JPH02174261A - Manufacture of infrared image pickup element - Google Patents

Manufacture of infrared image pickup element

Info

Publication number
JPH02174261A
JPH02174261A JP63327598A JP32759888A JPH02174261A JP H02174261 A JPH02174261 A JP H02174261A JP 63327598 A JP63327598 A JP 63327598A JP 32759888 A JP32759888 A JP 32759888A JP H02174261 A JPH02174261 A JP H02174261A
Authority
JP
Japan
Prior art keywords
ccd
window
signal electrode
bumps
bandgap semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63327598A
Other languages
Japanese (ja)
Inventor
Yujiro Naruse
雄二郎 成瀬
Norio Nakayama
仲山 則夫
Keitaro Shigenaka
圭太郎 重中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63327598A priority Critical patent/JPH02174261A/en
Publication of JPH02174261A publication Critical patent/JPH02174261A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress crosstalk generation due to contact between In bumps by forming a window in a wide forbidden band semiconductor film through carrying out step-like multiple etching and further effecting ion injection and signal electrode formation from above and press-joining with Si-CCD through the use of an n-bump. CONSTITUTION:A window is formed in the uppermost wide forbidden band semiconductor CdTe film layer 2 through carrying out step-like multiple etching. and an N-region 4 is formed by effecting ion injection for an area slightly larger than the window. Then, successively an In signal electrode 5 is vacuum deposited to form a signal electrode injecting opening for an Si-CCD (charge transfer element) 6. Then, an In bump 8 is formed on a charge injection region 7 of the Si-CCD, and press-joined with a photodiode array. Because the cross-section of the wide forbidden band semiconductor film 2, the upper most layer of the wafer, is etched in a step form, the widening of the extremity of the In band is suppressed. Thus, crosstalk due to contact between the bumps is scarcely generated.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、赤外線像を形成する赤外線撮像素子の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method of manufacturing an infrared imaging element that forms an infrared image.

(従来の技術) 従来の赤外線撮像素子の例を第2図に示す。この第2図
に示す構造はCdTe基板10上のP形CdHgTe 
(以下CMTと略記)エピタキシャル層11にイオン注
入法でN領域12を形成したフォトダイオードアレイと
、5t−CCD13をInバンプ14で圧着接合したも
のである。15はIn信号電極、16はパッシベーショ
ン用陽極硫化膜(CdS)、そして17はZnS表面保
護膜である。このフォトダイオードに裏面CdTe基板
から赤外線が入射するとCMT中に電子正孔対が発生し
、これらが信号電荷としてPN接合の空乏層領域を通過
することにより、In信号電極とInバンプを経由して
S 1−CODの電荷注入領域18へ信号電流が送り込
まれる。19はアース接地を表している。
(Prior Art) An example of a conventional infrared imaging device is shown in FIG. The structure shown in FIG. 2 is made of P-type CdHgTe on a CdTe substrate 10.
(hereinafter abbreviated as CMT) A photodiode array in which an N region 12 is formed in an epitaxial layer 11 by ion implantation, and a 5t-CCD 13 are bonded together using In bumps 14. 15 is an In signal electrode, 16 is an anode sulfide film (CdS) for passivation, and 17 is a ZnS surface protection film. When infrared rays are incident on this photodiode from the backside CdTe substrate, electron-hole pairs are generated in the CMT, and these pass through the depletion layer region of the PN junction as signal charges, thereby passing through the In signal electrode and In bump. A signal current is sent to the charge injection region 18 of S 1 -COD. 19 represents earth grounding.

この様にして赤外線画像の映像信号が得られる。In this way, a video signal of an infrared image is obtained.

(発明が解決しようとする課題) 第2図に示した従来の赤外線固体撮像素子は、以下に述
べるような問題点がある。Inバンプは圧着接合の際、
図に示す様に先端部が広がり隣接するバンプ同士が接触
する確率が高い。これは画素間のクロストークとなり好
ましくない。
(Problems to be Solved by the Invention) The conventional infrared solid-state imaging device shown in FIG. 2 has the following problems. When bonding In bumps by crimping,
As shown in the figure, there is a high probability that the tips will spread and that adjacent bumps will come into contact with each other. This results in crosstalk between pixels, which is undesirable.

本発明は上記のごとき問題を解決し、画素間のクロスト
ークが生じにくい赤外線固体撮像素子の製造方法を提供
することを目的とする。
An object of the present invention is to solve the above problems and provide a method for manufacturing an infrared solid-state image sensor in which crosstalk between pixels is less likely to occur.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明にかかる赤外線固体撮像素子の製造方法は、赤外
線フォトダイオードアレイを形成するエピタキシャルウ
ェーハの最上部にある広禁制帯半導体薄膜を、階段状に
多重エツチングして窓を開け、その上からイオン注入と
信号電極を形成し、そしてInバンプによりS 1−C
ODとの圧着接合を行う。
(Means for Solving the Problems) A method for manufacturing an infrared solid-state imaging device according to the present invention involves multiple etching of a wide forbidden semiconductor thin film on the top of an epitaxial wafer forming an infrared photodiode array in a stepwise manner. A window is opened, ions are implanted from above, a signal electrode is formed, and S1-C is formed by In bumps.
Perform pressure bonding with OD.

(作 用) ウェーハ最上層の広禁制帯半導体膜断面が、階段状にエ
ツチングされているので、Inバンプ先端部の圧着接合
時の広がりが抑制される。したがってバンプ間の接触に
よるクロストークが発生しにくい。
(Function) Since the cross section of the wide forbidden band semiconductor film in the uppermost layer of the wafer is etched in a stepwise manner, the spreading of the tip of the In bump during pressure bonding is suppressed. Therefore, crosstalk due to contact between bumps is less likely to occur.

(実施例) 本発明の実施例を第1図を用いて説明する。赤外線フォ
トダイオードアレイを構成するウェーハは、CdTeの
広禁制帯半導体基板1上にP形の狭禁制帯半導体CMT
層2と広禁制帯半導体CdTe薄膜層3を、連続的にエ
ピタキシャル成長させたものである。まず最上部の広禁
制帯半導体CdTe薄膜層を、階段状に多重エツチング
して窓を開け、その大きさよりやや広くイオン注入して
N領域4を形成する。続いてIn信号電極5を真空蒸着
して、5t−CCD(電荷転送素子)6への信号電流注
入口とする。一方、5i−CCDの電荷注入領域7の上
にInバンプ8を形成して、図に示す様にフォトダイオ
ードアレイと圧着接合する。
(Example) An example of the present invention will be described with reference to FIG. The wafer constituting the infrared photodiode array is a P-type narrow bandgap semiconductor CMT on a CdTe wide bandgap semiconductor substrate 1.
The layer 2 and the wide bandgap semiconductor CdTe thin film layer 3 are epitaxially grown in succession. First, the uppermost wide forbidden band semiconductor CdTe thin film layer is multi-etched stepwise to form a window, and ions are implanted slightly wider than the window to form the N region 4. Subsequently, an In signal electrode 5 is vacuum-deposited to serve as a signal current injection port to a 5t-CCD (charge transfer device) 6. On the other hand, In bumps 8 are formed on the charge injection region 7 of the 5i-CCD and bonded to the photodiode array by pressure bonding as shown in the figure.

このような構造において、赤外線が裏面(CdTe基板
1側)から入射すると、赤外線はCdTe基板を透過し
P形CMT層2中で吸収される。ここで電子正孔対が発
生して、少数キャリアである電子がPN接合領域(空乏
層領域)へ流れ込む。信号電流はIn電極とInバンプ
を経て、5L−CODへ入力され画像信号が形成される
In such a structure, when infrared rays are incident from the back surface (CdTe substrate 1 side), the infrared rays are transmitted through the CdTe substrate and absorbed in the P-type CMT layer 2. Here, electron-hole pairs are generated, and electrons, which are minority carriers, flow into the PN junction region (depletion layer region). The signal current is input to the 5L-COD via the In electrode and the In bump, and an image signal is formed.

図中、9はアース接地を表している。In the figure, 9 represents earth grounding.

本発明は、上記した実施例に限られるものではない。例
えば、広禁制帯半導体基板としてCdTe以外にGaA
s%CdZnTe、ZnTeを、狭禁制帯半導体層とし
てCMT以外にHgZn用いることが可能である。また
広禁制帯半導体薄膜3として、CdTe以外にHg組成
比の小さいCMTやZnTeを用いることができる。
The present invention is not limited to the embodiments described above. For example, in addition to CdTe, GaA can be used as a wide-gap semiconductor substrate.
s%CdZnTe, ZnTe, and HgZn other than CMT can be used as the narrow bandgap semiconductor layer. Furthermore, as the wide forbidden band semiconductor thin film 3, CMT or ZnTe having a small Hg composition ratio can be used in addition to CdTe.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によって得られた赤外線固体撮像素子は、
Inパン1間の接触によるクロストーク発生が大幅に減
少する。
The infrared solid-state imaging device obtained by the method of the present invention is
The occurrence of crosstalk due to contact between the In pans 1 is significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明するための断面構造図
を表す。第2図は、従来例を説明するための同様な図で
ある。 1 : CdTe広禁制帯半導体基板、2二P形の狭禁
制帯半導体CMT層、 3:広禁制帯半導体CdTe薄膜層、 4:N領域、 5:信号電極、 6 : S 1−CCD。 7:電荷注入領域、 8:Inバンプ。 ネ 外 媒
FIG. 1 shows a cross-sectional structural diagram for explaining one embodiment of the present invention. FIG. 2 is a similar diagram for explaining a conventional example. 1: CdTe wide bandgap semiconductor substrate, 22P type narrow bandgap semiconductor CMT layer, 3: wide bandgap semiconductor CdTe thin film layer, 4: N region, 5: signal electrode, 6: S1-CCD. 7: Charge injection region, 8: In bump. external medium

Claims (1)

【特許請求の範囲】[Claims] 所望波長領域の赤外光を透過する広禁制帯半導体基板上
に、赤外光を吸収する狭禁制帯半導体膜および表面を安
定化する広禁制帯半導体薄膜を連続的にエピタキシャル
成長させたウェーハを用いて、前記広禁制帯薄膜を階段
状に多重エッチングして狭禁制帯半導体膜層に窓を開け
、次にイオン注入と信号電極形成を行い、さらに導電性
バンプにより電荷転送素子の各画素電極との密着接続す
ることを特徴とする赤外線撮像素子の製造方法。
A wafer is used in which a narrow bandgap semiconductor film that absorbs infrared light and a wide bandgap semiconductor thin film that stabilizes the surface are epitaxially grown on a wide bandgap semiconductor substrate that transmits infrared light in the desired wavelength range. Then, the wide bandgap thin film is multi-etched stepwise to open windows in the narrow bandgap semiconductor film layer, ions are implanted and signal electrodes are formed, and conductive bumps are formed to connect each pixel electrode of the charge transfer device. 1. A method for manufacturing an infrared imaging device, characterized in that the infrared imaging device is closely connected.
JP63327598A 1988-12-27 1988-12-27 Manufacture of infrared image pickup element Pending JPH02174261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63327598A JPH02174261A (en) 1988-12-27 1988-12-27 Manufacture of infrared image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63327598A JPH02174261A (en) 1988-12-27 1988-12-27 Manufacture of infrared image pickup element

Publications (1)

Publication Number Publication Date
JPH02174261A true JPH02174261A (en) 1990-07-05

Family

ID=18200851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63327598A Pending JPH02174261A (en) 1988-12-27 1988-12-27 Manufacture of infrared image pickup element

Country Status (1)

Country Link
JP (1) JPH02174261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322826A (en) * 1995-05-31 1996-12-10 Matsushita Electric Ind Co Ltd X-ray radiographic system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08322826A (en) * 1995-05-31 1996-12-10 Matsushita Electric Ind Co Ltd X-ray radiographic system

Similar Documents

Publication Publication Date Title
US7250325B2 (en) Image sensor with deep well region and method of fabricating the image sensor
US9559242B2 (en) Back-illuminated type solid-state imaging device
US4984047A (en) Solid-state image sensor
JPH11317512A (en) Cmos image sensor and manufacture thereof
KR20080026526A (en) Backside illuminated imaging device, semiconductor substrate, imaging apparatus and method for manufacturing backside illuminated imaging device
JPH0523505B2 (en)
JPH0318793B2 (en)
JPH0982932A (en) Solid state image sensing element
JPH05267695A (en) Infrared image sensing device
JPH0513748A (en) Solid-state image pickup element
KR100406596B1 (en) Method for forming image sensor having NPNP photodiode
JP2959460B2 (en) Solid-state imaging device
KR100922929B1 (en) Image Sensor and Method for Manufacturing thereof
JPH02174261A (en) Manufacture of infrared image pickup element
CN112786635A (en) Vertical charge transfer type photon demodulator and working method thereof
JP3939430B2 (en) Photodetector
JPH0492481A (en) Photosensor
JPS63273365A (en) Infrared-ray detector
JPS61187267A (en) Solid-state image pickup device
JPS60182764A (en) Semiconductor light receiving device
KR20040058697A (en) CMOS image sensor with curing photo diode's surface defects and method for fabricating thereof
JPS6079773A (en) Solid-state image pickup device
JPH02226777A (en) Semiconductor light receiving element and manufacture thereof
JPH04286160A (en) Photodetector and manufacture thereof
KR101016514B1 (en) Image Sensor and Method for Manufacturing thereof