer must be sealed with quartz. Also in this embodiment, the bottom surface of the reflector may be roughened as in FIG. 3.

また、第4図の実施例のGa層に代えてIn層を用いる
ようにしても同様の効果が得られる。
Further, the same effect can be obtained even if an In layer is used in place of the Ga layer in the embodiment shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、反射板の反射率を高めて
液体封止剤の表面または内部に浮かべるようにしたので
、液体封止剤からの熱放射を低減化することができ、そ
の結果低温度勾配を実現できるので、特に結晶外周部に
おける転位の発生を大幅に減少させることができる。
As described above, according to the present invention, the reflectance of the reflector is increased and it is floated on the surface or inside of the liquid encapsulant, so that the heat radiation from the liquid encapsulant can be reduced. As a result, a low temperature gradient can be realized, so that the occurrence of dislocations, especially in the outer peripheral portion of the crystal, can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による単結晶成長を説明するための図、
第2図は反射体の形状を示す図、第3図、第4図は反射
板の実施例を示す図、第5図は従来の単結晶成長方法を
説明するための図である。 101・・・ルツボ、103・・・液体封止剤、105
・・・原料融液、107・・・成長結晶、109・・・
反射板、111・・・反射体側部、113・・・反射体
底部、113a・・・反射体底部下面、113b・・・
反射体底部上面、115・・・Ga層。 出 願 人  三菱モンサント化成株式会社(外1名)
FIG. 1 is a diagram for explaining single crystal growth according to the present invention,
FIG. 2 is a diagram showing the shape of a reflector, FIGS. 3 and 4 are diagrams showing examples of a reflecting plate, and FIG. 5 is a diagram for explaining a conventional single crystal growth method. 101... Crucible, 103... Liquid sealant, 105
... Raw material melt, 107... Growing crystal, 109...
Reflector plate, 111...Reflector side part, 113...Reflector bottom part, 113a...Reflector bottom bottom surface, 113b...
Reflector bottom top surface, 115...Ga layer. Applicant: Mitsubishi Monsanto Chemicals Co., Ltd. (1 other person)

Claims (7)

【特許請求の範囲】[Claims] (1)不活性ガスを充填した耐圧容器内に収容され、加
熱されたルツボ内に原料融液、液体封止剤を収納し、さ
らに液体封止剤からの熱放射を防止する反射板を設けて
単結晶を成長させる方法において、反射板に高反射率加
工を施し、熱線の反射率を高めて結晶成長させることを
特徴とする単結晶成長方法。
(1) The raw material melt and liquid sealant are stored in a heated crucible that is housed in a pressure-resistant container filled with inert gas, and a reflective plate is provided to prevent heat radiation from the liquid sealant. A method for growing a single crystal using a method for growing a single crystal, which is characterized in that a reflective plate is treated with high reflectance to increase the reflectance of heat rays and the crystal is grown.
(2)不活性ガスを充填した耐圧容器内に収容され、加
熱されたルツボ内に原料融液、液体封止剤を収納し、さ
らに液体封止剤からの熱放射を防止する反射板を設けて
単結晶を成長させる装置において、反射板の少なくとも
一部を粗面化し、反射率を高めて結晶成長させることを
特徴とする単結晶成長装置。
(2) The raw material melt and liquid sealant are stored in a heated crucible that is housed in a pressure-resistant container filled with inert gas, and a reflective plate is provided to prevent heat radiation from the liquid sealant. What is claimed is: 1. A single-crystal growth device for growing a single crystal, characterized in that at least a portion of a reflection plate is roughened to increase reflectance for crystal growth.
(3)不活性ガスを充填した耐圧容器内に収容され、加
熱されたルツボ内に原料融液、液体封止剤を収納し、さ
らに液体封止剤からの熱放射を防止する反射板を設けて
単結晶を成長させる装置において、反射板に金属層を設
け、反射率を高めて結晶成長させることを特徴とする単
結晶成長装置。
(3) The raw material melt and liquid sealant are stored in a heated crucible that is housed in a pressure-resistant container filled with inert gas, and a reflective plate is provided to prevent heat radiation from the liquid sealant. A single crystal growth apparatus characterized in that a metal layer is provided on a reflection plate to increase reflectance and grow a single crystal.
(4)前記金属層はGaまたはIn層である請求項3記
載の単結晶成長装置。
(4) The single crystal growth apparatus according to claim 3, wherein the metal layer is a Ga or In layer.
(5)不活性ガスを充填した耐圧容器内に収容され、加
熱されたルツボ内に原料融液、液体封止剤を収納し、さ
らに液体封止剤からの熱放射を防止する反射板を設けて
単結晶を成長させる装置において、反射板の少なくとも
一部を粗面化すると共に、金属層を設け、反射率を高め
て結晶成長させることを特徴とする単結晶成長装置。
(5) The raw material melt and liquid sealant are stored in a heated crucible that is housed in a pressure-resistant container filled with inert gas, and a reflective plate is provided to prevent heat radiation from the liquid sealant. What is claimed is: 1. A single-crystal growth device for growing a single crystal, characterized in that at least a portion of a reflection plate is roughened and a metal layer is provided to increase the reflectance for crystal growth.
(6)前記金属層はGaまたはIn層である請求項5記
載の単結晶成長装置。
(6) The single crystal growth apparatus according to claim 5, wherein the metal layer is a Ga or In layer.
(7)前記反射板は成長結晶を囲む一体のリング状、或
いは複数に分割されたリング状である請求項2〜6のう
ちいずれか1項記載の単結晶成長装置。
(7) The single crystal growth apparatus according to any one of claims 2 to 6, wherein the reflecting plate is in the form of an integral ring surrounding the growing crystal, or in the form of a ring divided into a plurality of parts.
JP63331590A 1988-12-28 1988-12-28 Single crystal growth method and apparatus Expired - Fee Related JP2517091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63331590A JP2517091B2 (en) 1988-12-28 1988-12-28 Single crystal growth method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63331590A JP2517091B2 (en) 1988-12-28 1988-12-28 Single crystal growth method and apparatus

