JP2517091B2 - Single crystal growth method and apparatus - Google Patents
Single crystal growth method and apparatusInfo
- Publication number
- JP2517091B2 JP2517091B2 JP63331590A JP33159088A JP2517091B2 JP 2517091 B2 JP2517091 B2 JP 2517091B2 JP 63331590 A JP63331590 A JP 63331590A JP 33159088 A JP33159088 A JP 33159088A JP 2517091 B2 JP2517091 B2 JP 2517091B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- reflection plate
- liquid sealant
- crystal growth
- reflectance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は均一性に優れた単結晶を収率良く製造する単
結晶成長方法及び装置に関するものである。Description: TECHNICAL FIELD The present invention relates to a single crystal growth method and apparatus for producing a single crystal having excellent uniformity with a high yield.
周期率表第IIIb族、及び第Vb族元素からなる無機化合
物(以下「III−V族化合物」と言う。)の単結晶、特
にひ化ガリウム、りん化ガリウムの単結晶は、電界効果
トランジスタ、ショットキ・バリア・ダイオード、集積
回路(IC)等の各種半導体素子類の製造に広く用いられ
ている。A single crystal of an inorganic compound (hereinafter referred to as "III-V compound") composed of Group IIIb and Group Vb elements of the periodic table, particularly a single crystal of gallium arsenide or gallium phosphide is a field effect transistor, Widely used in the manufacture of various semiconductor devices such as Schottky barrier diodes and integrated circuits (ICs).
これらの半導体素子の製造に用いられる単結晶は結晶
中の原子配列の乱れである転位が少ないことが必要とさ
れている。The single crystals used for manufacturing these semiconductor elements are required to have few dislocations, which are disordered atomic arrangements in the crystals.
従来、集積回路の基板に用いるIII−V族化合物、特
にひ化ガリウムの単結晶は三酸化二ほう素を封止剤とし
て用い、第Vb族成分の蒸発を防止する液体封止引き上げ
法、所謂LEC法により成長させるものが使用されてい
た。これは、LEC法によれば不純物の混入が少ないの
で、高純度の結晶が得られるからである。しかしなが
ら、LEC法では引き上げ装置の器壁の冷却、容器内部へ
の高圧の不活性ガスの充填により装置内部に大きい温度
勾配が発生し、液体封止剤中、及び液体封止剤と雰囲気
不活性ガスの界面において単結晶内部に熱応力が生じ、
得られた単結晶の転位密度が高くなるという問題があっ
た。特に、結晶外周部の転位密度が高い領域は基板界面
内に専有する面積が大きいため、外周部における転位密
度の低減化は重要である。Conventionally, a III-V group compound used for a substrate of an integrated circuit, especially a single crystal of gallium arsenide, uses diboron trioxide as a sealing agent, and a so-called liquid sealing pulling method for preventing evaporation of a Vb group component, so-called What was grown by the LEC method was used. This is because according to the LEC method, impurities are less mixed, so that high-purity crystals can be obtained. However, in the LEC method, a large temperature gradient is generated inside the device due to cooling of the vessel wall of the pulling device and filling of high-pressure inert gas into the container, which is inert to the atmosphere inside the liquid sealant and the liquid sealant. Thermal stress occurs inside the single crystal at the gas interface,
There is a problem that the dislocation density of the obtained single crystal becomes high. In particular, a region having a high dislocation density at the outer peripheral portion of the crystal occupies a large area within the interface of the substrate, and therefore it is important to reduce the dislocation density at the outer peripheral portion.
転位密度は、一般に単結晶から切り出したウエハ面を
溶融水酸化カリウム等でエッチングして得られるエッチ
ピットの密度で評価されるが、一般的な用途には5×10
4cm-2以下であることが要求されている。The dislocation density is generally evaluated by the density of etch pits obtained by etching a wafer surface cut from a single crystal with molten potassium hydroxide or the like.
It is required to be 4 cm -2 or less.
第5図は従来の単結晶成長方法を説明するための図
で、不活性ガスを充填した耐圧容器201内において、融
液207を液体封止剤205で封止してルツボ203に入れ、液
体封止剤205と融液207を熱遮蔽板217で覆ったヒータ215
により加熱し、結晶原料融液と封止剤との界面を低温度
勾配領域にして結晶成長を行っている。FIG. 5 is a diagram for explaining a conventional single crystal growth method. In a pressure resistant container 201 filled with an inert gas, a melt 207 is sealed with a liquid sealant 205 and placed in a crucible 203, A heater 215 in which the sealing agent 205 and the melt 207 are covered with a heat shield plate 217.
And the crystal growth is performed by setting the interface between the crystal raw material melt and the sealant to a low temperature gradient region.
また、転位密度の少ないIII−V族化合物単結晶を得
るための方法として、ルツボ内の液体封止剤が存在して
いる位置に相当する位置にヒータを設けて封止剤の加熱
温度を高め、結晶原料融液と封止剤との界面を低温度勾
配領域にして結晶成長を行う方法(特開昭59−116194号
公報)も提案されている。In addition, as a method for obtaining a III-V compound single crystal having a low dislocation density, a heater is provided at a position corresponding to a position where a liquid sealant is present in a crucible to increase the heating temperature of the sealant. A method of growing a crystal by setting the interface between the crystal raw material melt and the sealing agent in a low temperature gradient region (Japanese Patent Application Laid-Open No. 59-116194) has also been proposed.
さらに、長尺のルツボを使用し、種結晶直下にルツボ
の内壁面に内接する下方に熱線を反射する反射面を有す
るリフレクタを水平に取りつけることにより、成長単結
晶の温度勾配を低くする方法(特開昭60−81089号公
報)も提案されている。Furthermore, a method of lowering the temperature gradient of the grown single crystal by using a long crucible and horizontally attaching a reflector having a reflection surface that reflects the heat ray below the inner wall of the crucible immediately below the seed crystal ( JP-A-60-81089) has also been proposed.
しかしながら、かかる従来の方法では得られた単結晶
から切り出したウエハ面内において、平均的な転位密度
は減少するものの、結晶外周部において転位密度の高い
領域が存在し、無添加のひ化ガリウムの結晶において、
5×104cm-2以上の値を示す領域がしばしば認められ
た。この領域はウエハ表面に形成した電気的な活性層の
特性変動の原因となり、ウエハ上に作成した半導体素子
の歩留まりの低下をもたらしていた。However, in the wafer surface cut out from the single crystal obtained by such a conventional method, although the average dislocation density is reduced, there is a region with a high dislocation density in the outer peripheral portion of the crystal, and the undoped gallium arsenide In crystals,
Areas showing values of 5 × 10 4 cm −2 or more were often observed. This region causes a change in the characteristics of the electrical active layer formed on the wafer surface, and has led to a decrease in the yield of semiconductor elements formed on the wafer.
本発明は上記課題を解決するためのもので、ルツボ内
の液体封止剤からの熱放射をさらに低減化することによ
り成長結晶における温度勾配を低減化し、転位密度を減
少させることが可能な単結晶成長方法及び装置を提供す
ることを目的とするものである。The present invention is for solving the above-mentioned problems, and it is possible to reduce the temperature gradient in the grown crystal by further reducing the heat radiation from the liquid sealant in the crucible and to reduce the dislocation density. It is an object of the present invention to provide a crystal growth method and apparatus.
そのために本発明は、不活性ガスを充填した耐圧容器
内に収納され、加熱されたルツボ内にIII−V族化合物
の原料融液、液体封止剤を収納し、さらに液体封止剤に
浮かべられ液体封止剤からの熱放射を防止する反射板を
設けて単結晶を成長させる方法において、反射板に高反
射率加工を施し、熱線の反射率を高めて結晶成長させる
ことを特徴とし、また、単結晶を成長させる装置におい
て、反射板の少なくとも一部を粗面化し、反射率を高め
て結晶成長させるようにしたことを特徴とする。Therefore, the present invention is accommodated in a pressure-resistant container filled with an inert gas, the raw material melt of the III-V compound and the liquid sealant are accommodated in a heated crucible, and further floated on the liquid sealant. In the method of growing a single crystal by providing a reflection plate that prevents heat radiation from the liquid sealant, the reflection plate is subjected to high-reflectance processing, which is characterized in that crystal growth is performed by increasing the reflectance of heat rays. Further, the apparatus for growing a single crystal is characterized in that at least a part of the reflection plate is roughened so as to increase the reflectance and grow the crystal.
本発明は液体封止引き上げ法により単結晶を成長させ
るに際し、表面の少なくとも一部を粗面化するか、或い
は熱線に対する反射率の高い金属層を有する輻射反射板
を液体封止剤表面、または液体封止剤中に配置すること
により熱線に対する反射率を高め、成長結晶における温
度勾配を低減化し、反転密度を減少させることが可能と
なる。The present invention, when growing a single crystal by the liquid sealing pulling method, roughens at least a part of the surface, or a radiation reflection plate having a metal layer having a high reflectance for heat rays, the liquid sealing agent surface, or By arranging it in the liquid encapsulant, it becomes possible to increase the reflectance with respect to heat rays, reduce the temperature gradient in the grown crystal, and reduce the inversion density.
以下、実施例を図面に基づき説明する。 Embodiments will be described below with reference to the drawings.
第1図は本発明による単結晶成長を説明するための
図、第2図は反射板の形状を示す図、第3図、第4図は
反射板の実施例を示す図である。図中、101はルツボ、1
03は液体封止剤、105は原料融液、107は成長結晶、109
は反射板、111は反射体側部、113は反射体底部、113aは
反射体底部下面、113bは反射体底部上面、115はGa層で
ある。なお、図では第5図で説明した耐圧容器、ヒー
タ、熱遮蔽板等は同じであるので省略している。FIG. 1 is a diagram for explaining single crystal growth according to the present invention, FIG. 2 is a diagram showing the shape of a reflector, and FIGS. 3 and 4 are diagrams showing an embodiment of the reflector. In the figure, 101 is a crucible, 1
03 is a liquid sealant, 105 is a raw material melt, 107 is a grown crystal, 109
Is a reflector, 111 is a reflector side, 113 is a reflector bottom, 113a is a reflector bottom lower surface, 113b is a reflector bottom upper surface, and 115 is a Ga layer. In the figure, the pressure vessel, the heater, the heat shield plate, and the like described in FIG. 5 are omitted because they are the same.
図において、ルツボ101内のIII−V族化合物からなる
原料融液105、B2O3等からなる液体封止剤103は図示を省
略したヒータにより加熱されている。III−V族化合物
としては、ひ化ガリウム、リン化ガリウム、りん化イン
ジウム、ひ化インジウム、アンチモン化ガリウム、アン
チモン化インジウム等が挙げられる。液体封止剤の表面
には石英製の箱船状の反射板109が浮かべられている。
もちろん、石英以外にもBN、AlN、Si3N4等不活性な物質
であればよい。また、液体封止剤中に没した状態で浮か
べるようにしてもよい。反射板109は液体封止剤からの
熱線を高反射率で反射するように、粗面化したり、Gaや
In等の金属層、白金、タンタル、ニッケル等高温で安定
な金属メッキ層を設けるなどの加工が施されている。そ
して、成長結晶107に触れないようにしてその周囲を囲
んでおり、第2図(a)に示すように一体のリング状に
してもよく、また第2図(b)に示すように分割して成
長結晶を囲むようにしてもよい。In the figure, the raw material melt 105 made of a III-V group compound and the liquid sealant 103 made of B 2 O 3 in the crucible 101 are heated by a heater (not shown). Examples of the III-V group compound include gallium arsenide, gallium phosphide, indium phosphide, indium arsenide, gallium antimonide, indium antimonide and the like. A quartz box-shaped reflector plate 109 is floated on the surface of the liquid sealant.
Of course, other than quartz, any inert material such as BN, AlN, Si 3 N 4 may be used. Further, it may be floated while being immersed in the liquid sealant. The reflection plate 109 is roughened or has a Ga or Ga surface so that the heat rays from the liquid sealant are reflected with high reflectance.
Processing such as providing a metal layer such as In, a metal plating layer that is stable at high temperatures such as platinum, tantalum, and nickel is performed. The growth crystal 107 is surrounded so as not to touch it, and may be formed into an integral ring shape as shown in FIG. 2 (a), or may be divided as shown in FIG. 2 (b). You may make it surround a grown crystal.
このように高反射率加工を施した反射板で成長結晶の
周囲を囲むようにしたので、液体封止剤103からの熱放
射が極力防止でき、その結果、成長結晶の温度勾配、特
にその外周部での温度勾配を低減化することが可能とな
り、転位密度の大幅な低減化を図ることができる。Since the periphery of the grown crystal is surrounded by the reflection plate subjected to high reflectance processing as described above, heat radiation from the liquid encapsulant 103 can be prevented as much as possible, and as a result, the temperature gradient of the grown crystal, especially the outer periphery thereof. It is possible to reduce the temperature gradient in the portion, and to significantly reduce the dislocation density.
第3図は本発明の反射体の一実施例を示す図である。 FIG. 3 is a diagram showing an embodiment of the reflector of the present invention.
本実施例では、図に示すように側部111、底部113を有
し、表面に浮かべられる石英製の箱船構造になってお
り、その封止剤と接する底面113aの少なくとも一部、好
ましくは全部がサンドブラスト等により粗面化加工を施
してある。この粗面化加工により反射体の熱線反射率を
高くすることができ、液体封止剤からの熱線を反射して
液体封止剤中、液体封止剤と融液界面、融液中において
温度勾配を低減化することができる。In this embodiment, as shown in the figure, it has a side part 111 and a bottom part 113, and has a ark structure made of quartz floated on the surface, and at least a part of the bottom surface 113a in contact with the sealant, preferably all. Has been roughened by sandblasting or the like. By this roughening process, the heat ray reflectance of the reflector can be increased, and the heat ray from the liquid sealant is reflected to reflect the heat in the liquid sealant, the liquid sealant and the melt interface, and the temperature in the melt. The slope can be reduced.
第4図は本発明の反射板の他の実施例を示す図であ
る。FIG. 4 is a diagram showing another embodiment of the reflector of the present invention.
本実施例においては反射板109にGa層115を設けたもの
であり、Gaは熱線に対する反射率が高いので有効に熱線
を反射することができる。なお、Ga層11が液体封止剤に
接触すると融液中のGaとAsの比率を変化させてしまうの
で、反射体を液体封止在中に没して使用する場合にはGa
層は石英で密閉する必要がある。また、本実施例におい
ても第3図と同様に反射体底部の面に粗面化加工を施す
ようにしてもよい。In this embodiment, the Ga layer 115 is provided on the reflection plate 109, and since Ga has a high reflectance for heat rays, it is possible to effectively reflect the heat rays. When the Ga layer 11 contacts the liquid sealant, it changes the ratio of Ga and As in the melt, so when the reflector is immersed in the liquid seal,
The layers should be sealed with quartz. Also in this embodiment, as in FIG. 3, the surface of the bottom of the reflector may be roughened.
また、第4図の実施例のGa層に代えてIn層を用いるよ
うにしても同様の効果が得られる。The same effect can be obtained by using an In layer instead of the Ga layer in the embodiment of FIG.
以上のように本発明によれば、反射板の反射率を高め
て液体封止剤の表面または内部に浮かべるようにしたの
で、液体封止剤からの熱放射を低減化することができ、
その結果低温度勾配を実現できるので、特に結晶外周部
における転位の発生を大幅に減少させることができる。As described above, according to the present invention, since the reflectance of the reflection plate is increased to float on the surface or inside of the liquid sealant, heat radiation from the liquid sealant can be reduced,
As a result, since a low temperature gradient can be realized, the generation of dislocations can be significantly reduced especially in the crystal outer peripheral portion.
第1図は本発明による単結晶成長を説明するための図、
第2図は反射体の形状を示す図、第3図、第4図は反射
板の実施例を示す図、第5図は従来の単結晶成長方法を
説明するための図である。 101…ルツボ、103…液体封止剤、105…原料融液、107…
成長結晶、109…反射板、111…反射体側部、113…反射
体底部、113a…反射板底部下面、113b…反射体底部上
面、115…Ga層。FIG. 1 is a diagram for explaining single crystal growth according to the present invention,
FIG. 2 is a diagram showing the shape of a reflector, FIGS. 3 and 4 are diagrams showing an embodiment of a reflector, and FIG. 5 is a diagram for explaining a conventional single crystal growth method. 101 ... Crucible, 103 ... Liquid sealant, 105 ... Raw material melt, 107 ...
Growth crystal, 109 ... Reflector, 111 ... Reflector side, 113 ... Reflector bottom, 113a ... Reflector bottom lower surface, 113b ... Reflector bottom upper surface, 115 ... Ga layer.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 片野 築 茨城県牛久市東猯穴町1000番地 三菱モ ンサント化成株式会社筑波工場内 (72)発明者 矢島 文和 茨城県牛久市東猯穴町1000番地 三菱モ ンサント化成株式会社筑波工場内 (56)参考文献 特開 昭58−110486(JP,A) 特開 昭58−60694(JP,A) 特開 昭54−120239(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tsuyoshi Katano Tsuchiba, Ushiku, Ibaraki 1000 No. 1000, Higashihuinaka, Mitsubishi Monsanto Kasei Co., Ltd. Monsanto Kasei Co., Ltd. Tsukuba Plant (56) Reference JP-A-58-110486 (JP, A) JP-A-58-60694 (JP, A) JP-A-54-120239 (JP, A)
Claims (7)
れ、加熱されたルツボ内にIII−V族化合物の原料融
液、液体封止剤を収納し、さらに液体封止剤に浮かべら
れ液体封止剤からの熱放射を防止する反射板を設けて単
結晶を成長させる方法において、反射板に高反射率加工
を施し、熱線の反射率を高めて結晶成長させることを特
徴とする単結晶成長方法。1. A raw material melt of a III-V compound and a liquid sealant are housed in a pressure-resistant container filled with an inert gas and heated, and the crucible is floated on the liquid sealant. A method of growing a single crystal by providing a reflection plate for preventing heat radiation from a liquid encapsulant, characterized by subjecting the reflection plate to high-reflectance processing to increase the reflectance of heat rays for crystal growth. Crystal growth method.
れ、加熱されたルツボ内にIII−V族化合物の原料融
液、液体封止剤を収納し、さらに液体封止剤に浮かべら
れ液体封止剤からの熱放射を防止する反射板を設けて単
結晶を成長させる装置において、反射板の少なくとも一
部を粗面化し、反射率を高めて結晶成長させることを特
徴とする単結晶成長装置。2. A raw material melt of a III-V compound and a liquid sealant are housed in a heated crucible, which is housed in a pressure vessel filled with an inert gas, and is floated on the liquid sealant. An apparatus for growing a single crystal by providing a reflection plate for preventing heat radiation from a liquid encapsulant, characterized in that at least a part of the reflection plate is roughened, and the reflectance is increased to grow the single crystal. Growth equipment.
れ、加熱されたルツボ内にIII−V族化合物の原料融
液、液体封止剤を収納し、さらに液体封止剤に浮かべら
れ液体封止剤からの熱放射を防止する反射板を設けて単
結晶を成長させる装置において、反射板に金属層を設
け、反射率を高めて結晶成長させることを特徴とする単
結晶成長装置。3. A raw material melt of a III-V compound and a liquid sealant are housed in a crucible heated and housed in a pressure vessel filled with an inert gas, and further floated on the liquid sealant. An apparatus for growing a single crystal by providing a reflection plate for preventing heat radiation from a liquid encapsulant, wherein the reflection plate is provided with a metal layer to increase the reflectance and perform crystal growth.
記載の単結晶成長装置。4. The metal layer is a Ga or In layer.
The single crystal growth apparatus described.
れ、加熱されたルツボ内にIII−V族化合物の原料融
液、液体封止剤を収納し、さらに液体封止剤に浮かべら
れ液体封止剤からの熱放射を防止する反射板を設けて単
結晶を成長させる装置において、反射板の少なくとも一
部を粗面化すると共に、金属層を設け、反射率を高めて
結晶成長させることを特徴とする単結晶成長装置。5. A raw material melt of a III-V compound and a liquid sealant are housed in a pressure-resistant container filled with an inert gas and heated, and the crucible is floated on the liquid sealant. In a device for growing a single crystal by providing a reflection plate that prevents heat radiation from a liquid sealant, at least a part of the reflection plate is roughened, and a metal layer is provided to increase the reflectance and grow crystals. A single crystal growth apparatus characterized by the above.
記載の単結晶成長装置。6. The metal layer is a Ga or In layer.
The single crystal growth apparatus described.
状、或いは複数に分割されたリング状である請求項2〜
6のうちいずれか1項記載の単結晶成長装置。7. The reflection plate has an integral ring shape surrounding the grown crystal or a plurality of divided ring shapes.
6. The single crystal growth apparatus according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63331590A JP2517091B2 (en) | 1988-12-28 | 1988-12-28 | Single crystal growth method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63331590A JP2517091B2 (en) | 1988-12-28 | 1988-12-28 | Single crystal growth method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02175691A JPH02175691A (en) | 1990-07-06 |
JP2517091B2 true JP2517091B2 (en) | 1996-07-24 |
Family
ID=18245348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63331590A Expired - Fee Related JP2517091B2 (en) | 1988-12-28 | 1988-12-28 | Single crystal growth method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2517091B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54120239A (en) * | 1978-03-13 | 1979-09-18 | Mitsubishi Heavy Ind Ltd | Enhancing method for radiation heat transfer effect of metal surface |
JPS5749185A (en) * | 1980-09-05 | 1982-03-20 | Matsushita Electric Ind Co Ltd | Method of producing infrared heater |
JPS5836998A (en) * | 1981-08-26 | 1983-03-04 | Toshiba Ceramics Co Ltd | Pulling up device for single crystal silicon |
JPS5935878B2 (en) * | 1981-12-17 | 1984-08-31 | 日本電信電話株式会社 | Semiconductor single crystal growth method |
JPS6081089A (en) * | 1983-10-07 | 1985-05-09 | Sumitomo Electric Ind Ltd | Pulling method of single crystal |
JPS6163593A (en) * | 1984-09-05 | 1986-04-01 | Toshiba Corp | Installation for production of single crystal of compound semiconductor |
-
1988
- 1988-12-28 JP JP63331590A patent/JP2517091B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02175691A (en) | 1990-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0179138A4 (en) | A method of forming a composite semiconductor structure. | |
US5107317A (en) | Semiconductor device with first and second buffer layers | |
Jacob et al. | Dislocations in GaAs | |
US6144044A (en) | Gallium phosphide green light-emitting device | |
US5212394A (en) | Compound semiconductor wafer with defects propagating prevention means | |
JP2517091B2 (en) | Single crystal growth method and apparatus | |
US3647579A (en) | Liquid phase double epitaxial process for manufacturing light emitting gallium phosphide devices | |
JP2637210B2 (en) | Single crystal growth method and apparatus | |
GB2189166A (en) | A single crystal of IIIb-Vb compound, particularly GaAs, and method for producing the same | |
JP2517092B2 (en) | Single crystal growth method | |
US3217378A (en) | Method of producing an electronic semiconductor device | |
US4384398A (en) | Elimination of silicon pyramids from epitaxial crystals of GaAs and GaAlAs | |
KR930007856B1 (en) | Wafer of compound semiconductor | |
JPH11116373A (en) | Compound semiconductor single crystal of low dislocation density, its production and apparatus for producing the same | |
JPH06271395A (en) | Production of compound semiconductor crystal | |
JP2751359B2 (en) | Group III-V compound single crystal | |
US5514881A (en) | Gap light emitting device having a low carbon content in the substrate | |
JPS6021899A (en) | Apparatus for preparing compound semiconductor single crystal | |
JPS5957992A (en) | Manufacture of single crystal of semiconductor of compound | |
Woolhouse | Inclusion-generated dislocation clusters in liquid phase epitaxy | |
US5851850A (en) | Method for fabricating a gap type semiconductor substrate of red light emitting devices | |
Kasano et al. | Preparation of GaAs-Ge and InAs-GaAs Heterojunctions in a Closed Tube System Using Iodine Process | |
JPS5815095A (en) | Production of single crystal | |
KR920007335B1 (en) | Manufacturing apparatus of gaas single crystalline structure | |
JPS6018637B2 (en) | Method for manufacturing compound semiconductor single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |