JPH02174056A - Manufacture of separator for alkaline storage battery - Google Patents

Manufacture of separator for alkaline storage battery

Info

Publication number
JPH02174056A
JPH02174056A JP63332955A JP33295588A JPH02174056A JP H02174056 A JPH02174056 A JP H02174056A JP 63332955 A JP63332955 A JP 63332955A JP 33295588 A JP33295588 A JP 33295588A JP H02174056 A JPH02174056 A JP H02174056A
Authority
JP
Japan
Prior art keywords
sulfuric acid
separator
woven fabric
polyvinyl alcohol
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63332955A
Other languages
Japanese (ja)
Inventor
Hideo Kaiya
英男 海谷
Masako Kusaka
草鹿 雅子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63332955A priority Critical patent/JPH02174056A/en
Publication of JPH02174056A publication Critical patent/JPH02174056A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To form a high-performance separator with a simple method by impregnating a sulfuric acid solution in a woven fabric or a nonwoven fabric made of fibers coated with polyvinyl alcohol on the surface of polypropylene fibers and heat-treating it. CONSTITUTION:Fibers coated with polyvinyl alcohol on polypropylene are used as a base, a dilute sulfuric acid solution is impregnated in a woven fabric or a nonwoven fabric made of the fibers, moisture in dilute sulfuric acid is evaporated in the air or the inert gas phase, a small quantity of concentrated sulfuric acid is left and held in the high-temperature atmosphere, and sulfonic group is combined with polyvinyl alcohol. The degree of sulfonation is determined by the quantity of impregnated sulfuric acid and the heat treatment temperature. Polyvinyl alcohol is shrunk in concentrated alkali when used alone, but it is not shrunk when coated on polypropylene, and a higher hydrophilic property is obtained by the sulfonation processing. A separator with a good liquid holding property and a good hydrophilic property and stable in an alkaline electrolyte can be formed with simple processing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ニッケルカドミウム蓄電池等に用いるアルカ
リ蓄電池用セパレータの製造法に関するもので、セパレ
ータ特性として重要な保液性、あるいは耐熱アルカリ性
の改善に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for manufacturing a separator for alkaline storage batteries used in nickel-cadmium storage batteries, etc., and relates to improvement of liquid retention or heat-resistant alkalinity, which are important characteristics of the separator. be.

従来の技術 一般に電池用セパレータに対する要求特性は、正負極間
の隔離による短絡防止、及び電池反応に必要となる電解
液の保持である。
BACKGROUND OF THE INVENTION In general, characteristics required for battery separators are prevention of short circuits by separating positive and negative electrodes, and retention of electrolyte required for battery reactions.

近年ポータプル機器の需要の増大にともない、その使用
々途も拡大してきている。例えば、密閉型ニッケルカド
ミウム蓄電池等においては、その使用温度範囲の拡大に
対する対応あるいは、長寿命化に対する改善が必要とな
ってきている。ニッケルカドミウム蓄電池等のアルカリ
蓄電池に使用されているセパレータは、一般に、ナイロ
ン、あるいは、ポリプロピレンが主体である。
As the demand for portable devices has increased in recent years, their uses have also expanded. For example, sealed nickel-cadmium storage batteries and the like need to be improved to accommodate an expanded operating temperature range or to extend their service life. Separators used in alkaline storage batteries such as nickel-cadmium storage batteries are generally mainly made of nylon or polypropylene.

発明が解決しようとする課題 しかし、例えばナイロンセパレータにおいては、高温で
の使用により、分解されやすく、正負極の隔離機能が低
下するとともに、分解生成不純物により、電池の自己放
電を促進するという欠点がある。また、ポリプロピレン
セパレータでは、その親水性が低いため、放電性能がナ
イロンよりも劣る。あるいは、充放電サイクル寿命特性
が劣るという欠点があった。ポリプロピレンセパレータ
の親水性を増大させ、上記のような欠点を改良するため
、界面活性剤を繊維の面に付着させる方法も用いられて
いるが、長期間に及ぶ使用により界面活性剤が分解し、
その作用が低下する欠点があり、さらに改善の予地があ
った。さらに、ポリプロピレンの表面にスルホン基等の
親水基を結合し、長寿命化をはかる方法も提案されてい
るが、例えばポリプロピレンのスルホン化は、発煙硫酸
等を使用する必要があり、工業的生産が困難なことが予
想される。
Problems to be Solved by the Invention However, for example, nylon separators have the disadvantage that they are easily decomposed when used at high temperatures, reducing the isolation function of the positive and negative electrodes, and promoting self-discharge of the battery due to impurities produced by decomposition. be. Furthermore, since polypropylene separators have low hydrophilicity, their discharge performance is inferior to that of nylon. Another drawback is that the charge/discharge cycle life characteristics are poor. In order to increase the hydrophilicity of polypropylene separators and improve the above-mentioned drawbacks, a method of attaching a surfactant to the fiber surface has been used, but the surfactant decomposes after long-term use.
There was a drawback that the effect was reduced, and there was room for further improvement. Furthermore, a method has been proposed in which hydrophilic groups such as sulfone groups are bonded to the surface of polypropylene to extend its life. However, for example, sulfonation of polypropylene requires the use of fuming sulfuric acid, making industrial production difficult. Difficulties are expected.

本発明は、以上のような問題点を解決するもので、極め
て簡単な方法で、高性能のアルカリ蓄電池用のセパレー
タを製造する方法を提供するものである。
The present invention solves the above-mentioned problems and provides a method of manufacturing a high-performance separator for alkaline storage batteries using an extremely simple method.

課題を解決するための手段 以上の問題点を解決するため、本発明は、耐熱アルカリ
性、耐酸化性のすぐれたポリプロピレンにポリビニルア
ルコールをコーティングした繊維をベースとし、これに
親水性を付与するために、ポリビニルアルコールにスル
ホン基を結合するものである。
Means for Solving the Problems In order to solve the problems above, the present invention is based on fibers made of polypropylene coated with polyvinyl alcohol, which has excellent heat and alkaline resistance and oxidation resistance. , a sulfone group is bonded to polyvinyl alcohol.

ポリビニルアルコールへのスルホン基の付与は、上記繊
維を用いて作製した織布、あるいは不織布に希硫酸溶液
を含浸し、空気中、あるいは不活性気相中で、希硫酸中
の水分を蒸発させ、少量の濃硫酸を残存させた状態で、
高温雰囲気に保持するという簡単な方法で行う。ポリビ
ニルアルコールへのスルホン基の結合は、上記織布する
いは不織布に含浸された硫酸量に、熱処理温度により決
定されこれらをコントロールすることにより任意にスル
ホン化の程度を制御できる。
Sulfone groups are added to polyvinyl alcohol by impregnating a woven fabric or non-woven fabric made using the above fibers with a dilute sulfuric acid solution, and evaporating the water in the dilute sulfuric acid in air or an inert gas phase. With a small amount of concentrated sulfuric acid remaining,
This is done simply by keeping it in a high temperature atmosphere. The bonding of the sulfone group to polyvinyl alcohol is determined by the amount of sulfuric acid impregnated into the woven or nonwoven fabric and the heat treatment temperature, and by controlling these, the degree of sulfonation can be arbitrarily controlled.

作   用 ポリプロピレンあるいは、ポリビニルアルコールは、先
に述べた通り、耐熱アルカリ性、あるいは、耐酸化性が
良好であり、ポリビニルアルコールは単独で使用する場
合は、濃アルカリ中で収縮し、セパレータの収縮変化を
起こし、短絡等の問題を生じるが、本発明のようにポリ
プロピレンにコーティングしている場合は、ポリプロピ
レンが安定なため、上記のような問題を生じない。また
、ポリビニルアルコールは、それ自体として、親水性が
高い材料であり、スルホン化の処理により、より高い親
水性が得られ、その処理も、ポリプロピレンに比べ、容
易なため、簡単な方法でのスルホン化処理が可能で工業
的な利点が大きい。
Function: As mentioned above, polypropylene or polyvinyl alcohol has good heat and alkaline resistance or oxidation resistance, and when polyvinyl alcohol is used alone, it shrinks in concentrated alkali, causing changes in separator shrinkage. However, when polypropylene is coated as in the present invention, the above-mentioned problems do not occur because polypropylene is stable. In addition, polyvinyl alcohol itself is a highly hydrophilic material, and higher hydrophilicity can be obtained through sulfonation treatment, which is easier to process than polypropylene. It has great industrial advantages as it can be chemically treated.

また、ポリプロピレン繊維表面にコーティングしたポリ
ビニルアルコールに結合したスルホン基は、ポリプロピ
レンに直接結合したスルホン基と同様非常に安定であり
、例えば、密閉形ニッケルカドミウム蓄電池等に使用し
た場合、電池の高温での使用や、長期にわたる充放電サ
イクルで劣化しにくいため、通常のポリプロピレンセパ
レータを用いた電池に比べ、初期の放電特性が良好であ
るとともに、その効果が長期にわたって安定しているた
め、電池の充放電サイクル寿命特性が大巾に向上する。
In addition, the sulfone group bonded to the polyvinyl alcohol coated on the surface of the polypropylene fiber is extremely stable, similar to the sulfone group bonded directly to polypropylene. For example, when used in a sealed nickel-cadmium storage battery, etc. Because it is less prone to deterioration due to use and long-term charge/discharge cycles, it has better initial discharge characteristics than batteries using ordinary polypropylene separators, and its effect is stable over a long period of time, making it easier to charge and discharge batteries. Cycle life characteristics are greatly improved.

実  施  例 以下本発明の実施例を示す。Example Examples of the present invention will be shown below.

ポリプロピレン単繊維の表面にポリビニルアルコールを
コーティングした直径約20μの繊維からなる厚さ0.
20mm、空孔率約50%の不織布を用意する。ここで
、単繊維中のポリプロピレンと、表面のポリビニルアル
コールの体積比率は、約1対1である。
A fiber with a thickness of 0.2 μm and made of polypropylene single fibers coated with polyvinyl alcohol and having a diameter of approximately 20 μm.
A nonwoven fabric of 20 mm and a porosity of about 50% is prepared. Here, the volume ratio of polypropylene in the single fiber to polyvinyl alcohol on the surface is about 1:1.

上記不織布を20℃、10%の希硫酸溶液に含浸し、不
織布中の空孔部全体に希硫酸を含浸する含浸された希硫
酸量は、濃硫酸に換算して、不織布の繊維体積に対して
10%である。次に、温度80℃の空気中で、上記希硫
酸を含浸した不織布を約20分間放置する。不織布に含
浸された希硫酸中の水分は約5分間程度で、5%以下と
なり、希硫酸溶液は、はぼ濃硫酸の状態となり、この時
点からポリビニルアルコールのスルホン化が急速に進行
する。20分後に上記不織布を残留硫酸分がなくなるま
で水洗し、乾燥を行った。
The nonwoven fabric is impregnated with a 10% dilute sulfuric acid solution at 20°C, and the entire pores in the nonwoven fabric are impregnated with dilute sulfuric acid. It is 10%. Next, the nonwoven fabric impregnated with dilute sulfuric acid is left for about 20 minutes in air at a temperature of 80°C. The water content in the dilute sulfuric acid impregnated into the nonwoven fabric becomes 5% or less in about 5 minutes, and the dilute sulfuric acid solution becomes almost concentrated sulfuric acid, and from this point on, the sulfonation of polyvinyl alcohol proceeds rapidly. After 20 minutes, the nonwoven fabric was washed with water until there was no residual sulfuric acid content, and then dried.

上記本発明による不織布セパレータを(a)とする。さ
らに比較例として以下に示す4種類のセパレータを用意
した。
The nonwoven fabric separator according to the present invention is referred to as (a). Furthermore, four types of separators shown below were prepared as comparative examples.

その1つは、上記において、硫酸処理を行わないものこ
れを(b)とする。次に、通常のナイロンセパレータこ
れを(e)とする。次に通常のポリプロピレンセパレー
タこれを(d)とする。次に上記(d)にスリホン化処
理を行ったものこれを(e)とする。ポリプロピレンセ
パレータのスルホン化処理は、ポリプロピレン不織布を
温度35℃、濃度20%の発煙硫酸中に約10分間浸漬
し、水洗、乾燥を施した。上記5種類のセパレータと通
常のペースト式カドミウム負極、焼結式ニッケル極、及
び、アルカリ電解液を用いて、1.2Ah相当の密閉形
ニッケルカドミウム蓄電池を作制した。電池は、本発明
によるセパレータ(a)を用いた電池を(A)、同様に
(b)(c)、(d)、(e)の比較例のセパレータを
用いた電池を(B)、(C)、(d)、(e)とする。
One of them is (b) above, which is not treated with sulfuric acid. Next, a normal nylon separator is prepared (e). Next, a normal polypropylene separator is prepared (d). Next, the above-mentioned (d) was subjected to a sulfonation process, and this is designated as (e). The sulfonation treatment of the polypropylene separator was performed by immersing the polypropylene nonwoven fabric in fuming sulfuric acid with a concentration of 20% at a temperature of 35° C. for about 10 minutes, washing with water, and drying. A sealed nickel-cadmium storage battery equivalent to 1.2 Ah was fabricated using the above five types of separators, a normal paste-type cadmium negative electrode, a sintered-type nickel electrode, and an alkaline electrolyte. The batteries are (A) a battery using the separator (a) according to the present invention, and (B) a battery using the separators of comparative examples (b), (c), (d), and (e). C), (d), and (e).

セパレータの評価は、上記電池の放電特性、及び、充放
電サイクル寿命特性によって評価した。
The separator was evaluated based on the discharge characteristics and charge/discharge cycle life characteristics of the battery.

放電特性は、電池を20℃で、0.1CmA相当の電流
で、15時間充電し、1〜100mA相当の電流で、放
電したときの放電容量と、0.20 m A相当の電流
で放電したときの放電容量との比率で評価した。
The discharge characteristics are the discharge capacity when the battery was charged at 20°C at a current equivalent to 0.1 CmA for 15 hours, and then discharged at a current equivalent to 1 to 100 mA, and the discharge capacity when the battery was discharged at a current equivalent to 0.20 mA. The evaluation was made based on the ratio to the discharge capacity at that time.

また、充放電サイクル寿命特性は、60℃で1/3Cm
A相当の電流で4.5時間充電し、l CmA相当の抵
抗負荷で完全放電をする充放電をくり返し、サイクルに
よる容量低下で評価した。
In addition, the charge/discharge cycle life characteristics are 1/3 Cm at 60°C.
The battery was charged with a current equivalent to A for 4.5 hours and then completely discharged with a resistive load equivalent to 1 CmA. The battery was repeatedly charged and discharged, and the capacity drop due to the cycles was evaluated.

第1図は、放電々流と、放電容量比率の関係で、電池の
放電特性を示す。一般に通常のナイロンセパレータは保
液性が良好であるため、放電特性が良好である。本発明
によるセパレータ(a)を用いた電池(A)及び、ポリ
プロピレンスルホン化処理をほどこしたセパレータ(e
)を用いた電池(E)は、第1図に示す通り、ナイロン
セパレータ(C)を用いた電池(C)と同等の特性を示
し、ナイロンと同等の保液性を確保していることがわか
る。通常のポリプロピレンセパレータ(d)を用いた電
池(D)は、セパレータの保液、親水性が他のものに比
べ劣るため、放電特性が劣化している。また、ポリプロ
ピレンにポリビニルアルコールをコーティングした繊維
を用いて、本発明のように硫酸処理を施さないもの(b
)を用いた電池(B)については、ポリプロピレンのみ
のものよりも、ポリビニルアルコールにより親水性が向
上しているためやや放電特性が良好になっているが、さ
らに硫酸処理を行ってスルホン基を付与した本発明によ
るものよりは、放電特性が劣っている。
FIG. 1 shows the discharge characteristics of the battery in terms of the relationship between discharge current and discharge capacity ratio. In general, a normal nylon separator has good liquid retention properties and therefore has good discharge characteristics. A battery (A) using the separator (a) according to the present invention and a separator (e) subjected to polypropylene sulfonation treatment
As shown in Figure 1, the battery (E) using the nylon separator (C) shows the same characteristics as the battery (C) using the nylon separator (C), and has the same liquid retention properties as nylon. Recognize. A battery (D) using a normal polypropylene separator (d) has deteriorated discharge characteristics because the separator's liquid retention and hydrophilicity are inferior to those of other batteries. In addition, fibers made of polypropylene coated with polyvinyl alcohol and not subjected to sulfuric acid treatment as in the present invention (b
) battery (B) using polypropylene has slightly better discharge characteristics than a battery using only polypropylene due to improved hydrophilicity due to polyvinyl alcohol, but it is further treated with sulfuric acid to add sulfone groups. The discharge characteristics are inferior to those according to the present invention.

第2図は、同様に充放電サイクル寿命特性の関係を示す
。寿命特性も、放電特性と同様に、セパレータの保液親
水性に大きな関係がある。一般に充放電サイクルをくり
返すことによって、極板が膨張し、電解液が、セパレー
タから極板中に移行する傾向がある。この際、保液、親
水性の低いセパレータでは、極板への電解液の移行が早
い時期に起こり、充放電特性が劣化し、サイクル寿命が
短くなる。本発明によるセパレータ(a)を用いた電池
(A)及び比較としての電池(E)(B)、(D)は、
上記の初期の放電特性と同様の傾向にあり、これは、セ
パレータの保液親水性の差によるものであると考えられ
る。
FIG. 2 similarly shows the relationship between charge and discharge cycle life characteristics. Like the discharge characteristics, the life characteristics also have a large relationship with the liquid retention hydrophilicity of the separator. Generally, by repeating charge/discharge cycles, the electrode plates expand and the electrolyte tends to migrate from the separator into the electrode plates. At this time, if the separator has low liquid retention and hydrophilicity, the electrolytic solution will migrate to the electrode plates at an early stage, degrading the charge/discharge characteristics and shortening the cycle life. The battery (A) using the separator (a) according to the present invention and the comparative batteries (E), (B), and (D) are as follows:
The tendency was similar to the initial discharge characteristics described above, and this is thought to be due to the difference in liquid-retentive hydrophilicity of the separators.

保液親水性が良好なナイロンを用いた電池(C)につい
ては、充放電サイクルの初期においては、(A)、(E
)と同等の特性を示すが、除去にナイロンの分解が進行
し、やがて、正負極の隔離機能が低下し、内部短絡を生
じる。
For batteries (C) using nylon with good liquid-retaining hydrophilicity, (A) and (E
), but the decomposition of nylon progresses during removal, and eventually the isolation function of the positive and negative electrodes deteriorates, causing internal short circuits.

このように本発明によるセパレータを用いれば、初期の
放電特性については、保液親水性の良好なナイロンセパ
レータと同等の特性を確保し、その保液親水性の安定性
と、基体となっているポリプロピレン、ポリビニルアル
コールの耐熱アルカリ性、耐酸化性による耐久性から高
温でのサイクル寿命特性がナイロンに対して非常に良好
となる。
As described above, if the separator according to the present invention is used, the initial discharge characteristics are equivalent to those of a nylon separator with good liquid-retaining hydrophilicity, and the stability of the liquid-retaining hydrophilicity and the stability of the substrate Due to the durability of polypropylene and polyvinyl alcohol due to their heat and alkaline resistance and oxidation resistance, their cycle life characteristics at high temperatures are much better than that of nylon.

先に述べた通り、ポリビニルアルコールのスルホン化の
程度は、不織布に含浸される硫酸量及び熱処理の温度に
依存する。含浸される硫酸量については、不織布の空孔
率及び、希硫酸の濃度を変化させてその適正値を検討し
た。このときの熱処理温度は80℃とし、時間は20分
とした。また、処理温度については、常温から150℃
まで変化させその適正値を検討した。またこのときの含
浸硫酸量は、不織布の繊維量に対して、濃硫酸に換算し
た値で10%とした。また、セパレータの評価は、電池
の放電特性で代表し、その他の特性を参加にした。
As mentioned above, the degree of sulfonation of polyvinyl alcohol depends on the amount of sulfuric acid impregnated into the nonwoven fabric and the temperature of the heat treatment. Regarding the amount of sulfuric acid to be impregnated, the appropriate value was examined by changing the porosity of the nonwoven fabric and the concentration of dilute sulfuric acid. The heat treatment temperature at this time was 80° C. and the time was 20 minutes. In addition, the processing temperature ranges from room temperature to 150℃.
The appropriate value was examined by varying the value up to Further, the amount of impregnated sulfuric acid at this time was 10% in terms of concentrated sulfuric acid based on the amount of fibers in the nonwoven fabric. In addition, the separator was evaluated based on the discharge characteristics of the battery, and other characteristics were considered.

ポリビニルアルコールのスルホン化は、希硫酸中の水分
が蒸発し、濃硫酸に近い濃度に達した時点から進行する
。その時点の硫酸の濃度としては、約5係程度であると
思われ、この濃度以下でハ、硫酸分の量を多くしてもポ
リビニルアルコールのスルホン化は進行しにくいので熱
処理の条件としでは、不織布の中の硫酸分が95%以上
となることが必要である。また含浸する際の希硫酸の濃
度は重要でなく、熱処理によって最終的に不織布中の残
存する硫酸分の繊維量に対する量が重要となる。その量
が少ない場合は、ポリビニルアルコールのスルホン化が
十分に行われない。その下限値は、不織布の体積に対し
て、濃硫酸に換算した値で、1V%程度である。また、
量が多い場合は、ポリビニルアルコールの分解が生じる
とともに、後の水洗時に、不織布中に残存する濃硫酸の
希釈熱により、不織布の熱収縮を生じるという不具合も
生じ、その上限は、繊維量に対し、濃硫酸に換算した値
で20%程度である。熱処理温度についても同様なこと
がいえ、温度が低い場合は、ポリビニルアルコールのス
ルホン化が十分に進行しないとともに、水分の蒸発に長
時間を要するため工業的生産には不利となる。その下限
値は約50℃程度である。また、その上限については、
水分の蒸発、スルホン化の進行も良好となるが、120
℃程度で、基体のポリプロピレンの熱変形を生じるため
、120℃程度が適当であると考えられる。
Sulfonation of polyvinyl alcohol proceeds from the time when the water in dilute sulfuric acid evaporates and reaches a concentration close to that of concentrated sulfuric acid. The concentration of sulfuric acid at that point is thought to be about 5%, and below this concentration, the sulfonation of polyvinyl alcohol is difficult to proceed even if the amount of sulfuric acid is increased, so the conditions for heat treatment are as follows: It is necessary that the sulfuric acid content in the nonwoven fabric be 95% or more. Further, the concentration of dilute sulfuric acid during impregnation is not important, but the amount of sulfuric acid remaining in the nonwoven fabric after heat treatment is important relative to the amount of fibers. If the amount is small, polyvinyl alcohol will not be sufficiently sulfonated. The lower limit value is about 1V% in terms of concentrated sulfuric acid based on the volume of the nonwoven fabric. Also,
If the amount is too large, the polyvinyl alcohol will decompose, and during subsequent washing with water, the heat of dilution from the concentrated sulfuric acid remaining in the nonwoven fabric will cause heat shrinkage of the nonwoven fabric. , which is about 20% in terms of concentrated sulfuric acid. The same can be said about the heat treatment temperature; if the temperature is low, the sulfonation of polyvinyl alcohol will not proceed sufficiently and evaporation of water will take a long time, which is disadvantageous for industrial production. Its lower limit is about 50°C. Also, regarding the upper limit,
The evaporation of water and the progress of sulfonation are also good, but at 120
Since thermal deformation of the polypropylene base material occurs at a temperature of about 120°C, a temperature of about 120°C is considered to be appropriate.

なお、本実施例については、不織布について説明したが
、織布でも、もちろん同様の方法で処理が行えると同時
に、熱処理の雰囲気は、空気中に限定するものでなく、
基体のポリプロピレン、ポリビニルアルコールに悪影響
を与えないものであれば、ちっ素等の不活性気体であれ
ば、その種類は、重要でない。
Although the present example has been described with respect to non-woven fabric, it is of course possible to treat woven fabric in the same manner, and the atmosphere for heat treatment is not limited to air.
The type of gas is not important as long as it does not adversely affect the base polypropylene or polyvinyl alcohol, as long as it is an inert gas such as nitrogen.

発明の効果 以上のように本発明によれば、簡単な処理で、保液、親
水性が良好で、アルカリ電解液中で安定なセパレータを
製造することが可能で、ニッケルカドミウム蓄電池等に
使用すれば、高温でのサイクル寿命特性を大巾に改良す
ることができる。
Effects of the Invention As described above, according to the present invention, it is possible to manufacture a separator that has good liquid retention and hydrophilicity and is stable in alkaline electrolytes through simple processing, and is suitable for use in nickel-cadmium storage batteries, etc. For example, cycle life characteristics at high temperatures can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は密閉形ニッケルカドミウム蓄電池の放電々流と
放電容量比率の関係を示す特性図、第2図は同様に充放
電サイクルの寿命特性図である。 代理人の氏名 弁理士 粟野重孝 ほか1名第1図 玖t(5L(C代−) 第2図 5t)O1000/5t)0 充方(tプイクJL/歓(回) 手続補正書 平成元年7月 3日 昭和63年特許願第 332955号 2発明の名称 アルカリ蓄電池用セパレータの製造法 3補正をする者 事件との関係      特   許   出   願
  大佐 所  大阪府門真市大字門真1006番地名
 称 (582)松下電器産業株式会社代表者    
谷  井  昭  雄 4代理人 住  所 〒 571 大阪府門真市大字門真1006番地 松下電器産業株式会社内 6、補正の内容 (1)明細書第4頁第18行の「硫酸量に」を「硫酸量
と」K補正します。 (2)  同第6頁第15行の「含浸するJを「含浸す
る。」に補正します。 (3)同第7頁第12行の「スリホン化Jを「スルホン
化」に補正します。 (4)同第10頁第12行の「除去」を「徐々」に補正
します。
FIG. 1 is a characteristic diagram showing the relationship between the discharge current and the discharge capacity ratio of a sealed nickel-cadmium storage battery, and FIG. 2 is a characteristic diagram of the charge-discharge cycle life. Name of agent Patent attorney Shigetaka Awano and 1 other person Figure 1 Kut (5L (C fee-) Figure 2 5t) O1000/5t) 0 Mitsukata (t Puik JL/Kan (times) Procedural amendment 1989 July 3, 1988 Patent Application No. 332955 2. Name of the invention Method for manufacturing separators for alkaline storage batteries 3. Relationship to the amended case Patent application Office 1006 Kadoma, Kadoma City, Osaka Prefecture Name (582) ) Representative of Matsushita Electric Industrial Co., Ltd.
Akio Tanii 4 Agent Address: 6, Matsushita Electric Industrial Co., Ltd., 1006 Oaza Kadoma, Kadoma City, Osaka Prefecture, 571 Contents of the amendment (1) Changed "Amount of sulfuric acid" on page 4, line 18 of the specification to "sulfuric acid" Quantity and "K" correction. (2) "J to impregnate" on page 6, line 15 will be corrected to "impregnate." (3) "Sulfonation J" on page 7, line 12 will be corrected to "sulfonation." (4) "Removal" on page 10, line 12 will be corrected to "gradually."

Claims (3)

【特許請求の範囲】[Claims] (1)ポリプロピレン繊維の表面にポリビニルアルコー
ルをコーティングした繊維からなる織布あるいは不織布
に硫酸溶液を含浸する工程と、上記硫酸を含浸した織布
あるいは、不織布を熱処理する工程を有することを特徴
とするアルカリ蓄電池用セパレータの製造法。
(1) It is characterized by comprising the steps of impregnating a woven fabric or non-woven fabric made of polypropylene fibers coated with polyvinyl alcohol on the surface with a sulfuric acid solution, and heat-treating the woven fabric or non-woven fabric impregnated with the sulfuric acid. Method for manufacturing separators for alkaline storage batteries.
(2)織布あるいは不織布に含浸する硫酸溶液量が織布
あるいは不織布の繊維体積に対して、濃硫酸に換算した
量で、20〜1V%であることを特徴とする特許請求の
範囲第1項記載のアルカリ蓄電池用セパレータの製造法
(2) Claim 1, characterized in that the amount of the sulfuric acid solution impregnated into the woven fabric or non-woven fabric is 20 to 1 V%, calculated as concentrated sulfuric acid, based on the fiber volume of the woven fabric or non-woven fabric. A method for producing a separator for an alkaline storage battery as described in .
(3)熱処理が、硫酸溶液を含浸した織布あるいは不繊
布に含浸された硫酸溶液中の水分が、5V%以下になる
まで50〜120℃の気相中に放置することを特徴とす
る特許請求の範囲第1項または第2項記載のアルカリ蓄
電池用セパレータの製造法。
(3) A patent characterized in that the heat treatment involves leaving a woven fabric or nonwoven fabric impregnated with a sulfuric acid solution in a gas phase at 50 to 120°C until the water content in the sulfuric acid solution becomes 5V% or less. A method for producing a separator for an alkaline storage battery according to claim 1 or 2.
JP63332955A 1988-12-27 1988-12-27 Manufacture of separator for alkaline storage battery Pending JPH02174056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63332955A JPH02174056A (en) 1988-12-27 1988-12-27 Manufacture of separator for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332955A JPH02174056A (en) 1988-12-27 1988-12-27 Manufacture of separator for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH02174056A true JPH02174056A (en) 1990-07-05

Family

ID=18260683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332955A Pending JPH02174056A (en) 1988-12-27 1988-12-27 Manufacture of separator for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH02174056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121948A (en) * 1990-09-11 1992-04-22 Matsushita Electric Ind Co Ltd Separater for alkaline battery and its manufacture
KR20190121841A (en) * 2017-05-09 2019-10-28 아사히 가세이 가부시키가이샤 Porous Sintered Sheet and Manufacturing Method Thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04121948A (en) * 1990-09-11 1992-04-22 Matsushita Electric Ind Co Ltd Separater for alkaline battery and its manufacture
KR20190121841A (en) * 2017-05-09 2019-10-28 아사히 가세이 가부시키가이샤 Porous Sintered Sheet and Manufacturing Method Thereof

Similar Documents

Publication Publication Date Title
CN112151762B (en) Lithium-sulfur battery positive electrode material and preparation method thereof, lithium-sulfur battery positive electrode and preparation method thereof, and lithium-sulfur battery
US9450232B2 (en) Process for producing negative plate for lead storage battery, and lead storage battery
JP2001508916A (en) Lithium ion battery and method of manufacturing the same
CN110690495B (en) Composite gel polymer solid electrolyte, preparation method thereof and sodium ion battery
CN114665223A (en) High-temperature-resistant cellulose-based polyvinyl alcohol composite battery diaphragm and preparation method thereof
CN112018310B (en) Resin-based carbon nanofiber membrane applied to lithium-sulfur battery interlayer and preparation method thereof
US2887522A (en) Storage battery and method of making same
CN110350129B (en) Lithium ion battery composite diaphragm with electrochemical activity and preparation method thereof
JPH02174056A (en) Manufacture of separator for alkaline storage battery
CN115051111A (en) Porous composite separator for secondary battery and lithium secondary battery comprising same
JPH02174057A (en) Manufacture of separator for alkaline storage battery
CN107658408B (en) Composite multilayer polyolefin lithium battery diaphragm and preparation method thereof
CN113948783B (en) Lithium ion battery and pre-cycling activation method thereof
JPH06140018A (en) Separator for alkali battery and its manufacture
KR100389123B1 (en) Separator for alkali secondary battery and preparation method thereof
JPS59173979A (en) Nonaqueous battery
WO2015080150A1 (en) Lead storage cell separator and lead storage cell
JP2022532478A (en) Application of lignosulfonate and high surface area carbon to battery separator components
KR20200061719A (en) Surface treated separation film for lithium secondary battery and surface treatment method of separation film
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JPH11339843A (en) Sealed lead-acid battery
JPH0729559A (en) Separator for alkaline battery
JPH01248460A (en) Separator for battery and manufacture thereof
JPS6119056A (en) Separator for battery
JP2590520B2 (en) Sealed alkaline storage battery separator and method for producing the same