Publications (2)

Publication Number Publication Date
JPH02175691A true JPH02175691A (en) 1990-07-06
JP2517091B2 JP2517091B2 (en) 1996-07-24

Family

ID=18245348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63331590A Expired - Fee Related JP2517091B2 (en) 1988-12-28 1988-12-28 Single crystal growth method and apparatus

Country Status (1)

Country Link
JP (1) JP2517091B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120239A (en) * 1978-03-13 1979-09-18 Mitsubishi Heavy Ind Ltd Enhancing method for radiation heat transfer effect of metal surface
JPS5749185A (en) * 1980-09-05 1982-03-20 Matsushita Electric Ind Co Ltd Method of producing infrared heater
JPS5836998A (en) * 1981-08-26 1983-03-04 Toshiba Ceramics Co Ltd Pulling up device for single crystal silicon
JPS58110486A (en) * 1981-12-17 1983-07-01 Nippon Telegr & Teleph Corp <Ntt> Growing method for single crystal of semiconductor
JPS6081089A (en) * 1983-10-07 1985-05-09 Sumitomo Electric Ind Ltd Pulling method of single crystal
JPS6163593A (en) * 1984-09-05 1986-04-01 Toshiba Corp Installation for production of single crystal of compound semiconductor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120239A (en) * 1978-03-13 1979-09-18 Mitsubishi Heavy Ind Ltd Enhancing method for radiation heat transfer effect of metal surface
JPS5749185A (en) * 1980-09-05 1982-03-20 Matsushita Electric Ind Co Ltd Method of producing infrared heater
JPS5836998A (en) * 1981-08-26 1983-03-04 Toshiba Ceramics Co Ltd Pulling up device for single crystal silicon
JPS58110486A (en) * 1981-12-17 1983-07-01 Nippon Telegr & Teleph Corp <Ntt> Growing method for single crystal of semiconductor
JPS6081089A (en) * 1983-10-07 1985-05-09 Sumitomo Electric Ind Ltd Pulling method of single crystal
JPS6163593A (en) * 1984-09-05 1986-04-01 Toshiba Corp Installation for production of single crystal of compound semiconductor

Also Published As

Publication number Publication date
JP2517091B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US3716345A (en) Czochralski crystallization of gallium arsenide using a boron oxide sealed device
US3634150A (en) Method for forming epitaxial crystals or wafers in selected regions of substrates
Rudolph et al. Crystal growth of ZnSe from the melt
US20100203350A1 (en) Methods and Apparatuses for Manufacturing Cast Silicon from Seed Crystals
US6599815B1 (en) Method and apparatus for forming a silicon wafer with a denuded zone
US5212394A (en) Compound semiconductor wafer with defects propagating prevention means
US5871580A (en) Method of growing a bulk crystal
US20090072205A1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
KR20040089737A (en) Apparatus for growing monocrystalline group II-VI and III-V compounds
US4664742A (en) Method for growing single crystals of dissociative compounds
JPH02175691A (en) Growth of single crystal and device therefor
KR20030019472A (en) Method and apparatus for forming an epitaxial silicon wafer with a denuded zone
US5574307A (en) Semiconductor device and method of producing the same
JPS6050759B2 (en) ZnSe epitaxial growth method and growth apparatus
JP2637210B2 (en) Single crystal growth method and apparatus
KR101395392B1 (en) Growing Method for Silicon Single Crystal Ingot
JPH11255597A (en) Apparatus for producing single crystal
GB2189166A (en) A single crystal of IIIb-Vb compound, particularly GaAs, and method for producing the same
JPS6021899A (en) Apparatus for preparing compound semiconductor single crystal
JPH11116373A (en) Compound semiconductor single crystal of low dislocation density, its production and apparatus for producing the same
JPH06271395A (en) Production of compound semiconductor crystal
JPS5957992A (en) Manufacture of single crystal of semiconductor of compound
JP2517092B2 (en) Single crystal growth method
JPH0316119A (en) Compound semiconductor wafer
JPH11236294A (en) Device for producing silicon single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees